

T.C ULUDAĞ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

YENİ BAZI α-İMİNOOKSİM TÜREVLERİNİN VE NİKEL(II), KOBALT(III) KOMPLEKSLERİNİN SENTEZİ, YAPILARININ AYDINLATILMASI

Gökhan ŞİRİKÇİ

Prof. Dr. Gazi İREZ

(Danışman)

YÜKSEK LİSANS TEZİ KİMYA ANABİLİM DALI

BURSA - 2011

Her Hakkı Saklıdır

TEZ ONAYI

Gökhan ŞİRİKÇİ tarafından hazırlanan "Yeni Bazı α-İminooksim Türevlerinin ve Nikel(II), Kobalt(III) Komplekslerinin Sentezi, Yapılarının Aydınlatılması" adlı tez çalışması aşağıdaki juri tarafından oybirliği ile Uludağ Üniversitesi Fen Bilimleri Enstitüsü Kimya Anabilim Dalı'nda **YÜKSEK LİSANS TEZİ** olarak kabul edilmiştir.

Danışman :	(Prof. Dr. Gazi İREZ)	
Başkan :	Prof. Dr. Gazi İREZ Uludağ Ü. Fen-Edebiyat Fakültesi, Kimya Anabilim Dalı	İmza
Üye :	Prof. Dr. Veysel Turan YILMAZ Uludağ Ü. Fen-Edebiyat Fakültesi, Kimya Anabilim Dalı	İmza
Üye :	Prof. Dr. Sezai TÜRKEL Uludağ Ü. Fen-Edebiyat Fakültesi, Biyoloji Anabilim Dalı	İmza

Yukarıdaki sonucu onaylarım

Prof. Dr. Kadri ARSLAN Enstitü Müdürü

.../.../....

U.Ü. Fen Bilimleri Enstitüsü, tez yazım kurallarına uygun olarak hazırladığım bu tez çalışmasında;

- tez içindeki bütün bilgi ve belgeleri akademik kurallar çerçevesinde elde ettiğimi,

- görsel, işitsel ve yazılı tüm bilgi ve sonuçları bilimsel ahlak kurallarına uygun olarak sunduğumu,

- başkalarının eserlerinden yararlanılması durumunda ilgili eserlere bilimsel normlara uygun olarak atıfta bulunduğumu,

- atıfta bulunduğum eserlerin tümünü kaynak olarak gösterdiğimi,

- kullanılan verilerde herhangi bir tahrifat yapmadığımı,

- ve bu tezin herhangi bir bölümünü bu üniversite veya başka bir üniversitede başka bir tez çalışması olarak sunmadığımı

beyan ederim.

.../.../....

İmza

Gökhan ŞİRİKÇİ

ÖZET

Yüksek Lisans Tezi

YENİ BAZI α-İMİNOOKSİM TÜREVLERİNİN VE NİKEL(II), KOBALT(III) KOMPLEKSLERİNİN SENTEZİ, YAPILARININ AYDINLATILMASI

Gökhan ŞİRİKÇİ

Uludağ Üniversitesi Fen Bilimleri Enstitüsü

Danışman: Prof. Dr. Gazi İREZ

Bu tez çalışmasında 2-okso-2-p-tolilasetaldehit oksim ve 2-(naftalen-2-il)-2oksoasetaldehit oksimin 2-aminobenzilamin ile kondenzasyon tepkimelerinden iki yeni 1,2,3,4-tetrahidrokinazolin oksim bileşiği sentezlendi daha sonra bu bileşiklerin Ni(II) ve Co(III) ile oluşturdukları α -iminooksim kompleksleri elde edildi. Tüm bu bileşiklerin yapıları FT-IR, NMR, LC-MS, TGA, elemental analiz, magnetik duyarlılık ve iletkenlik ölçüm metotları gibi temel analiz teknikleri kullanılarak belirlendi. Oluşan komplekslerdeki metal:ligant oranı 1:2 olarak bulundu. Komplekslerin geometrileri oktahedral olarak önerildi.

Anahtar Kelimeler: Oksimler, iminooksimler, tetrahidrokinazolin oksimler, oksim kompleksleri.

2011, xii + 63 sayfa.

ABSTRACT

MSc Thesis

SYNTHESIS AND ENLIGHTENMENT OF STRUCTURES OF SOME NOVEL α-IMINOOXIME DERIVATES AND NICKEL(II), COBALT(III) COMPLEXES

Gökhan ŞİRİKÇİ

Uludağ University Graduate School of Natural and Applied Sciences Department of Chemistry

Supervisor: Prof. Dr. Gazi İREZ

In this thesis study two novel 1,2,3,4-tetrahydroqunazoline oxime were synthesised from condensation reactions of 2-oxo-2-p-tolylacetaldehyde oxime and 2-(naphthalen-2-yl)-2-oxoacetaldehyde oxime with 2-aminobenzylamine and then α -iminooxime complexes of these compounds that formed with Co(III) and Ni(II) transition metal ions were obtained. All structures of these compounds were determined by main analyze techniques like FT-IR, NMR, LC-MS, TGA, elemental analysis, magnetic susebtibility and molar conductivity measurements. The metal to ligand ratio of the complexes was found as 1:2. The geometry of the complexes was suggested as octahedral.

Keywords: Oximes, iminooximes, tetrahydroquinazoline oximes, oxime complexes.

2011, xii + 63 pages.

TEŞEKKÜR

Bu tez çalışmasının yürütülmesi süresince her türlü tecrübe ve bilgisini benimle paylaşan değerli danışmanım Prof. Dr. Gazi İREZ'e (Uludağ Üniversitesi Kimya Anabilim Dalı) ve çalışmalar sırasında maddi, manevi ve akademik olarak her türlü katkıyı görmüş olduğum Araştırma Görevlisi Dr. Hasene Mutlu'ya (Uludağ Üniversitesi Anorganik Kimya Bölümü) teşekkürü bir borç bilirim.

Tez çalışması süresince özellikle bölümümüzde görev yapan tüm öğretim üyelerine ve çalışma arkadaşlarıma ayrıca tez çalışmasının sonuçlarının oluşturulumasında bana katkısı olmuş olan gerek diğer bölümlerde gerek diğer üniversitelerde gerekse çeşitli kuruluşlarda görev yapan herkese de şükranlarımı sunarım.

Yine yüksek lisans çalışmam boyunca en büyük desteklerden birini gördüğüm başta ablam Gölgem Şirikçi'ye ve aileme ayrıca minnetlerimi belirtirim.

Bu tez çalışmasını 106T371 nolu proje ile destekleyen TÜBİTAK'a da bu katkısından dolayı ayrıca teşekkürlerimi sunarım.

Gökhan ŞİRİKÇİ

../../....

İÇİNDEKİLER

Sayfa

ÖZET	
ABSTRACT	
TEŞEKKÜR	1
SİMGE ve KISALTMALAR DİZİNİ	ŗ
ŞEKİLLER DİZİNİ	V
ÇİZELGELER DİZİNİ	2
1. GİRİŞ	
2. KAYNAK ÖZETLERİ	
2.1. Oksimlerin Yapıları ve Genel Özellikleri	
2.2. Oksimlerin Bazı Elde Yöntemleri ve Kullanım Alanları	
2.3. İminooksimlerin Kompleksleri ve 1,2,3,4-Tetrahidrokinazolin Oksimler	
2.4. 2-Sübstitüe-1,2,3,4-Tetrahidrokinazolinler ve Oksimlerinin Bazı Karakteristik NMR Verileri	
2.5. 2-Sübstitüe-1,2,3,4-Tetrahidrokinazolin Oksimlerin Bazı Karakteristik IR	
2.6. İminooksim Komplekslerinin Bazı Karakteristik IR Verileri	
3. MATERYAL VE YÖNTEM	
3.1. Materyal	
3.1.1. Kullanılan kimyasallar	
3.1.2. Kullanılan cihazlar	
3.2. Yöntem	
3.2.1. 2-Okso-2-(p-tolil)asetaldehit oksim (4M-İNAF) ve 2-(naftalen-2-il)-2- oksoasetaldehid oksim (İNAN) sentezleri 3.2.2. 2-(P-tolil)-1,2,3,4-tetrahidrokinazolin-2-karbaldehid oksim (HL ¹) ve 2-(Naftalen-2-il)-1,2,3,4-tetrahidrokinazolin-2-karbaldehid oksim (HL ²)	
Sentezleri. 3.2.3. $[Co(L^1)_2]Cl$ ve $[Co(L^2)_2]Cl.C_2H_5OH.0,5H_2O$ komplekslerinin sentezleri	
3.2.4. $[Ni(HL^{1'})_2]Cl_2$ ve $[Ni(HL^{2'})_2]Cl_2$ komplekslerinin sentezleri	
4. BULGULAR VE TARTIŞMA	
4.1. LC-MS Analizleri	
4.2. FT-IR Analiz Verileri	
4.3. ¹ H-NMR ve ¹³ C-NMR Verileri	

4.4. UV-Visible Spektroskopisi Analiz Verileri	43
4.5. Termik Analiz Verileri	48
5. SONUÇ	55
KAYNAKLAR	56
ÖZGEÇMİŞ	63

SİMGELER ve KISALTMALAR DİZİNİ

Simgeler	Açıklama
°C	Derece santigrat
Hz	Frekans (s ⁻¹)
g	Gram
m/z	Kütle / Yük
mL	Mililitre
ppm	Milyonda bir kısım
3	Molar sönüm katsayısı (L mol ⁻¹ cm ⁻¹)
nm	Nanometre
Ω	Ohm (S ⁻¹)
cm	Santimetre
%	Yüzde
, 0	1 4240
Kışaltmalar	Aciklama
Kısaltmalar	Açıklama
Kısaltmalar 2-ABA	Açıklama 2-Aminobenzilamin
Kısaltmalar 2-ABA AcOH	Açıklama 2-Aminobenzilamin Asetik asit
Kısaltmalar 2-ABA AcOH AAS	Açıklama2-AminobenzilaminAsetik asitAtomik Absorpsiyon Spektroskopisi
Kısaltmalar 2-ABA AcOH AAS B.M.	Açıklama 2-Aminobenzilamin Asetik asit Atomik Absorpsiyon Spektroskopisi Bohr magnetonu (9.274 ×10 ⁻²⁴ J T ⁻¹)
Kısaltmalar 2-ABA AcOH AAS B.M. B.N.	Açıklama 2-Aminobenzilamin Asetik asit Atomik Absorpsiyon Spektroskopisi Bohr magnetonu (9.274 ×10 ⁻²⁴ J T ⁻¹) Bozunma noktası
Kısaltmalar 2-ABA AcOH AAS B.M. B.N. Et ₂ O	Açıklama 2-Aminobenzilamin Asetik asit Atomik Absorpsiyon Spektroskopisi Bohr magnetonu (9.274 ×10 ⁻²⁴ J T ⁻¹) Bozunma noktası Dietil eter
Kısaltmalar 2-ABA AcOH AAS B.M. B.N. Et ₂ O DTA	Açıklama2-AminobenzilaminAsetik asitAtomik Absorpsiyon SpektroskopisiBohr magnetonu (9.274 ×10 ⁻²⁴ J T ⁻¹)Bozunma noktasıDietil eterDiferansiyel termal analiz
Kısaltmalar 2-ABA AcOH AAS B.M. B.N. Et ₂ O DTA DMSO	Açıklama2-AminobenzilaminAsetik asitAtomik Absorpsiyon SpektroskopisiBohr magnetonu (9.274 ×10 ⁻²⁴ J T ⁻¹)Bozunma noktasıDietil eterDiferansiyel termal analizDimetilsülfoksit

E.N.	Erime noktası
HL ¹ '	(1E,2E)-2-((2-aminobenzil)imino)-2-(p-tolil)asetaldehit oksim)
HL ^{2'}	(1E,2E)-2-((2-aminobenzil)imino)-2-(naftalen-2-il)asetaldehit oksim
FT-IR	Fourier dönüşümlü kızılötesi spektroskopi
INAN	2-(Naftalen-2-il)-2-oksoasetaldehid oksim
HL^2	2-(Naftalen-2-il)-1,2,3,4-tetrahidrokinazolin-2-karbaldehid oksim
NMR	Nükleer manyetik rezonans
4M İNAF	2-Okso-2-(p-tolil)asetaldehit oksim
Pmibo	2-[2-(α-Pyridyl)metil]imino-3-bütanon oksim
HL^1	2-(P-tolil)-1,2,3,4-tetrahidrokinazolin-2-karbaldehid oksim
LC-MS	Sıvı kromatografisi-kütle spektrometresi
NaOAc	Sodyum asetat
TGA	Termogravimetrik analiz
Ter-Bu-ONO	Tersiyer Butil Nitrit
UV-Vis	Ultraviyole-Visible
vic	Vicinal

ŞEKİLLER DİZİNİ

Şekil

Şekil

Şekil

Şekil

Şekil

Şekil

Şekil

Şekil

Şekil

Şekil

Şekil

Şekil

Şekil

Şekil

Şekil

Şekil

Şekil

Şekil

Şekil

Şekil

Şekil

Şekil

Şekil 2.18 (c)

Şekil 2.19

2.1 (a)	Diasetil monooksim	
2.1 (b)	Dimetilglioksim	
2.2	Karbonil bileşiklerinden hidroksilamin ile oksim elde edilmesi	-
2.3	Fenilglioksim eldesi ve sırasıyla anti-, amfi- ve sin- izomerleri (R = Fenil)	
2.4	2-Kloro-1-feniletanonun nitrosolanması	4
2.5	Oksimlerin merkez atomuna bağlanış şekilleri	
2.6	(2E,3E)-3-((2-aminoetil)imino)butan-2-on oksim	
2.7	3,14-Dimetil-4,7,10,13-tetraazahekzadeka-3,13-dien-2,15-dion dioksim	
2.0	[2[(dialkilamino)etil]imino]-2-bütanon oksimler (R=H, R'=alkil; R=alkil, R'=alkil)	
2.9	3-(Benzilimino)bütanon 2-oksim ligantı	
2.10	(2Z,3Z)-3-((2-(piridin-2-il)etil)imino)bütan-2-on oksimato anyonu	
2.11	Martin ve arkadaşlarınca sentezlenen nikel komplekslerine ait genel gösterim.	
2.12	Packard ve arkadaşları taradından sentezlenen iki ligant (R=H, R=CH ₃)	
2.13	Maekawa ve arkadaşlarınca sentezlenen [Cu ₂ (pmibo)](NO ₃) ₂ . CH ₃ OH kompleksi	
2.14	Şahin ve arkadaşları tarafından sentezlenen üç iminooksim ligantı (R=H, X=HCl, R=CH ₃ , X=HCl, R=Cl)	
2.15 (a)	Şahin ve arkadaşlarınca elde edilen kompleksler için önerilen yapılar; R=H ve M=Cu(II), R=CH ₃ ve M=Cu(II); R=Cl ve M=Ni(II), Cu(II) ve Co(II)	
2.15 (b)	Şahin ve arkadaşlarınca elde edilen kompleksler için önerilen yapılar; R=H, M=Co(II), Ni(II); R=CH ₃ ,M=Co(II)	
2.16	Maity ve arkadaşlarınca elde edilen ve üç çekirdekli nikel(II) kompleksi	
2.17 (a)	1,2,3,4-Tetrahidrokinazolin yapısı	
2.17 (b)	1,2,3,4-Tetrahidrokinazolin oksim	
2.18 (a)	Bir anilin tipi iminooksim	
2.18 (b)	Halka formundaki 1,2,3,4-tetrahidrokinazolin oksim]

10

11

Benzilamin tipi iminooksim.....

1-(2-Fenil-1,2,3,4-tetrahidrokinazolin-2-il)etanon oksim.....

Şekil 2.20	Çolak ve arkadaşlarının literatüre kazandırdıkları yeni bir nikel(II) kompleksi	1
Şekil 2.21 (a)	2-Fenil-1,2,3,4-tetrahidrokinazolin-2-karbaldehit oksim	1
Şekil 2.21 (b)	2-(Tiyofen-2-il)-1,2,3,4-tetrahidrokinazolin-2-karbaldehit	1
Şekil 2.22	Mutlu ve İrez tarafından elde edilen kompleksler için önerilen vapılar (R= Fenil, Tivofen).	1.
Şekil 2.23	Çolak ve arkadaşları tarafından sentezlenen kobalt kompleksi	12
Şekil 2.24	2-Sübstitüe-1,2,3,4-Tetrahidrokinazolinlere ait genel bir	17
Şekil 3.1	4M-İNAF ve İNAN bileşiklerinin sentezi (R= Tolil, Naftil)	1:
Şekil 3.2	HL ¹ sentezi	17
Şekil 3.3	HL ² sentezi	17
Şekil 3.4 (a)	Anilinik açılmaya uğrayan 1,2,3,4-tetrahidrokinazolin oksim ligantları (R= Tolil (HL ¹), R= Naftil (HL ²)	18
Şekil 3.4 (b)	Anilinik açılm sonucu oluşan iminooksim ligantları (R=Tolil (HL ¹ :(1E,2E)-2-((2-aminobenzil)imino)-2-(p-tolil)asetaldehit oksim), R=Naftil (HL ² : (1E,2E)-2-((2-aminobenzil)imino)-2-(naftalen-2-il)asetaldehit oksim)	19
Şekil 3.5 (a)	Bis[(1E,2E)-2-((2-aminobenzil)imino)-2-(p-tolil)asetaldehit oksimato]kobalt(III) klorür.	19
Şekil 3.5 (b)	Bis[(1E,2E)-2-((2-aminobenzil)imino)-2-(naftalen-2- il)asetaldehit oksimato]kobalt(III) klorür monoetanol semihidrat	10
Şekil 3.6 (a)	Bis((1E,2E)-2-((2-aminobenzil)imino)-2-(p-tolil)asetaldehit oksim)nikel(II) klorür.	2(
Şekil 3.6 (b)	Bis(((1E,2E)-2-((2-aminobenzil)imino)-2-(naftalen-2-il) asetaldehit oksim)nikel(II) klorür	
Şekil 4.1	HL ¹ ligantına ait kütle spektrumu	22
Şekil 4.2	HL ² ligantına ait kütle spektrumu	23
Şekil 4.3	[Co(L ^{1'}) ₂]Cl kompleksine ait kütle spektrumu	23
Şekil 4.4	$[Co(L^{2'})_2]ClC_2H_5OH0,5H_2O$ kompleksine ait kütle	2
Şekil 4.5	spektrumu 4M-İNAF bileşiğinin FT-IR spektrumu	2: 20
Şekil 4.6	İNAN bileşiğinin FT-IR spektrumu	20
Şekil 4.7	HL ¹ ligantının FT-IR spektrumu	27
Şekil 4.8	HL ² ligantının FT-IR spektrumu	2
Şekil 4.9	[Co(L ^{1'}) ₂]Cl kompleksinin FT-IR spektrumu	28
Şekil 4.10	[Ni(HL ^{1'}) ₂]Cl ₂ kompleksinin FT-IR spektrumu	23
Şekil 4.11	[Co(L ^{2'}) ₂]Cl C ₂ H ₅ OH 0,5H ₂ O kompleksinin FT-IR spektrumu.	29

Şekil 4.12	[Ni(HL ^{2'}) ₂]Cl ₂ kompleksinin FT-IR spektrumu	29
Şekil 4.13 (a)	HL^1 ve HL^2	32
Şekil 4.13 (b)	HL ^{1'} ve HL ^{2'}	32
Şekil 4.14	4M-İNAF bileşiğinin ¹ H-NMR spektrumu	33
Şekil 4.15	4M-İNAF bileşiğinin D ₂ O ile yer değiştirme gerçekleştirilerek elde edilmiş ¹ H-NMRspektrumu	34
Şekil 4.16	4M-İNAF bileşiğinin ¹³ C-NMR spektrumu	34
Şekil 4.17	İNAN bileşiğinin ¹ H-NMR spektrumu	35
Şekil 4.18	İNAN bileşiğinin D ₂ O ile yer değiştirme gerçekleştirilerek elde edilmiş ¹ H-NMR spektrumu	35
Şekil 4.19	INAN bileşiğinin ¹³ C-NMR spektrumu	36
Şekil 4.20	HL ¹ ligantinin ¹ H-NMR spektrumu	36
Şekil 4.21	HL ¹ ligantının D ₂ O ile yer değiştirme gerçekleştirilerek elde edilmiş ¹ H-NMR spektrumu	37
Şekil 4.22	HL ¹ ligantinin ¹³ C-NMR spektrumu	37
Şekil 4.23	HL ² ligantinin ¹ H-NMR spektrumu	38
Şekil 4.24	HL ² ligantının D ₂ O ile yer değiştirme gerçekleştirilerek elde edilmiş ¹ H-NMR spektrumu	38
Şekil 4.25	HL ² ligantinin ¹³ C-NMR spektrumu	39
Şekil 4.26	$[Co(L^{1'})_2]Cl$ kompleksinin ¹ H-NMR spektrumu	39
Şekil 4.27	$[Co(L^{1'})_2]Cl$ kompleksinin D_2O ile yer değiştirme gerçekleştirilerek elde edilmiş ¹ H-NMR spektrumu	40
Şekil 4.28	$[Co(L^2)_2]Cl kompleksinin 22C-NMR spektrumu$	40
Şekil 4.29	$[Co(L^2)_2]Cl^2C_2H_5OH^20,5H_2O$ kompleksinin 'H-NMR	41
Şekil 4.30	$[Co(L^{2'})_2]Cl C_2H_5OH 0,5H_2O$ kompleksinin D ₂ O ile yer değiştirme gerçekleştirilerek elde edilmiş ¹ H-NMR spektrumu.	41
Şekil 4.31	$[Co(L^{2'})_2]ClC_2H_5OH0,5H_2O$ kompleksinin ¹³ C-NMR	40
Şekil 4.32	HL ¹ ligantinin UV-Vis spektrumu	42 43
Şekil 4.33	HL ² ligantının UV-Vis spektrumu	44
Şekil 4.34	[Co(L ^{1'}) ₂]Cl kompleksinin UV-Vis spektrumu	44
Şekil 4.35	[Ni(HL ^{1'}) ₂]Cl ₂ kompleksinin UV-Vis spektrumu	45
Şekil 4.36	$[Co(L^{2'})_2]Cl^{-}C_2H_5OH^{-}0,5H_2O$ kompleksinin UV-Vis spektrumu	46
Şekil 4.37	[Ni(HL ^{2'}) ₂]Cl ₂ kompleksinin UV-Vis spektrumu	46
Şekil 4.38	HL ¹ ligantının termik analiz eğrileri	49

Şekil 4.39	HL ² ligantının termik analiz eğrileri	50
Şekil 4.40	[Co(L ^{1'}) ₂]Cl kompleksinin termik analiz eğrileri	51
Şekil 4.41	[Ni(HL ^{1'}) ₂]Cl ₂ kompleksinin termik analiz eğrileri	52
Şekil 4.42	[Co(L ^{2'}) ₂]Cl [·] C ₂ H ₅ OH [·] 0,5H ₂ O kompleksinin termik analiz eğrileri	53
Şekil 4.43	[Ni(HL ²) ₂]Cl ₂ kompleksinin termik analiz eğrileri	54

ÇİZELGELER DİZİNİ

		Sayfa
Çizelge 3.1	Sentezlenen karbonil oksimlere ait bazı fiziksel veriler	16
Çizelge 4.1	Elde edilen ligant ve komplekslerin kapalı formülleri, molekül ağırlıkları, bozunma noktaları, renkleri, verimleri, elemental analiz ve AAS analizi sonucları	21
Çizelge 4.2	Komplekslerin iletkenlik ve manyetik moment (μ_{eff}) değerleri	21
Çizelge 4.3	2-ABA, 4M-İNAF, İNAN, elde edilen ligantlar ve komplekslerin FT-IR spektum verileri (cm ⁻¹)	24
Çizelge 4.4	2-ABA, 4M-İNAF, İNAN, elde edilen ligantlar ve kobalt komplekslerinin ¹ H-NMR spektrum verileri (δ; ppm, J; Hz)	30
Çızelge 4.5 Çizelge 4.6	2-ABA, 4M-INAF, INAN, elde edilen ligantlar ve kobalt komplekslerinin ¹³ C-NMR spektrum verileri (δ , ppm) Elde edilen ligantlara ait termik analiz verileri	32 48
Çizelge 4.7	Elde edilen komplekslere ait termik analiz verileri	48

1. GİRİŞ

Hızla gelişim gösteren insanoğlunun aklının bir ürünü olan ve yine insanlığın varoluş mücadelesindeki en temel dayanak noktasını oluşturan teknik ve teknolojinin dayandığı tek kaynak, matematikten biyolojiye, fizikten kimyaya kadar uzanan doğal bilimler grubudur. İşte bir doğal bilim olan kimyanın bir kolu olarak anorganik kimya, atom ve moleküllerin doğada bulunuş ve oluşum şekillerinden kimyasal tepkimelerdeki davranış ve rollerine kadar maddelerin yapılarını açıklamakta önemli görev üstlenmiş temel anabilim dallarından biri olarak kabul edilir.

Anorganik kimyanın bir alt dalı olan koordinasyon kimyası ise elektron sağlayıcı gruplar ile merkez atomunun ilişkisini incelemektedir. Tüm ligantlarda olduğu gibi konu kapsamında olan iminooksimler ve tetrahidrokinazolin oksimler de birden fazla elektron sağlayıcı uçları sayesinde çeşitli metal iyonları ile kolayca koordine olabilmekte ve çeşitli geometrilerde yapılar meydana getirebilmektedir. Literatürde iminooksimlerin komplekslerine sıkça rastlanırken tetrahidrokinazolin oksimler ile metal komplekslerinin sentezlenmelerine ve yapılarının aydınlatılmalarına dair çok az çalışma yer almaktadır.

Bu tez çalışmasının kapsamını, yeni 1,2,3,4-tetrahidrokinazolin oksim ligantları ile onların nikel ve kobalt gibi geçiş metallerinin iyonlarıyla oluşturdukları komplekslerin sentezlenmesi ve yapılarının aydınlatılması oluşturmaktadır.

2. KAYNAK ÖZETLERİ

2.1 Oksimlerin Yapıları ve Genel Özellikleri

Oksimler R¹R²C=NOH genel formülüyle gösterilebilen ve imin sınıfına ait olan organik bileşiklerdir. Bir azometin (C=N) grubununda yer alan azot atomuna OH grubunun bağlanmasıyla oluşur. Oksimler kendi içlerinde aldoksim ve ketoksim olmak üzere iki şekilde isimlendirilebilir (Singh ve ark. 1979).

Oksimler genellikle renksiz sıvı ya da renksiz kristaldirler. Temel çözücülerden biri olan sudaki çözünürlükleri azdır. Oksimler yapılarındaki azot atomları sebebiyle bazik, hidroksil grupları sebebiyle asidik olarak davranır, dolayısıyla amfoter özellik gösterebilirler (Singh ve ark. 1979, Kurtoğlu ve Serin, 2006). Ketoksimler, *anti-* ve *sin*olmak üzere iki geometrik izomere sahipken, aromatik aldoksimler dışındaki aldoksimler sadece *sin-* izomere sahiptir. *sin-* İzomerlerinde H ve OH grupları düzlemin aynı yönünde iken *anti-* izomerlerinde tersi yönündedir (Chakravorty 1974). Oksimlerdeki bu izomeri sistemini ilk tanımlayan Hantzsche'ın doktora öğrencisi Alfred Werner'dir (Chakravorty 1974). Literatürde konformasyona yönelik çalışmalar da yer almaktadır. Örneğin 2-substitüe siklohekzanon oksim türevlerinin bazılarının konformasyonel değişimleri incelenmiştir (Saito ve ark. 1969).

Yapısında tek NOH grubu bulunan oksimler monooksim, iki NOH grubu bulunan oksimler dioksimler olarak sınıflandırılır (Şekil 2.1).

Şekil 2.1 (a) Diasetil monooksim, (b) Dimetilglioksim

vic-Dioksimlerde geometrik izomeri anti-, amfi- ve sin- olmak üzere üç türdür.

Oksimler yapılarındaki N ve O atomları sebebiyle hem molekül içi hem de moleküller arası hidrojen bağları oluşturabilir dolayısıyla polimerik formlarda da bulunabilirler (Hunter ve Roberts 1941, Kalia ve Chakravorty 1970, Singh ve ark.1979). Bu tip bağlanmalara ilişkin kanıtlar özellikle X-ışını kırınımı yöntemiyle elde edilebilmektedir (Kukushkin ve ark. 1997, Alcalde ve ark. 2008).

2.2 Oksimlerin İki Temel Elde Yöntemi ve Kullanım Alanları

Oksimler genellikle bir aldehit ya da keton bileşiğinin uygun koşullarda hidroksilamin ile tepkimelerinden elde edilir (Şekil 2.2). Çok iyi bilinen bu tepkime, yapısı bilinmeyen karbonil bileşiklerinin türevlerinin oluşturulması, sonuçların bilinen türevlerle karşılaştırılması ve bilinmeyen bileşiğin tanımlanabilmesi açısından da son derece önemlidir (Heaney ve ark. 1998, Solomons ve Fryhle 1999).

Şekil 2.2 Karbonil bileşiklerinden hidroksilamin ile oksim elde edilmesi

Örneğin fenilglioksim bileşiği, bir α-karbonil oksim bileşiği olan 2-okso-2fenilasetaldehit oksim ile hidroksilamin bileşiklerinin sodyum asetat içeren sulu alkol çözeltisindeki tepkimesinden elde edilebilir (Şekil 2.3) (Burakevich ve ark. 1970).

Şekil 2.3 Fenilglioksim eldesi ve sırasıyla anti-, amfi- ve sin- izomerleri (R = Fenil)

Oksimler, α -karbonil bileşiklerinin nitrosolanmalarıyla da elde edilebilir (Şekil 2.4) (Levin ve Hartung 1955).

Şekil 2.4 2-Kloro-1-feniletanonun nitrosolanması

Oksimler kimya bilimi açısından oldukça önemli bir bileşik sınıfıdır. Bu önemleri onların hem tıp alanındaki, hem spesifik kimya çalışmalarındaki hem de endüstri alanındaki kullanımlarından ileri gelmektedir. Örneğin siklohekzanon oksim endüstride kimyasal elementlerin ayrılmalarında oldukça yaygın olarak kullanılan ucuz ve kolay bulunabilirliğe sahip bir maddedir (Dikusar ve Zhukovskaya 2006). Ayrıca bu oksimden elde edilen esterlerin gıda ve parfümeri endüstrisinde aroma verici olarak ilgi çekmekte oldukları da belirtilmiştir (Zhukovskaya ve ark. 2006). Oksimlerin türevlerinin örneğin hidrazon oksimlerin bazı metal iyonlarının tespiti ve miktarlarının belirlenmesi için analitik reaktif olarak da kullanılabildikleri bilinmektedir (Tezcan ve ark. 2004, Gup ve Giziroğlu 2006, Zülfikaroğlu ve ark. 2007). Hidrazon oksimlerin, anti-bakteriyel, anti-tümör ve anti-mantar gibi çeşitli biyolojik etkinliğe de sahip olabildikleri bilinmektedir (Küçükgüzel ve ark. 1999, Rollas ve ark. 2002, Rollas ve Küçükgüzel, 2007).

Bu özelliklerin dışında oksimler ağrı kesici, anti alerjik ve hematoksik özelliklere sahiptirler (Parmar ve Burka 1991, Katagi ve ark. 1992, Katagi ve ark. 1996, Nicole ve ark. 1998, Kataoka ve ark. 2002, Chong ve ark. 2007). Anti-kanser ilaçları olarak kullanım alanı buldukları ve supramoleküler sistemlerin inşaası için kullanışlı oldukları da bilinmektedir (Aakeroy ve ark. 2001, Eddings ve ark. 2004, Aakeroy ve ark. 2006, Chong ve ark. 2007). Ayrıca fotokimyasal aktiviteleri ve Beckmann düzenlenimi oksimlerin, N-substitue amitler, heterohalkalar ve nitriller gibi çeşitli bileşiklerin eldesinde anahtar bir bileşen görevi görmelerini sağlar (Abele ve Luckevics 2000, De Lijser ve ark. 2003, Narasaka ve ark. 2005, Xiao ve ark. 2006, Mao ve ark. 2006, De Lijser ve ark. 2006, Sardarian ve ark. 2007, Chong ve ark. 2007).

2.3 İminooksimlerin Kompleksleri ve 1,2,3,4-Tetrahidrokinazolin Oksimler

Mono oksim ligantlarının Cu(II), Co(II), Ni(II) ve Fe(II) gibi geçiş metali iyonlarıyla verdiği kompleksler uzun süredir bilinmektedir. Bunların yanında oksimlerin, rutenyum ve platin kompleksleri de sentezlenmiş ve sentezlenmektedir (Chakravarty ve Chakravorty 1981, Singh ve ark. 2008, Scaffidi-Domianello ve ark. 2010).

Oksimler merkez atomuna, oksijen veya azot verici ucuyla bağlanıp çok dişli ligant davranışı gösterebilir (Şekil 2.5) (Chakravorty 1974). Oksimler her iki ucuyla, birden fazla metal iyonuna bağlanıp köprü ligantı davranışı da sergileyebilir (Datta ve Chakravorty 1982, Wan ve ark. 1989).

Şekil 2.5 Oksimlerin merkez atomuna bağlanış şekilleri

İminooksimler de oksimlerin aminlerle kondensasyon tepkimeleri sonucunda oluşan ve köprü ligantı davranışı sergileyebilen moleküllerdir. Bu moleküller bir C=N bağı içerdiklerinden aynı zamanda bir Schiff bazıdırlar (Faribod ve ark. 2008). Schiff bazlarının anti-tüberküler ve anti-tümor gibi biyolojik aktivitelere sahip olabildikleri bilinmektedir (Bahner ve ark. 1967, Merchant ve Chotia 1969).

1977 yılında Sing ve arkadaşları tarafından, Şekil 2.6'da verilen iminooksim ligantının nikel(IV) kompleksinin sentezlendiği bilinmektedir (Singh ve ark. 1977).

Şekil 2.6 (2E,3E)-3-((2-Aminoetil)imino)bütan-2-on oksim

Korvenranta ve arkadaşları, 1982 yılında yayınlanan çalışmalarında, altı dişli bir iminooksim ligantının (Şekil 2.7), nikel(II) ve nikel(IV) komplekslerini sentezlendiklerini bildirmişlerdir (Korveranta ve ark. 1982).

Şekil 2.7 3,14-Dimetil-4,7,10,13-tetraazahekzadeka-3,13-dien-2,15-dion dioksim

1989 yılında Wan ve arkadaşları bakır(II) halojenür tuzlarının bazı iminooksim ligantları (Şekil 2.8) ile olan komplekslerini sentezlemişlerdir (Wan ve ark. 1989).

Şekil 2.8 {3-[2[(Alkilamino)etil]imino]-2-bütanon oksimler ve 3-[2[(dialkilamino)etil]imino]-2 bütanon oksimler (R=H, R'=alkil; R=alkil, R'=alkil)

1991 yılında Agnus ve arkadaşları 3-(Benzilimino)bütanon 2-oksim ligantının (Şekil 2.9) trinükleer bakır(II) hidrokso ve hekzanükleer bakır(II) okso komplekslerini sentezlediklerini rapor etmişlerdir (Agnus ve ark. 1991).

Şekil 2.9 3-(Benzilimino)bütanon 2-oksim ligantı

1996 yılında Dreos ve arkadaşları tarafından yayınlanan bir çalışmada, üç dişli bir iminooksim ligantının (Şekil 2.10) yeni ve kararlı dinükleer bir organo-kobalt kompleksinin sentezlendiği rapor edilmiştir (Dreos ve ark. 1996).

Şekil 2.10 (2Z,3Z)-3-((2-(piridin-2-il)etil)imino)bütan-2-on oksimato anyonu

Bu ligantın (Şekil 2.10) daha önceki yıllarda kobalt(III) iyonu ile 2:1 oranında mononükleer bir kompleks oluşturmak için de kullanıldığı bilinmektedir (Pajunen ve Pajunen 1983).

1998 yılında yine Dreos ve arkadaşları, karışık üç dişli iminooksim (2-((2pridiletil)imino)-3-bütanon oksim) ve diamin ligantı (2-((2-piridiletil)amino)-3aminobütan) içeren mono nükleer bir benzil-kobalt kompleksini sentezlediklerini ve bu kompleksin karakterizasyonunu yaptıklarını bildirmişlerdir (Dreos ve ark. 1998).

Yine 1998 yılında Martin ve arkadaşları tarafından tautomerleşmiş enolat ligantları içeren iminooksimlerin bazı nikel komplekslerinin (Şekil 2.11) sentezi ve karakterizasyonu yapılıp rapor edilmiştir (Martin ve ark. 1998).

Şekil 2.11 Martin ve arkadaşlarınca sentezlenen nikel komplekslerine ait genel gösterim

1998 yılında Packard ve arkadaşları 2,10-dioksiimino-3,9-dimetil-4,8-diazaundeka-3,8dien ve 2,10-dioksiimino-3,6,6,9-tetrametil-4,8-diazaundeka-3,8-dien ligantlarının (Şekil 2.12) bakır(II) komplekslerini sentezlemişlerdir (Packard ve ark. 1998).

Şekil 2.12 Packard ve arkadaşları taradından sentezlenen iki ligant (R=H, R=CH₃)

1999 yılında Maekawa ve arkadaşları yayımladıkları bir çalışmanın bir bölümünde diasetil monooksim bileşiği ile 2-aminometilpridin bileşiklerinin tepkimesinden yeni bir iminooksim ligantı sentezlediklerini bildirmişlerdir (Maekawa ve ark. 1999).

2-[2-(a-pyridyl)metil]imino-3-bütanon oksim ligantının $Cu(NO_3)_2.3H_2O$ tuzu kullanılarak oluşturulan $Cu_2(pmibo)](NO_3)_2.CH_3OH$ kompleksinde (Şekil 2.13) her bakır atomunun, ligantın üç azot ve bir oksijen atomuyla koordine olduğu, nitrat anyonlarının bakır atomlarına aksiyel konumda bağlandıkları ve $Cu_2N_2O_2$ şelat sisteminin düzlemsel olması dolayısıyla bu durumun kare piramit geometriye örnek teşkil ettiği belirtilmiştir (Maekawa ve ark. 1999).

Şekil 2.13 Maekawa ve arkadaşlarınca sentezlenen [Cu₂(pmibo)](NO₃)₂.CH₃OH kompleksi

Şahin ve arkadaşları tarafından gerçekleştirilmiş ve 2007 yılında yayınlanmış olan bir çalışmada biri α -pikoliliminoizonitrosoasetofenon, diğeri α -pikolilimino-pmetilizonitrosoasetofenon sonuncusu da α -pikolilimino-p-kloroizonitrosoasetofenon olmak üzere üç iminooksim ligantının sentezlendiği belirtilmiştir (Şekil 2.14) (Şahin ve ark. 2007).

Şekil 2.14 Şahin ve arkadaşları tarafından sentezlenen üç iminooksim ligantı (R=H, X=HCl, R=CH₃, X=HCl, R=Cl)

Nikel(II), kobalt(II) ve bakır(II) komplekslerinin sentezlenebilmeleri için metal tuzlarıyla tepkimeye sokulan bu ligantlardan oluşan ve yapıları Şekil 2.15 (a)'daki gibi önerilen komplekslerin tetrahedral, Şekil 2.15 (b)'deki gibi önerilen komplekslerin ise oktahedral yapılı oldukları rapor edilmiştir.

Şekil 2.15 Şahin ve arkadaşlarınca elde edilen kompleksler için önerilen yapılar (a) R=H ve M=Cu(II), R=CH₃ ve M=Cu(II); R=Cl ve M=Ni(II), Cu(II) ve Co(II) (b) R=H, M=Co(II), Ni(II); R=CH₃,M=Co(II)

Maity ve arkadaşlarının 2008 yılında yayınlanan çalışmalarında, asetilaseton ve oksim gruplarını barındıran, asimetrik ve dört dişli bir ligantın, üç çekirdekli yeni bir nikel(II) kompleksini (Şekil 2.16) sentezledikleri bilinmektedir (Maity ve ark. 2008).

Şekil 2.16 Maity ve arkadaşlarınca elde edilen ve üç çekirdekli nikel(II) kompleksi

Diğer bir oksim türevi olan 1,2,3,4-tetrahidrokinazolin oksim moleküllerinin ise aromatik bir diamin olan 2-aminobenzilaiminin, amin gruplarındaki azot atomlarının ikisinin de kondenzasyon tepkimesi sonunda oksimin karbonil grubundaki karbon atomuna bağlanmasıyla oluştukları bilinmektedir. Şekil 2.17'de 1,2,3,4tetrahidrokinazolin yapısı ve bir 1,2,3,4-tetrahidrokinazolin oksim molekülü gösterilmiştir.

Şekil 2.17 (a) 1,2,3,4-Tetrahidrokinazolin yapısı (b) 1,2,3,4-Tetrahidrokinazolin oksim

1,2,3,4-tetrahidrokinazolin moleküllerinin, halkanın açılmasıyla meydana gelen anilin tipi zincir ve benzilamin tipi zincir formlarıyla denge halinde oldukları bilinmektedir (Şekil 2.18) (Sinkkonen ve ark. 2003).

Şekil 2.18 (a) Bir anilin tipi iminooksim **(b)** Halka formundaki 1,2,3,4-tetrahidrokinazolin oksim **(c)** Benzilamin tipi iminooksim arasındaki denge

Çolak ve arkadaşlarının yürüttüğü 2006 yılında yayınlanmış bir çalışmada 1-fenil-1,2propanedion-2-oksim bileşiği ve 2-aminobenzilamin bileşiği tepkimeye sokulmuş bunun sonucunda yeni bir 1,2,3,4-tetrahidrokinazolin oksim ligantı (Şekil 2.19) elde edildiği görülmüştür (Çolak ve ark. 2006).

Şekil 2.19 1-(2-Fenil-1,2,3,4-tetrahidrokinazolin-2-il)etanon oksim

Bu yeni ligant, nikel kompleksinin sentezi için etanol ortamında NiCl₂.6H₂O tuzu ile tepkimeye sokulmuş, bunun sonucunda kırmızı renkli metal kompleksi elde edilmiştir (Şekil 2.20).

Şekil 2.20 Çolak ve arkadaşlarının literatüre kazandırdıkları yeni bir nikel(II) kompleksi

2008 yılında Mutlu ve İrez tarafından gerçekleştirilen bir çalışmada iki yeni 1,2,3,4tetrahidrokinazolin oksim ligantı (Şekil 2.21) elde edilmiştir (Mutlu ve İrez, 2008).

Şekil 2.21 (a) 2-Fenil-1,2,3,4-tetrahidrokinazolin-2-karbaldehit oksim **(b)** 2-(Tiyofen-2-il)-1,2,3,4-tetrahidrokinazolin-2-karbaldehit oksim

Bu kinazolin oksim ligantları, CoCl₂.6H₂O tuzuyla tepkimeye sokulduğunda, Co(II)'nin Co(III)'e yükseltgendiği, ligantların da kompleksde anilin tipi iminooksim formuna dönüştüğü yapılan analizlerden anlaşılmıştır. Kompleksklerde metal/ligant oranı 1:2 olarak bulunmuştur (Şekil 2.22).

Şekil 2.22 Mutlu ve İrez tarafından elde edilen kompleksler için önerilen yapılar (R= Fenil, Tiyofen)

Çolak ve arkadaşlarının 2009 yılında yayınladıkları çalışmada ise 2006 yılında sentezledikleri 1-(2-fenil-1,2,3,4-tetrahidrokinazolin-2-il)etanon oksim ligantının kobalt(III) kompleksi (Şekil 2.23) rapor edilmiştir (Çolak ve ark. 2009).

Şekil 2.23 Çolak ve arkadaşları tarafından sentezlenen kobalt kompleksi

2.4 2-Sübstitüe-1,2,3,4-Tetrahidrokinazolinler ve Oksimlerinin Bazı Karakteristik NMR Verileri

Çeşitli çalışmalardaki 2-Sübstitüe-1,2,3,4-tetrahidrokinazolinlere (Şekil 2.24) ve oksimlerine ait bazı ¹H-NMR ve ¹³C-NMR verileri incelendiğinde N-H¹ protonlarının kimyasal kayma değerlerinin 6,76 ile 4,14 ppm, N-H³ protonlarının kimyasal kayma değerlerinin 3,29 ile 2,19 ppm, ⁴CH₂ grubundaki protonlara ait kimyasal kayma değerlerinin ise 4,36 ile 3,25 ppm aralığında bulunduğu görülmektedir (Correa ve ark. 2002, Göblyös ve ark. 2002, Sinkkonen ve ark. 2003, Bergman ve ark. 2003, Coşkun ve Çetin 2004, Çolak ve ark. 2007, Mutlu ve İrez 2008). C² karbonuna ait kimyasal kayma değerlerinin ise 46,8 ile 40,08 ppm değerleri arasında olduğu görülebilir (Correa ve ark. 2002, Göblyös ve ark. 2002, Sinkkonen ve ark. 2003, Bergman ve ark. 2003, Coşkun ve Çetin 2004, Çolak ve ark. 2007, Mutlu ve İrez 2008). Oksim gruplarındaki hidrojenlere ait kimyasal kayma değerlerinin 10,91, 10,81 ve 8,57 ppm değerlerinde, C=N-OH grubundaki karbonun kimyasal kayma değerlerinin ise 158,78, 152,90 ve 151,82 ppm

Şekil 2.24 2-Sübstitüe-1,2,3,4-Tetrahidrokinazolinlere ait genel bir gösterim

2.5 2-Sübstitüe-1,2,3,4-Tetrahidrokinazolin Oksimlerin Bazı Karakteristik IR Verileri

Literatüre kazandırılmış olan 1,2,3,4-Tetrahidrokinazolin oksim ligantlarının N-O titreşimlerine ait piklerin 960 ile 937 cm⁻¹ değerleri, N-H bağlarına ait titreşim piklerinin 3386 ile 3261 cm⁻¹ değerleri, C=N_(imin) bağına ait titreşim piklerinin 1632 ile 1606 cm⁻¹ değerleri, O-H bağlarına ait titreşim piklerin değerlerinin ise 3300 ile 2760 cm⁻¹ değerleri arasında yer alabildiği bilinmektedir (Çolak ve ark. 2006, Mutlu ve İrez 2008).

2.6 İminooksim Komplekslerinin Bazı Karakteristik IR Verileri

İncelen bazı çalışmalarda iminooksim komplekslerinin imin gruplarındaki C=N bağlarına ait titreşim piklerinin 1650 ile 1589 cm⁻¹, oksim gruplarındaki C=N gerilmelerine ait piklerin 1610 ile 1520 cm⁻¹, N-O bağına ait titreşim değerlerinin, 1017 ile 890 cm⁻¹, M-N koordinasyonuna ilişkin titreşim piklerinin 565 ile 443 cm⁻¹, su molekülleri kaynaklı O-H piklerinin ise 3600 ile 3200 cm⁻¹ değerleri aralığında gözlenebildiği bilinmektedir (Packard ve ark. 1997, Martin ve ark. 1998, Yıldırım ve ark. 2005, Demir ve ark. 2005, Çolak ve ark. 2006, Şahin ve ark. 2007, Mutlu ve İrez 2008, Çolak ve 2009)

3. MATERYAL VE YÖNTEM

3.1 Materyal

3.1.1 Kullanılan kimyasallar

Sodyum metali, çözücüler, 1-(p-tolil)etanon, 1-(naftalen-2-il)etanon, bütil nitrit, buzlu asetik asit ve NiCl.6H₂O Merck firmasından, 2-aminobenzilamin (2-ABA) Sigma-Aldrich firmasından, CoCl₂.6H₂O ise Lachema firmasından temin edilmiş ve ayrıca saflaştırma işlemi uygulanmamıştır. 2-okso-2-(p-tolil)asetaldehit oksim (4M-İNAF) ve 2-(naftalen-2-il)-2-oksoasetaldehid oksim (İNAN) maddeleri literatür metodu modifiye edilerek sentezlenmiştir (Shetti ve ark. 1993). Ligantların eldesinde su çekici olarak CaCl₂ tüpü kullanılmıştır.

3.1.2 Kullanılan cihazlar

IR Spektrofotometresi: Thermo Nicolet 6700 Fourier dönüşümlü infrared spektrofotometresi (Uludağ Üniversitesi Fen-Edebiyat Fakültesi Kimya Bölümü).

Termik Analiz Cihazı: SII Exstar 6200 model termogravimetrik/diferansiyel termik analiz (TG/DTA) cihazı (Uludağ Üniversitesi Fen-Edebiyat Fakültesi Kimya Bölümü).

Elemental Analiz Cihazı: EuroEA 3000 CHNS elemental analiz cihazı (Uludağ Üniversitesi Fen-Edebiyat Fakültesi Kimya Bölümü).

NMR Cihazı: Varian Mercury Plus AS 400 NMR spektrometresi (Uludağ Üniversitesi Fen-Edebiyat Fakültesi Kimya Bölümü).

LC-MS Cihazı: Agilent 1100 Series LC-MS LC/MSD TrapSL Sıvı kromatografisi - kütle spektrometresi (TÜBİTAK, Bursa Test ve Analiz Laboratuvarı).

AAS Cihazı: Varian Spectra 220-FS model atomik absorpsiyon spektrometresi (TÜBİTAK, Bursa Test ve Analiz Laboratuvarı).

UV-Vis. Spektrofotometre: GBS Cintra 303 model Ultra Viole-Visible spektrofotometresi (Uludağ Üniversitesi Fen-Edebiyat Fakültesi Kimya Bölümü).

Manyetik Duyarlılık Cihazı: Sherwood Scientific MKI model manyetik duyarlılık terazisi (Uludağ Üniversitesi Fen-Edebiyat Fakültesi Kimya Bölümü).

Erime Noktası Tayin Cihazı: BUCHI Melting Point B-540 erime noktası tayin cihazı (Uludağ Üniversitesi Fen-Edebiyat Fakültesi Kimya Bölümü).

İletkenlik Ölçüm Cihazı: WTW marka inoLab Cond 730 model kondüktimetre (Uludağ Üniversitesi Fen-Edebiyat Fakültesi Kimya Bölümü).

3.2 Yöntem

3.2.1 2-Okso-2-(p-tolil)asetaldehit oksim (4M-İNAF) ve 2-(naftalen-2-il)-2oksoasetaldehid oksim (İNAN) sentezleri

İki ayrı bileşik için ayrı ayrı 2,03'er g sodyum metali 50 mL mutlak etanol içerisinde çözüldü. Daha sonra bu çözeltilere, ilk olarak 9,65 mL butil nitrit eklendi. Bu eklemeden 30 dakika sonra çözeltilerin birine 10,7 mL 1-(p-tolil)etanon diğerine ise 13,62 g 1-(naftalen-2-il)etanon ilave edildi. Oluşan kırmızı katılar, olgunlaştırılmaları için, karıştırma işlemine birkaç saat devam edildikten sonra bir gece boyunca buzdolabında bekletildi. Ertesi gün oluşan kırmızı katılar süzüldü, susuz eter ile yıkandı. Bu işlemden sonra kurutulan katı maddeler minimum suda çözülüp buzlu asetik asit ile asitlendirildi. Asitlendirme sonrası oluşan katılar etanol-su karışımında kristallendirildi. Kristallenen ürünler 1-(p-tolil)etanon için 2-okso-2-(p-tolil)asetaldehit oksim (4M-İNAF), 1-(naftalen-2-il)etanon için ise 2-(naftalen-2-il)-2-oksoasetaldehid oksim (İNAN) bileşikleridir (Şekil 3.1). Elde edilen karbonil oksimlere ait bazı fiziksel veriler Çizelge 3.1'de verilmiştir.

Şekil 3.1 4M-İNAF ve İNAN bileşiklerinin sentezi (R= Tolil, Naftil)

Çizelge 3.1 Sentezlenen karbonil oksimlere ait bazı fiziksel veriler

Bileşik	Molekül Ağırlığı	Renk	Verim	E.N (°C)
4M-İNAF	163,17 g/mol	Beyaz Kristal	%65	104 °C
İNAN	199,21 g/mol	Sarı Kristal	%65	97 °C

3.2.2 2-(P-tolil)-1,2,3,4-tetrahidrokinazolin-2-karbaldehid oksim (HL¹) ve 2-(Naftalen-2-il)-1,2,3,4-tetrahidrokinazolin-2-karbaldehid oksim (HL²) sentezleri

İki ligant eldesi için 1,63 g 4M-İNAF ve 1,99 g İNAN bileşikleri ayrı ayrı olarak 15 mL mutlak etanolde çözüldü. Bu çözeltilerin her biri üzerine, 5 mL mutlak alkolde çözünmüş 1,22 g 2-aminobenzilamin (2-ABA) damla damla eklendi. Tepkimeler oda koşullarında gerçekleştirildi. İki saat sonunda karıştırmalar sonlandırıldı ve çözeltiler, kristallerin oluşumunu sağlama amacıyla 1 gün oda koşullarında bekletildi. Kristaller süzülüp etil alkolle yıkandı ve vakumda ısıtma uygulanmadan kurutuldu. HL¹ eldesine ait tepkime Şekil 3.2'de, HL² eldesine ait tepkime ise Şekil 3.3'de verilmektedir.

Şekil 3.2 HL¹ sentezi

Şekil 3.3 HL² sentezi

HL¹ ligantının etanol, metanol, kloroform gibi çözücülerdeki çözünürlüğü çok azdır. Ligant suda çözünmemekte, DMSO'da ise oldukça iyi çözünmektedir. Sentez sonucu verimi % 63 (1,68 g) olarak bulunmuştur. Ligant 152 °C'de bozunmaktadır. HL² ligantının da benzer şekilde etanol, metanol, kloroform gibi çözücülerdeki çözünürlüğü çok azdır. Bu ligant da suda çözünmemekte, DMSO'da ise oldukça iyi çözünmektedir. Sentez sonucu verimi % 28 (0,84 g) olarak bulunmuştur. Ligantın bozunma noktası 153 °C dir.

3.2.3 [Co(L^{1'})₂]Cl ve [Co(L^{2'})₂]Cl[·]C₂H₅OH[·]0,5H₂O komplekslerinin sentezleri

İki kompleksin eldesi için 0,80 g HL¹ ve 0,91 g HL² ligantı ayrı ayrı olarak 20 mL mutlak etanol içerisinde çözüldü. Çözeltilerin her birine 10 mL mutlak etanolde çözünmüş olan 0,36 g CoCl₂.6H₂O tuzu çözeltileri damla damla eklendi. Karışımlardaki tüm kobalt(II) iyonlarının, kobalt(III) iyonlarına yükseltgenmelerini sağlamak için açık hava ortamında ve oda koşullarında 5 saat karıştırıldı. Tepkime sonunda oluşan katılar süzüldü, etil alkol ile yıkandı ve ısıtma uygulanmadan vakumda kurutuldu. Elde edilen verim [Co(L^{1'})₂]Cl kompleksi için % 22 (0,21 g) dir. Kompleks 212 °C'de bozunmaktadır. Elde edilen verim [Co(L^{2'})₂]ClC₂H₅OH 0,5H₂O kompleksi için % 63 (0,71 g) olarak bulunmuştur. Kompleksin bozunma noktası 200 °C dir. $[Co(L^{1'})_2]Cl'in$ su, metanol ve kloroformda çok iyi çözündüğü, etil asetat içerisinde ise az çözündüğü belirlenmistir. [Co(L^{2'})₂]Cl⁻C₂H₅OH⁰,5H₂O'in sudaki cözünürlüğü azdır, asetonitril ve metanoldeki cözünürlüğü vüksektir. Sentezde kullanılan HL¹ ve HL² ligantları Sekil 3.4 (a)'da, HL^1 ve HL^2 ligantlarındaki 1,2,3,4-tetrahidrokinazolin halkasının anilin tipinde açılması sonucu oluşan HL¹, ve HL², ligantları Şekil 3.4 (b)'de sunulmaktadır. [Co(L^{1'})₂]Cl kompleksinin önerilen molekül yapısı Şekil 3.5 (a)'da verilmiştir. [Co(L^{2'})₂]ClC₂H₅OH0,5H₂O kompleksinin önerilen yapısı ise Şekil 3.5 (b)'de verilmektedir.

Şekil 3.4 (a) Anilinik açılmaya uğrayan 1,2,3,4-tetrahidrokinazolin oksim ligantları (R= Tolil (HL¹), R= Naftil (HL²) **(b)** Anilinik açılm sonucu oluşan iminooksim ligantları (R= Tolil (HL^{1'} : (1E,2E)-2-((2-aminobenzil)imino)-2-(p-tolil)asetaldehit oksim), R= Naftil (HL^{2'} : (1E,2E)-2-((2-aminobenzil)imino)-2-(naftalen-2-il)asetaldehit oksim)

Şekil 3.5 (a) Bis[(1E,2E)-2-((2-aminobenzil)imino)-2-(p-tolil)asetaldehit oksimato]kobalt(III) klorür (b) Bis[(1E,2E)-2-((2-aminobenzil)imino)-2-(naftalen-2-il)asetaldehit oksimato] kobalt(III) klorür monoetanol semihidrat

3.2.4 [Ni(HL^{1'})₂]Cl₂ ve [Ni(HL^{2'})₂]Cl₂ komplekslerinin sentezleri

0,80 g HL¹ ve 0,91 g HL² ligantı ayrı ayrı olarak 20 mL mutlak etanol içerisinde çözüldü. Çözeltilerin her birine 10'ar mL mutlak etanolde çözünmüş olan 0,71 g NiCl₂.6H₂O tuzu çözeltileri damla damla eklendi. Karışımlar oda koşullarında 3 saat karıştırıldı. Tepkime sonunda oluşan katılar süzüldü, etil alkol ile yıkandı ve kurutuldu. Elde edilen verim [Ni(HL^{1'})₂]Cl₂kompleksi için % 62 (0,63 g), [Ni(HL^{2'})₂]Cl₂kompleksi için % 42 (0,47 g) olarak bulunmuştur. [Ni(HL^{1'})₂]Cl₂ kompleksi 208 °C'de, [Ni(HL^{2'})₂]Cl₂ kompleksi ise 222 °C'de bozunmaktadır. [Ni(HL^{1'})₂]Cl₂ kompleksi suda, metanolde ve DMSO'da oldukça iyi çözünmekte, dietil eter ve etil asetatda ise az çözünmektedir. [Ni(HL^{2'})₂]Cl₂ kompleksinin etanol, etil asetatda az, metanolde ise çok çözündüğü belirlenmiştir. [Ni(HL^{1'})₂]Cl₂ kompleksinin önerilen yapısı Şekil 3.6 (a)'da [Ni(HL^{2'})₂]Cl₂ kompleksinin önerilen yapısı Şekil 3.6 (b)'de verilmektedir.

Şekil 3.6 (a) Bis((1E,2E)-2-((2-aminobenzil)imino)-2-(p-tolil)asetaldehit oksim)nikel(II) klorür **(b)** Bis(((1E,2E)-2-((2-aminobenzil)imino)-2-(naftalen-2-il)asetaldehit oksim)nikel(II) klorür

4. BULGULAR VE TARTIŞMA

Yürütülen tez çalışması sonucunda elde edilen tüm bileşiklere ait elemental analiz sonuçlarını, molekül ağırlıklarını, bazı fiziksel özelliklerini içeren veriler ve komplekslerdeki % metal miktarları Çizelge 4.1'de, iletkenlik ve manyetik duyarlılık verileri Çizelge 4.2'de yer almaktadır.

Çizelge 4.1 Elde edilen ligant ve komplekslerin kapalı formülleri, molekül ağırlıkları, bozunma noktaları, renkleri, verimleri, elemental analiz ve AAS analizi sonuçları

Bileşik	M.A.	B.N.	Renk	Deneysel / (Hesaplanan)			
Kapalı Formülü	(g/mol)	°C	%Verim	% C	% N	% H	% M
HL ¹	267,3	152	Beyaz	71,60	16,03	6,48	-
$C_{16}H_{17}N_{3}O$			%63	(71,88)	(15,72)	(6,41)	
HL^2	303,3	153	Beyaz	75,03	13,85	5,65	-
$C_{19}H_{17}N_{3}O$			%28	(75,22)	(13,86)	(5,65)	
$[Co(L^{1'})_2]Cl$	627.0	212	Turuncu	61,00	12,87	5,09	9,06
$C_{32}H_{32}N_6O_2CoCl$			% 22	(61,30)	(13,40)	(5,14)	(9,40)
$[Ni(HL^{1'})_2]Cl_2$	664,2	208	Pembe	57,60	12,30	5,11	8,92
$C_{32}H_{34}N_6O_2NiCl_2$			%62	(57.86)	(12,66)	(5,16)	(8,84)
$[Co(L^{2'})_2]Cl^{-}C_2H_5OH^{-}$	754,1	200	Turuncu	63,40	11,53	5,43	7,68
0,5H ₂ O			%63	(63,70)	(11, 15)	(5,21)	(7,90)
C40H39N6O3.5CoCl							
$[Ni(HL^{2'})_2]Cl_2$	736,3	222	Pembe	61,71	11,30	4,85	7,65
$C_{38}H_{34}N_6O_2NiCl_2$			%42	(61,98)	(11,42)	(4,65)	(7,97)

M.A. = Molekül ağırlığı, B.N.= Bozunma noktası

Komplekslerin iletkenlik değerlerinin belirlenmesine ilişkin çalışmalar oda sıcaklığında (20-22 °C) gerçekleştirildi ve komplekslerin metanol içerisindeki 1x10⁻³ M'lık çözeltileri kullanıldı. Manyetik duyarlılık ölçümleri, terazinin özel tüpü kompleksler ile homojen olarak yaklaşık 2,0 cm yüksekliğe kadar doldurularak oda sıcaklığında (20-22 °C) gerçekleştirildi.

Cizelge 4.2	Kompleksleri	n iletkenlik v	e manyetik moment	$t(\mu_{eff})$	değerleri
, ,	1		2	()	0

Kompleks	İletkenlik, cm ² Ω ⁻¹ mol ⁻¹ (20°C) (1x10 ⁻³ M)	μ _{eff} , B.M.
$[Co(L^{1'})_2]Cl$	83	Diamanyetik
$[Ni(HL^{1'})_2]Cl_2$	148	2.90
$[Co(L^{2'})_{2}]ClC_{2}H_{5}OH0,5H_{2}O$	78	Diamanyetik
$[Ni(HL^2)_2]Cl_2$	128	2.92

 Ω = Ohm, M= Mol/L, B.M.= Bohr magnetonu (9.274 ×10⁻²⁴ J T⁻¹)
Metanol içerisinde gerçekleştirilen iletkenlik ölçümleri sonucunda kobalt kompleksleri için katyon:anyon oranının 1:1 olduğu saptanmıştır (Geary 1971). Nikel komplekslerinde ise katyon:anyon oranının, Geary tarafından belirlenen 1:2 değerine oldukça yakın olması sebebiyle bu komplekslerde katyon:anyon oranı 1:2 olarak kabul edilmiştir (Geary 1971).

Manyetik duyarlılık ölçümleri sonucunda kobalt komplekslerinin diamanyetik oldukları belirlendi. Bu sonuç hava atmosferinde elde edilen kobalt komplekslerinde kobalt(II) iyonunun kobalt(III) iyonuna yükseltgendiğini ve düşük spin oktahedral geometride kompleksler oluştuğunu göstermektedir (Sun ve ark. 1970, Kolawole ve Ndahi 2004). Nikel komplekslerinin 2,90 ve 2,92'lük B.M. değerlerinin ise oktahedral geometrili nikel(II) kompleksleri için belirtilen 2,9 ile 3,3 değerleri arasında yer aldığı görülmektedir (Mohamed ve ark 2005).

4.1 LC-MS Analizleri

Tez kapsamında elde edilen ligantlar ve kobalt komplekslerinin metanol içerisinde alınan LC-MS spektrumları sırasıyla Şekil 4.1, Şekil 4.2, Şekil 4.3 ve Şekil 4.4'de verilmiştir.

 HL^{1} 'e ait Şekil 4.1'deki kütle spektrumunda görünen 267,8 m/z değerindeki pikin, molekülle aynı ağırlıkta olan moleküler iyona $(HL^{1})^{+}$ ait pik olduğu söylenebilir.

Şekil 4.1 HL¹ ligantına ait kütle spektrumu

 HL^2 ligantının Şekil 4.2'de yer alan kütle spektrumundaki 303,8 m/z değerindeki pikin de, molekülle aynı ağırlıkta olan moleküler iyona ait (HL^2)⁺ olduğu sonucu çıkarılabilir.

Şekil 4.2 HL² ligantına ait kütle spektrumu

 $[Co(L^{1'})_2]Cl$ kompleksi için Şekil 4.3'deki spektrumda gözlenen 626,7 m/z değerli pikin, $([Co(L^{1'})_2]Cl)^+$ yapısına karşılık gelen moleküler iyona ait olduğu düşünülmektedir.

Şekil 4.3 [Co(L^{1'})₂]Cl kompleksine ait kütle spektrumu

 $[Co(L^2)_2]ClC_2H_5OH0,5H_2O$ kompleksine ait kütle spektrumu (Şekil 4.4) incelendiğinde 698.7 m/z değerindeki pikin ($[Co(L^2)_2]Cl)^+$ yapısına karşılık gelen bir moleküler iyon piki olduğu söylenebilmektedir.

Şekil 4.4 $[Co(L^2)_2]ClC_2H_5OH0,5H_2O$ kompleksine ait kütle spektrumu

4.2 FT-IR Analiz Verileri

Çalışmalar sonucu elde edilen bileşikler ve başlangıç maddelerinin, KBr ile disk hale getirildikten sonra 4000-400 cm⁻¹ aralığında (orta IR bölgesi), elde edilmiş FT-IR spektrum verileri Çizelge 4.3'de sunulmuştur.

Çizelge 4.3 2-ABA, 4M-İNAF, İNAN, elde edilen ligantlar ve komplekslerin FT-IR spektum verileri (cm⁻¹)

Bileşik	vO-H/	vNH/(NH ₂)	vH-	v C-H _{alif}	vC=O	vC=N	vC=N	vN-O	vM-N
-	H ₂ O		C=N			imin	oksim		
2-ABA	—	(3274)* (3204)*	—	2924*	—	—	—	—	—
4M -İNAF	3527 [◆] 3422 [◆]		2905	2877 2771	1676 ş; k		1598	979 o; k	
İNAN	3336 [•]	—	2913	_	1623 ş; k	—	1597	993 o; k	—
HL^1	2748 [•]	3393 ş, k; 3213 s, k	2915	2865 2748		_	1607	940 o; k	
HL ²	2766 [•]	3399 ş, k; 3265 s, k	2904	2866 2766		—	1606	939 o; k	—
$[Co(L^{1'})_2]Cl$	/	—/ (3422)	2917	2848	—	1612 z	1583 z	1029 z	454 z
$[Ni(HL^{1'})_2]Cl_2$	3190/	—/ (3412)	2949	2876 2814		1611 z	1580 z	958 z	478 z
$[Co(L^{2'})_2]Cl^{-1}$ $C_2H_5OH^{-1}$ $0.5H_2O$	/	—/ (3413)	2925	2847	—	1624 z	1582 z	1037 z	478 z
$[Ni(HL^2)_2]Cl_2$	3202 /	—/ (3459)	2917	2813	_	1638 z	1595 z	948 z	470 z

ş: şiddetli, k: keskin, o: orta, z: zayıf

*: http://riodb01.ibase.aist.go.jp/sdbs/ veritabanından alınmıştır (Ortam = Nujol)

• : Hidrojen bağı • : İki değerin izomeriden kaynaklandığı düşünülmektedir.

Çalışmada kullanılan karbonil oksimlerin (4M-İNAF ve İNAN) 1676 ve 1623 cm⁻¹ değerlerinde C=O bağına ait titreşim pikleri vermektedir.

HL¹ ve HL² ligantlarının spektrumlarında 3399 ile 3213 cm⁻¹ aralığında değerlere sahip bantlar 1,2,3,4-tetrahidokinazolin halkasındaki N-H bağı titreşimlerine aittir (Çoşkun ve Çetin 2004, Mutlu ve İrez 2008). Bu bantların karbonil oksimlere ait spektrumlarda yer almaması 1,2,3,4-tetrahidrokinazolin halkasına sahip ligant oluşumuna bir kanıt teşkil etmektedir. Ayrıca karbonil oksimlerde yer almayan CH₂ gruplarına ait bantların oluşumu, karbonil oksim bileşiklerine ait C=O titreşim değerlerinin HL¹ ve HL² ligantlarının spektrumlarında görülmemesi ve sadece oksim grubuna ait C=N gerilme titreşiminin 1606 ve 1607 cm⁻¹ değerlerinde belirlenmesi de yeni bileşiklerin oluşmuş olduğuna bir delildir. Spektrumlarda alifatik C-H grupları için belirlenen titreşim değerleri ise literatür ile uyumludur (Şahin ve ark. 2004, Çolak ve ark. 2006, Mukherjee ve ark. 2009) (Çizelge 4.3).

HL¹ için 2748 cm⁻¹ ve HL² için 2766 cm⁻¹ değerlerinde gözlenen piklerin, O-H grubu ile N-H grubu arasındaki moleküller arası hidrojen bağı oluşumu sebebiyle gözlendiği düşünülmektedir (Mutlu ve İrez 2008). HL¹ için 948 cm⁻¹ ve HL² için 939 cm⁻¹ değerlerindeki bantların N-O titreşimlerine ait olduğunu söyleyebiliriz (Şahin ve ark. 2004, Çolak ve ark 2006, Mutlu ve İrez 2008) (Çizelge 4.3).

Kobalt komplekslerin spektrumlarında, oksim gruplarındaki O-H titreşimlerine ait bantların yer almaması kompleksleşme sonucunda proton kaybınının olduğunu gösterir. HL^{1'} ve HL^{2'}'nin Co(III) komplekslerinin spektrumlarında 3423 ve 3413 cm⁻¹ lerde ortaya çıkan bantların NH₂ protonlarına ait olduğunu söyleyebiliriz. HL^{1'} ve HL^{2'}'nin Co(III) komplekslerinde OH bantları gözlenmezken Ni(II) komplekslerinde 3190 ve 3202 cm⁻¹ lerde gözlenmektedir.

Tüm komplekslerin spektrumlarında 1638-1611 cm⁻¹ değerleri arasında, ligantların spektrumlarında gözlenmemiş olan yeni pikler, 1,2,3,4-tetrahidrokinazolin halkasının açılarak imin gruplarının oluştuğunu göstermektedir. (Çolak ve ark. 2009, Mutlu ve İrez 2008). Ayrıca, ligantlardaki oksim gruplarına ait C=N titreşim bantlarının, kompleksleşme sonucu daha zayıf alana kayması N-O gerilme titreşimlerine ait bantların da daha kuvvetli alana kayması oksim azotu üzerinden koordinasyona işaret etmektedir (Kharodawala ve Rana 2003, Yıldırım ve ark. 2003) (Çizelge 4.3). Kobalt(III) komplekslerindeki N-O titreşim bantlarının, nikel(II) komplekslerinin N-O titreşim değerlerinden daha yüksek cm⁻¹ değerlerinde gözlenmesi, kompleksleşme sonucu kobalt(III) komplekslerinde proton kaybı gerçekleştiğinin bir başka delildir.

Yine kompleks spektrumlarında 478 ile 454 cm⁻¹ aralığında gözlenen ve ligant spektrumlarında yer almayan yeni bantların M-N bağı titreşimlerine ait olduğu söylenebilir (Islam ve Uddin 1993, Djebbar-Sid ve ark. 1997, Mutlu ve İrez 2008).

Başlangıç maddeleri olan karbonil oksimlerin FT-IR spektrumları Şekil 4.5 ve 4.6'da görülmektedir.

Şekil 4.5 4M-İNAF bileşiğinin FT-IR spektrumu

Şekil 4.6 İNAN bileşiğinin FT-IR spektrumu

Çalışmada elde edilen HL^1 ve HL^2 ligantlarına ait FT-IR spektrumları Şekil 4.7 ve Şekil 4.8'de yer almaktadır.

Şekil 4.7 HL^1 ligantının FT-IR spektrumu

Şekil 4.8 HL² ligantının FT-IR spektrumu

Çalışmada elde edilen komplekslere ait FT-IR spektrumları Şekil 4.9, Şekil 4.10, Şekil 4.11, Şekil 4.12'de gösterilmiştir.

Şekil 4.9 $[Co(L^{1'})_2]$ Cl kompleksinin FT-IR spektrumu

Şekil 4.11 $[Co(L^2)_2]ClC_2H_5OH0,5H_2O$ kompleksinin FT-IR spektrumu

Şekil 4.12 [Ni(HL^{2'})₂]Cl₂ kompleksinin FT-IR spektrumu

4.3 ¹H-NMR ve ¹³C-NMR Verileri

Tez calışmasında elde edilen bileşikler ve başlangıç maddelerine ilişkin DMSO-D₆ içerisinde ve D₂O ile yer değiştirme gerçekleştirilerek elde edilmiş ¹H-NMR spektrum veriler Çizelge 4.4'de sunulmuştur.

Cizelge 4.4 2-ABA, 4M-İNAF, İNAN, elde edilen ligantlar ve kobalt komplekslerinin ¹H-NMR spektrum verileri (δ; ppm, J; Hz).

Bileşik	ОН	H-C=N	Naftalen	Fenil	NH ₂	NH	>CH2	CH ₃
2-ABA*	_	_	_	7,07; 7,02; 6,69; 6,65, 4H*	4,80-4,15*; 1,75-1,25*	_	3,85*	_
4M-İNAF	12,63 s; 1H**	8,01 s; 1H	—	7,88 d; 2H J=8, 7,31 d: 2H J=8,4	_	_	_	2,36 s; 3H
İNAN	12,75 s; 1H**	8,19 s; 1H	8,69 s; 1H, 8,09 d; 1H J=8, 8,03-7,96 m; 3H, 7,67 t; 1H 7,61 t:; 1 H	_	_	_	_	_
ΗL ¹	10,80 s; 1H**	7,38 s; 1H	_	7,43 d (J=8); 2H 7,11 d (J=7,6); 2H 6,89 dt (J=8; 1,6); 1H 6,72-6,69 m; 2H 6,43 dt (J=7,2; 1,2); 1H	_	6,58 s; 1H** 3,03 b; 1H**	3,68 dd (J=18,6; 4,8); 1H 3,46 dd (J=16; 8,4); 1H	2,24 s; 3H
HL ²	10,85 s; 1H**	7,51 s; 1H	8,02 s; 1H 7,87-7,82 m; 3H 7,74 dd; 1H J=8,8; J=1,6 7,49-7,44 m; 2H	6,93 dt; 1H (J=7,6; 1,6) 6,80 d; 1H J=9,2, 6,71 d; 1H J=6,8, 6,45 td; 1H (J=7,4; 1,2)	-	6,79 s; 1H** 3,24-3,20 m; 1H**	3,73 dd; 1H J=16,6, 3,46 dd; 1H J=0,4	_
[Co(L ^{1'}) ₂]Cl	_	6,87 s; 2H	_	7,52-7,42 1 7,24-7,04 1 6.54; 4H (m; 8H m; 8H NH2)	_	4,86 d; 2H J=14,4 4,77 d;2H J=14,4	2,43 s; 6H
[Co(L ^{2'}) ₂]Cl ² C ₂ H ₅ OH 0,5H ₂ O	••	7,04 s; 2H	8,24-8,08 m; 8H 7,75-7,66 m; 6H	7,32-7,16 6,61; 4H (m; 8H NH2)	_	4,95 d; 2H J= 14 4,87 d; 2H J=14,8 3,40 q•	1,03 t•

*http://riodb01.ibase.aist.go.jp/sdbs veritabanından alınmıştır

**D₂O değişimi, s: singlet, d: dublet, t:triplet, m:multiplet, q; quartet b: broad
*Alkole ait pik, **Alkole ait O-H piki DMSO pikleriyle örtüştüğü için gözlenemedi.

Başlangıç maddelerinden karbonil oksimler ele alındığında, 4M-İNAF için 12,63 ppm ve INAN için 12,75 ppm değerinde O-H protonuna ait sinyaller gözlenmiştir.

Ligantların integrasyonu yapılmış ¹H-NMR spektrumları incelendiğinde proton sayısının önerilen kapalı formüllerle uyumlu olduğu görülmüstür. HL¹ ve HL² ligantlarının ¹H-NMR spektrumlarımda, oksim grubundaki -OH protonunun kimyasal kayma değeri sırasıyla 10,80 ve 10,85 ppm, oksim grubuna bağlı aldimin protonunun kimyasal kayma değerleri sırasıyla 7,38 ve 7,51 ppm ve aromatik halka protonlarının kimyasal kayma değer aralığı 8,02-6,45 ppm olarak belirlenmiştir. Bu değerler literatür değerleri ile uyumludur (Çolak ve ark. 2006, Mutlu ve İrez 2008).

 HL^{1} ve HL^{2} ligantları için, 1,2,3,4-tetrahidrokinazolin halkasında yer alan fenil grubuna bağlı N-H protonlarının sırasıyla 6,58 ppm ve 6,79 ppm değerinde ve $-CH_{2}$ gruplarına bağlı N-H protonlarının ise 3,24 ve 3,03 ppm değerleri arasında rezonansa geldiği belirlenmiştir. Bu değerler de literatür ile uyumludur (Çolak ve ark. 2007, Mutlu ve İrez 2008).

D₂O ile yer değiştirme gerçekleştirildiğine 1,2,3,4-tetrahidrokinazolin halkasındaki N-H protonlarının ve oksim grubuna ait O-H protonunun sinyalleri kaybolmaktadır. Ligant spektrumlarında, başlangıç maddelerinden farklı olarak NH protonlarına ait kimyasal kayma değerlerinin gözlenmesi ve 3,73 ve 3,46 ppmlerde kimyasal kayma değerlerine sahip –CH₂ protonlarına ait piklerin belirlenmiş olması ligantlarda 1,2,3,4-tetrahidrokinazolin halkasının yer aldığının göstergesidir (Correa ve ark. 2002, Göblyös ve ark. 2002, Sinkkonen ve ark. 2003, Bergman ve ark. 2003, Coşkun ve Çetin 2004, Çolak ve ark. 2007, Mutlu ve İrez 2008).

 $HL^{1'}$ in ve $HL^{2'}$ in kobalt(III) komplekslerinin ¹H-NMR spektrumlarında oksim O-H'larına ait sinyallere rastlanmaması komplekslerde oksim O-H'larının bulunmadığı anlamına gelir. Ligantlarda yer alan N-H gruplarına ait proton piklerinin kompleks spektrumlarında görülmemesi ve HL^{1} ve HL^{2} ligantlarının spektrumlarında yer almayan NH₂ gruplarına ait piklerin ortaya çıkmış olması halkanın açıldığını ve kompleks yapıda $HL^{1'}$ ve $HL^{2'}$ ligantlarının oluştuğunu göstermektedir. Açılımın anilin tipte; olmasından dolayı $HL^{1'}$ in ve $HL^{2'}$ in kobalt(III) komplekslerinin NH₂ protonlarının kimyasal kayma değerleri daha zayıf alanda ve aromatik C-H protonlarının kimyasal kayma değerlerinin beklenenden daha zayıf alanda (6.54 ve 6.61 ppm), oksim grubu karbonuna bağlı aldimin protonunun kimyasal kayma değerlerinin (6.87 ve 7.04 ppm) daha kuvvetli alanda ve CH₂ grubuna ait protonlarını ise daha zayıf alanda (4.86-4.77 ppm ve 4.95-4.87 ppm) gözlenmesi koordinasyonun oksim, imin ve amin gruplarına ait azot atomları üzerinden olduğuna işaret etmektedir.

Şekil 4.13 (a) HL^1 ve HL^2 (b) $HL^{1'}$ ve $HL^{2'}$ (R=Tolil, Naftil)

HL^{2'}'in kobalt(III) kompleksinin ¹H-NMR spektrumunda, 1,03 ppm kimyasal kayma değerine sahip CH₃ ve 3,40 ppm kimyasal kayma değerine sahip CH₂ protonlarının gözlenmesi önerilen yapıdaki etanol varlığını doğrulamaktadır. Alkol O-H'ına ait proton ise DMSO-d₆ pikleriyle örtüştüğünden gözlenememiştir.

Tez çalışmasında elde edilen bileşikler ve başlangıç maddelerine ilişkin DMSO-d₆ içerisinde gerçekleştirilen 13 C-NMR analizlerine ait veriler Çizelge 4.5'de verilmiştir.

Çizelge 4.5 2-ABA, 4M-İNAF, İNAN, elde edilen ligantlar ve kobalt komplekslerinin 13 C-NMR spektrum verileri (δ , ppm)

	2-ABA	4M-İNAF	İNAN	HL ¹	HL ²	[Co(L ^{1'}) ₂]Cl	[Co(L ^{2'}) ₂]Cl [·] C ₂ H ₅ OH [·] 0,5H ₂ O
<u>C</u> H ₃	—	21,64	—	21,05	_	21,57	19,02*
$\overline{\mathbf{C}}\mathbf{H}_2$	44,95	—	—	42,8	42,19	53,55	53,77
Aromatik	146,29-	144,72-	135,45-	140,71-	141,32-	139,69-	120 14 122 06
(C)	115,85	129,42	125,21	114,75	114,81	123,25	159,14-125,90
> <u>C</u> < ^N _N		_	_	70,82	71,26	_	_
H- <u>C</u> =N	—	148,13	148,12	152,69	152,6	140,82	139,89
$\underline{\mathbf{C}} - \overline{\mathbf{C}} < {}^{\mathbf{N}}_{\mathbf{N}}$	—		—	143,50	143,41	—	—
Ph- <u>C</u> =N	—	—	—	_	—	174,54	174,57
<u>C</u> =0	—	188,70	189,06	_	—	—	—

*Alkole ait

Karbonil oksim spektrumlarında yer alan karbonil karbonlarına ait piklerin ligant spektrumlarında gözlenmemesi yeni bileşiklerin oluşmuş olduğunu desteklemektedir. Ligantların ¹³C-NMR spektrumlarında, HL¹ için 70,82 ppm ve HL² için 71,26 ppm değerinde ortaya çıkan pik, 1,2,3,4-tetrahidrokinazolin halkasındaki N-H gruplarına bağlı karbon atomuna aittir.

Belirlenen bu değerlerin literatür değerleriyle uyumlu olduğu gözlenmiştir (Correa ve ark. 2002, Göblyös ve ark. 2002, Sinkkonen ve ark. 2003, Bergman ve ark. 2003, Coşkun ve Çetin 2004, Çolak ve ark. 2007, Mutlu ve İrez 2008).

Kobalt komplekslerinin spektrumları incelendiğinde, ligant spektrumlarında yer alan 70 ppm civarındaki karbon piklerinin gözlenmemesi ve $[Co(L^{1'})_2]Cl$ için 174,54 ppm ve $[Co(L^{2'})_2]Cl.C_2H_5OH.0,5H_2O$ için 174,57 ppm değerindeki imin grubu karbonlarına ait yeni bir pikin gözlenmiş olması halkanın açıldığını doğrulamaktadır (Mutlu ve İrez 2008).

CH₂ karbonlarına ait kimyasal kayma değerlerinin ligantlara göre daha düşük alanda, oksim grubu karbonlarına ait kimyasal kayma değerlerinin ise daha yüksek alanda gözlenmiş olması metal-azot koordinasyonuna dayanak teşkil etmektedir (Mutlu ve İrez 2008).

Şekil 4.14, Şekil 4.15 ve 4.16'de 4M-İNAF bileşiğinin sırasıyla ¹H-NMR, D₂O ile yer değiştirme gerçekleştirilerek elde edilmiş ¹H-NMR ve ¹³C-NMR spektrumları yer almaktadır.

Şekil 4.14 4M-İNAF bileşiğinin ¹H-NMR spektrumu

Şekil 4.15 4M-İNAF bileşiğinin D_2O ile yer değiştirme gerçekleştirilerek elde edilmiş ¹H-NMR spektrumu

Şekil 4.16 4M-İNAF bileşiğinin ¹³C-NMR spektrumu

Şekil 4.17, Şekil 4.18 ve Şekil 4.19'da İNAN bileşiğinin sırasıyla ¹H-NMR, D₂O ile yer değiştirme gerçekleştirilerek elde edilmiş ¹H-NMR ve ¹³C-NMR spektrumları verilmektedir.

Şekil 4.17 İNAN bileşiğinin ¹H-NMR spektrumu

Şekil 4.18 İNAN bileşiğinin D_2O ile yer değiştirme gerçekleştirilerek elde edilmiş ¹H-NMR spektrumu

Şekil 4.19 İNAN bileşiğinin ¹³C-NMR spektrumu

Şekil 4.20, Şekil 4.21 ve Şekil 4.22'de HL^1 ligantının sırasıyla ¹H-NMR, D₂O ile yer değiştirme gerçekleştirilerek elde edilmiş ¹H-NMR ve ¹³C-NMR spektrumları sunulmuştur.

Şekil 4.20 HL¹ ligantının ¹H-NMR spektrumu

Şekil 4.21 HL^1 ligantının D_2O ile yer değiştirme gerçekleştirilerek elde edilmiş ¹H-NMR spektrumu

Şekil 4.22 HL¹ ligantının ¹³C-NMR spektrumu

Şekil 4.23, Şekil 4.24 ve Şekil 4.25'de HL² ligantının sırasıyla ¹H-NMR, D₂O ile yer değiştirme gerçekleştirilerek elde edilmiş ¹H-NMR ve ¹³C-NMR spektrumları gösterilmiştir.

Şekil 4.23 HL² ligantının ¹H-NMR spektrumu

Şekil 4.24 HL^2 ligantının D₂O ile yer değiştirme gerçekleştirilerek elde edilmiş ¹H-NMR spektrumu

Şekil 4.25 HL² ligantının ¹³C-NMR spektrumu

Şekil 4.26, Şekil 4.27 ve Şekil 4.28'de $[Co(L^{1'})_2]Cl$ kompleksinin sırasıyla ¹H-NMR, D₂O ile yer değiştirme gerçekleştirilerek elde edilmiş ¹H-NMR ve ¹³C-NMR spektrumları yer almaktadır.

Şekil 4.26 [Co(L^{1'})₂]Cl kompleksinin ¹H-NMR spektrumu

Şekil 4.27 $[Co(L^{1'})_2]Cl$ kompleksinin D₂O ile yer değiştirme gerçekleştirilerek elde edilmiş ¹H-NMR spektrumu

Şekil 4.28 [Co(L^{1'})₂]Cl kompleksinin ¹³C-NMR spektrumu

Şekil 4.29, Şekil 4.30 ve Şekil 4.31'de $[Co(L^2)_2]ClC_2H_5OH0,5H_2O$ kompleksinin sırasıyla ¹H-NMR, D₂O ile yer değiştirme gerçekleştirilerek elde edilmiş ¹H-NMR ve ¹³C-NMR spektrumları yer almaktadır.

Şekil 4.29 [Co(L^{2'})₂]ClC₂H₅OH0,5H₂O kompleksinin ¹H-NMR spektrumu

Şekil 4.30 $[Co(L^{2'})_2]ClC_2H_5OH0,5H_2O$ kompleksinin D₂O ile yer değiştirme gerçekleştirilerek elde edilmiş ¹H-NMR spektrumu

Şekil 4.31 [Co(L^{2'})₂]Cl[·]C₂H₅OH 0,5H₂O kompleksinin ¹³C-NMR spektrumu

4.4 UV-Visible Spektroskopisi Analiz Verileri

Bileşiklerdeki geçişlere ait molar sönüm katsayısı (ε) değerlerinin belirlenmesi için bileşiklerin farklı derişimlerde hazırlanan çözeltilerine ait UV-Vis. spektrumları alınmış ve maksimum absorbsiyonun olduğu dalga boylarındaki absorbans değerlerinin derişime karşı grafikleri çizilerek elde edilen doğrunun eğiminden ilgili geçişlere ait molar sönüm katsayıları hesaplanmış ve seçilmiş bazı geçişlere ait değerler verilmiştir. Şekillerde yer alan spektrumlar 1x10⁻⁵ M'lık çözeltilere aittir. Bazı bantların daha belirgin gözükmesi için gerektiğinde daha derişik çözeltilerden elde edilen spektrumlardan kesitler de sunulmuştur.

HL¹ ligantının UV-Vis spektrumu Şekil 4.32'de verilmiştir.

Şekil 4.32 HL¹ ligantının UV-Vis spektrumu

Bu ligantın spektrumunda 287 nm ($\varepsilon = 1,16 \ge 10^4 \ge 10^{-1} \text{ cm}^{-1}$) ve 352 nm'de ($\varepsilon = 0,23 \ge 10^4 \ge 10^{-1} \text{ cm}^{-1}$) gözlenen piklerin $\pi \rightarrow \pi^*$ geçişlerine ait olduğu söylenebilmektedir (Alves ve ark. 2001, Attia ve ark. 2003, Demir ve Pekacar 2005, Emara ve ark. 2006).

HL² ligantının UV-Vis spektrumu Şekil 4.33'de verilmiştir.

Şekil 4.33 HL² ligantının UV-Vis spektrumu

Bu ligantın 285 nm ($\epsilon = 0.9 \text{ x } 10^4 \text{ L mol}^{-1} \text{ cm}^{-1}$) ve 350 nm'de ($\epsilon = 0.19 \text{ x } 10^4 \text{ L mol}^{-1} \text{ cm}^{-1}$) verdiği piklerin de $\pi \rightarrow \pi^*$ geçişlerine ait olduğu belirtilebilmektedir (Alves ve ark. 2001, Attia ve ark. 2003, Demir ve Pekacar 2005, Emara ve ark. 2006).

[Co(L^{1'})₂]Cl kompleksine ait UV-Vis spektrumu Şekil 4.34'de verilmiştir.

Şekil 4.34[Co(L^{1'})₂]Cl kompleksinin UV-Vis spektrumu

Bu kompleksin spektrumunda gözlenen 280 nm'deki bantın ($\varepsilon = 4,79 \ge 10^4 \ L \ mol^{-1} \ cm^{-1}$) yük transfer geçişine ait olduğu söylenebilmektedir. Yine spektrumda gözlenen 352 nm'deki bantın ($\varepsilon = 1,65 \ge 10^4 \ L \ mol^{-1} \ cm^{-1}$) ise $\pi \rightarrow \pi^*$ geçişlerine ait olduğu belirtilebilir (Demir ve Pekacar 2005, Emara ve ark. 2006). [Ni(HL^{1'})₂]Cl₂ kompleksine ait UV-Vis spektrumu Şekil 4.35'de verilmiştir.

Şekil 4.35 [Ni(HL^{1'})₂]Cl₂ kompleksinin UV-Vis spektrumu

Bu kompleksin spektrumunda gözlenen 288 nm'deki bantın da ($\varepsilon = 4,43 \times 10^4 \text{ L mol}^{-1} \text{ cm}^{-1}$) yük transfer geçişine ait olduğu düşünülmektedir. Yine spektrumda 340 nm'de ($\varepsilon = 2,13 \times 10^4 \text{ L mol}^{-1} \text{ cm}^{-1}$) $\pi \rightarrow \pi^*$ geçişine ait bir bantın olduğu da düşünülmektedir (Demir ve Pekacar 2005, Emara ve ark. 2006). $[Co(L^2')_2]ClC_2H_5OH0,5H_2O$ kompleksine ait UV-Vis spektrumu Şekil 4.36'da verilmiştir.

Şekil 4.36 [Co(L^{2'})₂]ClC₂H₅OH 0,5H₂O kompleksinin UV-Vis spektrumu

Bu kompleksin spektrumunda gözlenen 267 nm'deki bantın ($\varepsilon = 5,60 \ge 10^4 \ L \ mol^{-1} \ cm^{-1}$) yük transfer geçişine ait olduğu düşünülmektedir. Yine spektrumda gözlenen 346 nm'deki bantın ($\varepsilon = 2,26 \ge 10^4 \ L \ mol^{-1} \ cm^{-1}$) ise $\pi \rightarrow \pi^*$ geçişlerine ait olduğu söylenebilmektedir (Demir ve Pekacar 2005, Emara ve ark. 2006). 401 nm'de gözlenen bantın ($\varepsilon = 0,94 \ge 10^4 \ L \ mol^{-1} \ cm^{-1}$) ise n $\rightarrow \pi^*$ geçişine ait olduğu söylenebilir.

[Ni(HL^{2'})₂]Cl₂ kompleksine ait UV-Vis spektrumu Şekil 4.37'de verilmiştir

Şekil 4.37 [Ni(HL^{2'})₂]Cl₂ kompleksinin UV-Vis spektrumu

Bu kompleksin spektrumunda gözlenen 263 nm'deki bantın ($\varepsilon = 5,81 \times 10^4 \text{ L mol}^{-1} \text{ cm}^{-1}$) yük transfer geçişine ait olduğu düşünülmektedir. Yine spektrumda gözlenen 318 nm'deki bantın ($\varepsilon = 1,90 \times 10^4 \text{ L mol}^{-1} \text{ cm}^{-1}$) ise $\pi \rightarrow \pi^*$ geçişlerine ait olduğu söylenebilmektedir (Demir ve Pekacar 2005, Emara ve ark. 2006).

Komplekslerde d-d geçişlerine ait belirgin bantların gözlenmemiş olmasının oktahedral geometrili komplekslerdeki d-d geçişlerinin yasaklı olmasından kaynaklandığı sonucu çıkarılabilmektedir.

Bileşiklerin spektrumlarında, genel olarak 318 ile 352 nm arasında gözlenmiş olan bantların azometin gruplarının varlığından kaynaklanan $\pi \rightarrow \pi^*$ geçişlerine ait olabildiği söylenebilmektedir. Kompleksleşme sonucunda geçişlere ait ε değerlerinin büyüdüğü belirlenmiştir. Kompleks spektrumlarında gözlenen bu geçişlerin, ligant spektrumlarına göre şiddetlenmiş oluşu azometin gruplarındaki azot atomları üzerinden bir koordinasyon olduğu sonucunu destekler niteliktedir (Demir ve Pekacar 2005).

4.5 Termik Analiz Verileri

Tez çalışmasında elde edilen ligantlar ve komplekslerin termik analizleri, SII Exstar 6200 model termogravimetrik/diferansiyel termik analiz cihazı ile 10 °C / dakika ısıtma hızı uygulanarak kuru hava atmosferinde gerçekleştirilmiştir. Termik analiz eğrilerinden elde edilen veriler ligantlar için Çizelge 4.6'da, kompleksler için ise Çizelge 4.7'de sunulmuştur.

DTA_{max} Sıcaklık Basamakla Beraber Hesaplanan Toplam Bileşik Son Kalan Ürün Bölgesi (°C) Toplam Kütle Kaybı % Kütle Kaybı % $(^{\circ}C)$ 105-180 ** 154(-) 13 * 180-401 53 ** 343(-) HL^1 495(-) 545(-) 100 100 401-636 578(-) * 139-174 157(-) 13 ** HL^2 ** 174-450 358(-) 46 450-638 598(-) 100 100

Çizelge 4.6 Elde edilen ligantlara ait termik analiz verileri

(+) endotermik, (-) ekzotermik, * : hesaplanamadı, **: bilinmiyor

CoO
2]Cl
CoO

Çizelge 4.7 Elde edilen komplekslere ait termik analiz verileri

(+) endotermik, (-) ekzotermik, * : hesaplanamadı, **: bilinmiyor

4.5.1 HL¹ ligantının termik analizi

Bu ligantın, üç basamakta gerçekleşen bir bozunmaya sahip olduğu ve 105 °C sıcaklığına kadar kararlı kalabildiği belirlenmiştir. Ligant ilk basamakta, 153 °C'de keskin bir DTA piki vermiştir ayrıca 180-401 °C ve 401-635 °C arasında bir bozunma basamağına daha sahiptir. Tüm bozunma basamaklarının ekzotermik olduğu belirlenmiştir. Bu bozunmalardan sonra ortamda bir kütle kalıntısı görülmemektedir. HL¹ ligantının bozunmasına ait termik analiz eğrileri Şekil 4.38'de verilmiştir.

Şekil 4.38 HL¹ ligantının termik analiz eğrileri

Termik analiz çalışmalarında uygulanan ısıtma hızı, basınç, partikül büyüklüğü ve çalışılan atmosferin bileşimi gibi faktörler termik analiz eğrilerini etkileyen etmenlerdir. Bu sebeple bozunma basamaklarının net bir şekilde ayırt edilemediği durumlar da oluşabilmektedir. Bu ligantın termik analiz eğrileri incelendiğinde yaklaşık olarak 400-600 °C arasında gerçekte birden fazla bozunma basamağı olduğu söylenebilse de bu basamaklar net bir şekilde ayırt edilemediğinden bir bütün ve tek basamak olarak kabul edilmişlerdir.

4.5.2 HL² ligantının termik analizi

HL² ligantının da HL¹ ligantı gibi üç basamakta bozunduğu Şekil 4.39'daki termik analiz eğrilerinden görülebilmektedir. Ligant 138 °C'ye kadar kararlıdır. Yapının ilk basamaktaki ekzotermik DTA piki 156 °C'de gözlenmiştir. 174-450 °C ve 450-638 °C arasında gözlenen iki basamak ile bozunma tamamlanmıştır. Ligantın kütle kaybının 638 °C sonlandığı görülmektedir. Analiz sonucunda ortamda herhangi bir kalıntı bulunmamıştır.

Şekil 4.39 HL² ligantının termik analiz eğrileri

4.5.3 [Co(L^{1'})₂]Cl kompleksinin termik analizi

Bu kompleksin termik analiz eğrileri incelendiğinde kompleksin 131 °C'ye kadar kararlı olduğu ve 131-221 °C arasında % 24'lük bir kütle kaybıyla ilk bozunma basamağının gözlendiği görülmektedir. 221-464 °C ve 464-604 °C arasındaki diğer ekzotermik bozunma basamakları sonucunda kalan ürün Co₃O₄/CoO karışımıdır. 604-961°C arasında DTA maksimumu 898 °C'de gözlenen endotermik pik Co₃O₄/CoO karışımının tamamının CoO yapısına dönüşmesinden kaynaklanmaktadır. Kalan son ürün olan CoO için bulunan kütle % 10'dur (hesaplanan % 12). Komplekse ait termik analiz eğrileri Şekil 4.40'da görülmektedir.

Şekil 4.40 [Co(L^{1'})₂]Cl kompleksinin termik analiz eğrileri

4.5.4 [Ni(HL^{1'})₂]Cl₂ kompleksinin termik analizi

Bu kompleksin termik analiz eğrilerinden, üç basamakta bozunduğu görülebilmektedir. 148-216 °C, 216-461 °C ve 461-555 °C arasında gözlenen bu üç basamak sonucunda toplam kütle kaybı % 89 olarak bulunmuştur. Kalan son ürün % 11 ile NiO'tir (hesaplanan % 11). Komplekse ait termik analiz eğrileri Şekil 4.41'de yer almaktadır.

Şekil 4.41 [Ni(HL^{1'})₂]Cl₂ kompleksinin termik analiz eğrileri

4.5.5 [Co(L^{2'})₂]Cl[·]C₂H₅OH[·]0,5H₂O kompleksinin termik analizi

Termik analiz eğrileri Şekil 4.42'de görülen kompleksin, yapısındaki su ve etil alkolü toplamda % 8'lik (hesaplanan % 7) kütle kaybı ile, 28-165 °C arasındaki endotermik basamakta kaybettiği belirlenmiştir. Kompleks ayrıca 165-206 °C, 206-472 °C ve 472-664 °C arasında üç ekzotermik bozunma basamağına sahiptir. Bu bozunma basamakları sonucunda kalan ürün Co₃O₄/CoO karışımıdır. 893 °C'de DTA maksimumu gözlenen endotermik basamak sonucunda karışımın tamamı CoO yapısına dönüşmüştür. Son kalan ürün olan CoO için bulunan kütle % 10 olup hesaplanan % 10'dur.

Şekil 4.42 [Co(L^{2'})₂]Cl·C₂H₅OH⁰,5H₂O kompleksinin termik analiz eğrileri

4.5.6 [Ni(HL^{2'})₂]Cl₂ kompleksinin termik analizi

Diğer nikel kompleksi gibi bu kompleksin de üç basamakta gerçekleşen bir bozunmaya sahip olduğu görülebilmektedir. 151-232 °C arasında birinci, 232-446 °C arasında ikinci ve 446-587 °C arasında ise üçüncü bozunma basamağı yer alır. 587 °C'deki toplam kütle kaybı % 88 olarak bulunmuştur. Kalan son ürün % 12'lik kütle ile NiO'tir (hesaplanan % 10).

Şekil 4.43 [Ni(HL^{2'})₂]Cl₂ kompleksinin termik analiz eğrileri

5. SONUÇ

Bu tez calışmasında iki karbonil oksim bileşiğinin, aromatik bir diamin olan 2-aminobenzilamin tepkimelerinden iki 1.2.3.4ile kondenzasyon veni tetrahidrokinazolin oksim bileşiği elde edilmiş daha sonra bu ligantların, kobalt(II) ve nikel(II) iyonlarıyla olan tepkimelerinde α -iminooksim ligantı biçimine dönüştükleri belirlenmiş ve bunun sonucunda ikisi nikel(II), ikisi kobalt(III) olmak üzere dört tane yeni α-iminooksim kompleksi elde edilmiştir. Elde edilen 1,2,3,4-tetrahidrokinazolin bileşikleri elemental analiz, LC-MS, termik analiz gibi temel analiz teknikleri ayrıca IR, ¹H-NMR, ¹³C-NMR UV-Vis gibi spektroskopik teknikler ile karakterize edilmiştir. Komplekslerin yapılarının aydınlatılmasında bunlara ek olarak AAS, iletkenlik ve manyetik duyarlılık ölçüm teknikleri de kullanılmıştır. Nikel komplekslerinin paramanyetik olması sebebiyle bu kompleksler için NMR tekniği uygulanamamıştır.

Yapı aydınlatma işlemleri sonucunda elde edilen ligantların, kompleksleşme sırasında iminooksim biçimine dönüştükleri ve metal iyonlarıyla 1:2 oranında tepkime verdikleri belirlenmiştir. Elde edilen tüm komplekslerin iletken özellik gösterdikleri ve tamamlayıcı iyon olarak Cl⁻ anyonu içerdikleri belirlenmiştir. Manyetik duyarlılık ölçümleri sonucunda kobalt komplekslerinin diamanyetik, nikel komplekslerinin ise paramanyetik oldukları anlaşılmış diğer tekniklerle de desteklenen bu bilgi ile komplekslerin oktahedral geometriye sahip oldukları sonucuna varılmıştır.

Çalışmada elde edilen ligantların termik analiz sonuçları incelendiğinde HL^1 ligantının, HL^2 ligantına göre daha önce bozulmaya başladığı ancak ilk bozunma basamağına ait DTA_{max} değerlerinin birbirlerine çok yakın olduğu belirlenmiştir. İminooksim komplekslerinin termik analiz sonuçları değerlendirildiğinde ise belirtilen çalışma koşulları sonucunda son kalan bozunma ürünlerinin metal oksitleri olduğu belirlenmiştir. [Co(L^2)₂]Cl·C₂H₅OH·0,5H₂O kompleksinin yapısındaki alkol ve su içeriğinin miktarı termik analiz yöntemiyle belirlenen kütle kaybı değeri ile de doğrulanmıştır.

UV-Vis spektroskopisi sonuçları genel olarak değerlendirildiğinde komplekslerin, ligantlardan farklı olarak yük aktarım bantlarına sahip oldukları ve $\pi \rightarrow \pi^*$ geçişlerinden kaynaklanan bantların şiddetlendiği belirlenmiştir.

KAYNAKLAR

Aakeröy, C.B. Beatty, A.M., Leinen, D.S. 2001. Syntheses and Crystal Structures of New "Extended" Building Blocks for Crystal Engineering: (Pyridylmethylene)aminoacetophenone Oxime Ligands. *Cryst. Growth. Des.*, 1(1): 47-52.

Aakeröy, C.B., Salmon, D.J., Smith, M.M., Desper, J. 2006. Cyanophenyloximes: Reliable and Versatile Tools for Hydrogen-Bond Directed Supramolecular Synthesis of Cocrystals. *Cryst. Growth. Des.*, 6(4): 1033-1042.

Abele, E., Lukevics, E. 2000. Recent Advances in the Synthesis of Heterocycles from Oximes. *Heterocycles*, 53(10): 2285-2336.

Alcalde, E., Mesquida, N., Alvarez-Rúa, C., Cuberes, R., Frigola, J. Garcia-Granda, S. 2008. 1,2-Diaryl(3-pyridyl)ethanone Oximes. Intermolecular Hydrogen Bonding Networks Revealed by X-ray Diffraction. *Molecules*, 13: 301-318.

Alves, W.A, Bagatin, I.A, Da Costa Ferreira, A.M. 2001. Equilibria and tyrosinase activity of a dinuclear and its analogous tetranuclear imidazolate-bridged copper(II) complexes. *Inorg Chim Acta*, 321(1): 11-21.

Attia, A.S., El-Mashtoly, S.F., El-Shahat, M.F. 2003. Synthesis, electrochemical and spectroscopic properties of dimeric oxomolybdenum(IV) and (VI) complexes containing terminal and bridged bidentate α -benzoinoxime ligands. *Polyhedron*, 22(6): 895-900.

Bahner, C.T., Brotherton, D., Brotherton, M.K. 1967. Schiff Bases Containing Quinoline Rings. J. Med. Chem., 11(2): 405-406.

Bergman, J., Engqvist, R., Stalhandske, C., Wallberg, H. 2003. Studies of the reactions between indole-2,3-diones (isatins) and 2-aminobenzylamine. *Polyhedron*, 59(7):1033-1048.

Burakevich, Joseph V., M.Lore, A., Volpp, P.G. 1971. Phenylglyoxime. Separation, Characterization, and Structure of Three Isomers. *J. Org. Chem.*, 36(1): 1-4.

Canpolat, E., Kaya, M. 2005. Studies on Mononuclear Chelates Derived fromSubstituted Schiff Base Ligands (Part 4): Synthesis and Characterization of a New5-Hydroxysalicyliden-*P*-Aminoacetophenoneoxime andIts Complexes with Co(II), Ni(II), Cu(II) and Zn(II). *Turk. J. Chem.*, 29(4): 409-415.

Chakravarty, A.R., Chakravorty, A. 1981. Chemistry of Ruthenium. 3. Synthesis, Structure, and Electron-Transfer Behavior of trans-Dihalobis[(arylazo)oximato]ruthenium(III). *Inorg. Chem.*, 20(10): 3138–3143.

Chakvorty, A. 1974. Structural Chemistry Of Transition Metal Complexes Of Oximes. *Coordin. Chem. Rev.*, 13(1): 1-46.

Chong, S.S., Fu, Y., Liu, L., Guo, Q.X., 2007. O-H Bond Dissociation Enthalpies of Oximes: A Theoretical Assessment and Experimental Implications. J. Phys. Chem. A., 111(50): 13112-13125.

Correa, W.H., Papadopoulos, S., Radnidge, P., Roberts, B.A., Scott, J.L. 2002. Direct, efficient, solvent-free synthesis of 2-aryl-1,2,3,4-tetrahydroquinazolines. *Green Chem.*, 4(3): 245-251.

Coşkun, N., Çetin, M. 2004. Synthesis of 2-aryl-1,2,3,4-tetrahydroquinazolin-1-ols and their conversion to 7-aryl-9*H*-6-oxa-5,8-diaza-benzocycloheptenes. *Tetrahedron Lett*, 45(49): 8973-8975.

Çolak, **A.T**, **Taş**, **M.**, **İrez**, **G.**, **Yeşilel**, **O.Z**, **Büyükgüngör**, **O. 2007.** Syntheses, Spectral, Thermal and Structural Characterization of 2-Phenyl-2-(1-hydroxyiminoethyl)-1,2,3,4-tetrahydroquinazoline and Its Novel Nickel(II) Complex. *Z. Anorg. Allg. Chem.*, 633(3): 504-508.

Çolak, **A.T.**, **İrez**, **G.**, **Mutlu**, **H.**, **Hökelek**, **T.**, **Çaylak**, **N. 2009**. Co(III) complex with a tridentate amine-imine-oxime ligand from 1,2,3,4-tetrahydroquinazoline: synthesis, crystal structure, spectroscopic and thermal characterization. *J. Coord. Chem.*, 62(6): 1005-1014.

Datta, D., Chakravorty, A. 1982. Electron Transfer in Authentic Triangular Copper(II) Trimers with a Cu_3X (X = O or OH) Core. The $Cu_2^{II}Cu_3^{III}-Cu_3^{II}$ and $Cu_3^{II}-Cu_3^{II}Cu_3^{III}$ Couples. *Inorg. Chem.*, 21(1): 363-368.

De Lijser, H.J.P., Fardoun, F.H., Sawyer, J.R., Quant, M. 2002. Photosensitized Regeneration of Carbonyl Compounds from Oximes. *Org. Lett.*, 4(14): 2325-2328.

De Lijser, H.J.P., Hsu, S., Marquez, B.V., Park, A., Sanguantrakun, N., Sawyer, J.R. 2006. Effect of Structure in Benzaldehyde Oximes on the Formation of Aldehydes and Nitriles under Photoinduced Electron-Transfer Conditions. *J. Org. Chem.*, 71(20): 7785-7791.

De Lijser, H.J.P.; Kim, J.S., McGrorty, S.M.; Ulloa, E. M. 2003. Substituent effects in oxime radical cations. 1.Photosensitized reactions of acetophenone oximes. *Can. J. Chem.*, 81(6): 575-585.

Demir, İ., Pekacar, A.,İ. 2005. Synthesis and Characterization of Some Nickel(II), Cobalt(II), and Zinc(II) Complexes with Schiff Bases Derived from the Reaction of Isonitroso-p-chloroacetophenone and 1,2-Diaminoethane with 1,4-Diaminobutane. *Synth. React. Inorg. Met.-Org. Nano-Met. Chem.*, 35(10): 825-828.

Dikusar, E.A., Zhukovskaya, N.A. 2006. Preparative Synthesis of Cyclohexanone Oxime Esters. *Russ. J. Org. Chem+.*, 44(9): 1389-1391.
Djebbar-Sid, O. Baitich, B., Deloume, J.P. 1997. Synthesis, characterization and electrochemical behaviour of some copper(II) complexes with linear and tripodal tetradentate ligands derived from Schiff bases. *Polyhedron*, 16(13): 2173-2182.

Dreos, R., Herlinger, E., Tauzher, G.T., Giorgio, N., Sara. V., Nardin, G., Randaccio, L. 1998. Synthesis, Characterization, and Reactivity of a New Mononuclear Benzyl-Cobalt Complex Containing MixedTridentate Imino-Oxime and Diamine Ligands. *Organometallics.*, 17(11): 2366-2369.

Dreos, R., Tauzher, G., Trendafilova, D.H., Nardin, G., Randaccio, L. 1996. New Stable Dinuclear Organocobalt Complexes with a Tridentate Imino-Oxime Ligand. *Inorg. Chem.*, 35(10): 2715-2716.

Eddings, D., Barnes, C., Gerasimchuk, N., Durham, P., Domasevich, K. 2004. First Bivalent Palladium and Platinum Cyanoximates: Synthesis, Characterization, and Biological Activity. *Inorg. Chem.*, 43(13): 3894-3909.

Emara, A., Abou-Hussen, A.A. 2006. Spectroscopic studies of bimetallic complexes derived from tridentate or tetradentate Schiff bases of some di- and tri-valent transition metals. *Spectrochim Acta A.*, 64(4): 1010-1024.

Faridbod, F., Ganjali, M.R., Dinarvand, R., Norouzi, P., Riahi, S. 2008. Schiff's Bases and Crown Ethers as Supramolecular SensingMaterials in the Construction of Potentiometric Membrane Sensors. *Sensors*, 8: 1645-1703.

Geary, W.J. 1971. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. *Coord. Chem. Rev.*, 7(1): 81-122.

Göblyös, A., Lázár, L., Fülöp, F. 2002. Ring-chain tautomerism of 2-aryl-substitutedhexahydropyrimidines and tetrahydroquinazolines. *Tetrahedron*, 58(5): 1011-1016.

Gup, R., Giziroğlu, E. 2006. Metal Complexes and Solvent Extraction Properties of Isonitrosoacetophenone 2-aminobenzoylhydrazone. *Spectrochim. Acta A*, 65(3-4): 719-726.

Heaney, F., Bourke, S., Cunnigham, D., McArdle, P. 1998. Steric control of reactivity: formation of oximes, benzodiazepinone *N*-oxides and isoxazoloquinolinones. *J. Chem. Soc., Perkin Transactions 2*, 3: 547-560.

Hunter, L, Roberts, C.B. 1941. The azo-group as a chelating group. Part V. Metallic derivatives of arylazo-oximes and of formazyl compounds. *Journal of the Chemical Society*, 823-826.

İrez, G., Mutlu, H. 2008. Synthesis and Characterization of New TridentateIminooxime Ligands and Their Co(III) Complexes. *Turk J. Chem.*, 32(6): 731-741.

Kalia, K.C., Chakravorty, A. 1970. Hydrogen Bonding and Isomerism in Arylazo Oximes. J. Org. Chem., 35(7): 2231-2234.

Katagi, T., Kataoka, H., Konishi, Y., Takata, Y., Kitano, S., Yamaki, M., Inoi, T., Yamamoto, K., Yamamoto, S., Yamagata, Y. 1996. Syntheses and Anti-inflammatory Activities of O-Acyloximes. II. *Chem.Pharm. Bull.*, *44*(1) 145-149.

Katagi, T., Kataoka, H., Takahashi, K., Fujioka, T., Kunitomo, M., Yamaguchi, Y., Fujiwara, M., Inoi, T. 1992. Syntheses and anti-inflammatory activity of novel oximes and O-acyloximes. *Chem. Pharm. Bull.*, 40(9): 2419-22.

Kataoka, H., Horiyama, S., Yamaki, M., Oku, H., Ishiguro, K., Katagi, T., Takayama, M., Semma, M., Ito, Y. 2002. Anti-inflammatory and Anti-allergic Activities of Hydroxylamine and Related Compounds. *Biol. Pharm. Bull.*, 25(11): 1436-1441.

Kharodawala, J.M., Rana, A.J. 2003. Synthesis, Characterization, and Biological Activity of Some Transition Metal Chelates of 4-Acyloxime-2-pyrazolin-5-ones. *Synth. React. Inorg. Met.-Org. Nano-Met. Chem.*, 33(8): 1483-1504.

Kolawole, G.A., Ndahi, N.P. 2004. Cobalt(III) Complexes of Dimethylglyoxime with No Direct Cobalt-Carbon Bond as Possible Non-Organometallic Models for Vitamin B₁₂. *Synth. React. Inorg. Met.-Org. Nano-Met. Chem.*, 34(9): 1563-1580.

Korvenranta, J., Saarinen, H., Nasakkala, M. 1982. X-Ray Structural Characterization Of Nickel(II) And Nickel(IV) Complexes Formed By an Hexadentate Amine-Imine-Oxime Ligand. *Inorg. Chem.*, 21(12): 4296-4300.

Kukushkin, V.Y., Nishioka, T., Tudela, D., Isobe, K., Kinoshita, I. 1997. Hydrogen-Bonding Patterns in Oxime/Oximato Platinum(II) Species Providing the Formation of One-Dimensional Chains, Two-Dimensional Networks, and Cages. *Inorg. Chem*, 36(27): 6157-6165.

Kurtoğlu, M., Serin, S. 2006. Oksimler; Sentezi, Reaksiyonları ve Metal Kompleksleri. *KSÜ. Fen ve Mühendislik Dergisi*, 9(2): 25-32.

Küçükgüzel, Ş.G., Rollas, S., Küçükgüzel, İ., Kiraz, M. 1999. Synthesis and Antimycobacterial activity of some coupling products from 4-aminobenzoic acid hydrazones. *Eur. J. Med. Chem.*, 34(12): 1093-1100.

Levin, N., Hartung, H. W. 1955. ω-Chloroisonitrosoacetophenone. *Organic Syntheses, Coll.*, 3: 191.

Maekawa, M., Kitagawa, S., Nakao, Y., Sakamoto, S., Yatani, A., Mori, W., Kashino, S., Megumu, M. 1999. Syntheses, crystal structures and autoreduction behavior of antiferromagnetically coupled dicopper(II) oximato complexes. *Inorg. Chim. Acta*, 293(1): 20-29.

Maity, D., Mukherjee, P., Ghosh, A., Drew, M.G.B., Mukhopadhyay, G. 2008. A novel trinuclear nickel(II) complex of an unsymmetrical tetradentate ligand involving bridging oxime and acetylacetone functions. *Inorg. Chim. Acta*, 361(5): 1515-1519.

Mao, D.S, Lu, G.Z. 2006. The Effect of Platinum on Stability of the B₂O₃/TiO₂-ZrO₂ Catalyst for Beckmann Rearrangement of Cyclohexanone Oxime. *Chanese. Chem. Lett.*, 17(8) 1025-1028.

Martin, J.D., Abboud, K.A., Dahmen, K.H., 1998. Characterization and Crystal Structure of Nickel Complexes of Imine Oximes Containing Tautomerized Enolate Ligands. *Inorg. Chem.*, 37(22): 5811-5815.

Merchant, J.R., Chotia, D.S. 1970. Antituberculous Schiff Bases. J. Med. Chem., 13(2): 335-336.

Mohamed, G.G., Omar, M.M., Hindy, A.M.M. 2005. Synthesis, characterization and biological activity of some transition metals with Schiff base derived from 2-thiophene carboxaldehyde and aminobenzoic acid. *Spectrochimica A*, 62(4-5): 1140-1150.

Mukherjee, S., Patel, B.A. Bhaduri, S. 2009. Selective Ethylene Oligomerization with Nickel Oxime Complexes. *Organometallics*, 28(10): 3074-3078.

Nicole, G.M., Palmen, C.T.A, Evelo, C.T.A. 1998. Oxidative effects in human erythrocytes caused by some oximes and hydroxylamine. *Arch. Toxicol.*, 72(5): 272-276.

Packard, A.B, Kronauge, J.F., Day, P.J., Treves, S.T. 1998. Synthesis and biodistribution of 64Cu-labeled monocationic diiminedioxime copper(II) complexes. *Nucl. Med. Biol., 25(6):* 531-537.

Pajunen, A., Pajunen, S. 1983. Bis $\{3-[2-(2-pyridyl)ethyl]$ imino-2-butanone oximato $\}$ cobalt(III) perchlorate, C₂₂H₂₈CoN₆O₂⁺.ClO₄⁻. *Acta Crystallogr.*, 39(7): 852-854.

Parmar, D., Burka, L.T. 1991. Metabolism and disposition of cyclohexanone oxime in male F-344 rats. *Drug. Metab. Dispose.*, 19(6): 1101-1107.

Rollas, S., Gülerman, N., Erdeniz, H. 2002. Synthesis and antimicrobial activity of some new hydrazones of 4-fluorobenzoic acid hydrazide and 3-acetyl-2,5-disubstituted-1,3,4-oxadiazolines. *Il Farmaco*, 57(2): 171-174.

Rollas, S., Küçükgüzel, Ş.G. 2007. Biological Activities of Hydrazone Derivatives. *Molecules*, 12: 1910-1939.

Saidul Islam, M., M. Masir, U. 1993. Preparation and characterization of some complexes of chromium(III), cobalt(III) and rhodium(III) ions containing 1,4,8,12-tetra-azacyclopentadecane. *Polyhedron*, 12(4): 423-426.

Saito, H., Terasawa, I., Ohno, M., Nukada, K. 1969. Studies on Oxime Hydrochlorides. IV. Nuclear Magnetic Resonance Studies of the Stereochemistry of 2-Substituted Cyclohexanone Oximes and Their Hydrochlorides. Conformation Change Caused by Protonation and Hydrogen Bonding. J. Am. Chem. Soc., 91(24): 6696-6703.

Sardarian, A.R., Shahsavari-Fard, Z., Shahsavari, H.R., Ebrahimi, Z. 2007. Efficient Beckmann rearrangement and dehydration of oximes via phosphonate intermediates. *Tetrahedron Lett.*, 48(14): 2639-2643.

Scaffidi-Domianello, Y.Y., Meelich, K., Jakupec, M.A., Arion, V.B., Kukushkin, V.Y., Galanski, M., Keppler, B.K. 2010. Novel Cis- and Trans-Configured Bis(oxime)platinum(II) Complexes: Synthesis, Characterization, and Cytotoxic Activity. *Inorg. Chem.*, *49*(*12*): 5669–5678.

Shetti, S.N., Murty, A.S.R., Tembe, G.L. 1993. Synthesis and Structural Characterization of Manganese(II), Cobalt(II) and Zinc(II) Complexes of Isonitrosoacetophenone thiosemicarbazone and isonitroso-4-chloroacetophenone thiosemicarbazone. *Indian J. Chem.*, 32A, 511-516.

Shriver, D. F., Atkins, P.W. 1999. D-metal Kompleksleri : Anorganik Kimya Üçüncü Baskı, Çeviri Editörü : Saim Özkar, Bilim Yayıncılık, s-179-212.

Singh, A.N., Singh, R.P., Mohanty, J.G., Chakravorty, A. 1977. Chemistry of tetravalent nickel and related species. 3. Characterization and cyclic voltammetry of new [NiN6] species based on tridentate ligands. *Inorg. Chem.*, 16(10): 2597-2601.

Singh, R.B., Garg, B.S., Singh, R.P. 1979. Oximes as Spectrophotometric Reagents-A Review. *Talanta*, 26(6): 425-44.

Singh, S.K., Sharma, S., Dwivedi, S.D., Zou, R.Q., Xu, Q., Pandey, D.S. 2008. Reactivity of the Oxime/Oximato Group in Ruthenium(II) Complexes. *Inorg. Chem.*, *47(24):* 11942–11949.

Sinkkonen, J. Zelenin, K.N. Potapov, A.A. Lagoda, I.V. Alekseyev, V.V. Pihlaja, K. 2003. Ring-chain tautomerism in 2-substituted 1,2,3,4-tetrahydroquinazolines A ¹H, ¹³C and ¹⁵N NMR study. *Tetrahedron*, 59(11): 1939-1950.

Solomons, T.W.G., Fryhle, C.B. 1999. Aldehitler ve Ketonlar I. Karbonil Gurubuna Nükeofilik Katılma : Organik Kimya 7.Basımdan Çeviri, Editörler : Okay, G., Yıldırır, Y., Literatür Yayıncılık, s-714-764.

Sun, K.K.W., Haines, A.R. 1970. Studies of cobalt(II1) complexes of thiosemicarbazide. *Can. J. Chem.*, 28(15): 2327-2333.

Şahin, M., Koçak, N., Uçan, İ., Deveci, A.M. 2007. Syntheisis of Iminooxime Derivates and Investigation of Their Complexes. Russ. J. Coord. Chem+, 33(9): 680-684.

Tezcan, H., Tunç, T., Şahin, E., Yağbasan, R. 2004. Crystal Structure of N-Benzlidene-N'-(2-carboxyphenyl)hydrazine. *Anal. Sci.*, 20: x137-x138.

Wan, S., Mori, W., Yamada, S., Murabashi, S.I. 1989. Synthesis and Properties of Copper(II) Halide Complexes with Imino Oximes. *B. Chem. Soc. Jpn.*, 62(2): 435-438.

Xiao, L.F., Peng, J.J., Xia, C.G. 2006. A Novel Method for Beckmann Rearrangement of Oximes with Silica Sulfuric Acid under Mild Condition. *Chinese. Chem. Lett.*, 17(5) 617-620.

Y. Agnus, R. Louis, B. Metz, C. Boudon, J. P. Gisselbrecht, M. Gross. 1991. Trinuclear copper(II) hydroxo and hexanuclear copper(II) oxo complexes with the ligand 3-(benzylimino)butanone 2-oxime. Syntheses and spectral, structural and redox characteristics. *Inorg. Chem.*, 30(16): 3155-3161.

Yıldırım, S., Pekacar, A.İ., Uçan, M. 2003. Synthesis and Complex Formation of Substituted Amino-2-naphthylglyoximes of Unsymmetrical vic-Dioximes. *Synth. React. Inorg. Met.-Org. Nano-Met. Chem.*, 33(5): 873-882.

Zhukovskaya, N.A., Dikusar, E.A., Moiseichuk, K.L., Vyglazov, O.G., 2006. *Russ. J. Appl. Chem+.*, 79(4): 634-636.

Zülfikaroğlu, A., Batı, H., Çalışkan, N., Yüksektepe, Ç., Büyükgüngör, O. 2007. [(2,4-Dinitrophenyl)hydrazono](phenyl)-acetaldehyde oxime monohydrate. *Acta Crystallogr. E,* 65(2): 582-584.

ÖZGEÇMİŞ

Adı Soyadı :	Gökhan Şirikçi
Doğum Yeri ve Tarihi :	Bursa – 02.01.1984
Yabancı Dili :	İngilizce
Eğitim Durumu (Kurum ve Yıl)	

Lise : Bursa Erkek Lisesi YDA - 2003 Lisans : Uludağ Üniversitesi Kimya Bölümü - 2008

Çalıştığı Kurum/Kurumlar ve Yıl: -

İletişim :

g.sirikci@ttmail.com

Yayınları : Bu tez çalışmasının bir bölümü III. Ulusal Anorganik Kimya Kongresi'nde poster bildirisi olarak sunulmuştur.

Şirikçi, G., Mutlu, H., İrez, G. 2011. 2-(P-Tolil)-1,2,3,4-Tetrahidrokinazolin-2-Karbaldehit Oksim Ve Bu Ligantın Bazı Metaller İle Oluşturduğu Komplekslerin Yapılarının Aydınlatılması. III. Ulusal Anorganik Kimya Kongresi, 2011, Çanakkale Üniversitesi, Çanakkale.