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A STUDY ON THE THERMAL-ENTRY LENGTH PROBLEM IN 
DUCTS WITH CONSTANT SURFACE TEMPERATURE 

 
Muhsin KILIÇ* 

 
Abstract: In this paper a systematic procedure is introduced to deal with thermal entry length problem in tubes with 
constant surface temperature. Alternative relations are derived to calculate the rate of heat transfer and Nusselt num-
ber. An approximate relation between dimensionless temperature and dimensionless axial coordinate is proposed. A 
correlation is determined for the calculation of mean Nusselt number. Comparisons are made with available infinite 
series solutions. It is concluded that the proposed equations gives good results especially close the entrance region.  
Key Words: Thermal-entry length, Heat transfer in ducts. 

Sabit Yüzey Sıcaklığına Sahip Borularda Isıl-Giriş Uzunluğu Problemi Üzerine Bir Çalışma 

Özet: Bu çalışmada sabit yüzey sıcaklığına sahip borularda ısıl-giriş uzunluğu probleminin çözümü için sistematik bir 
yöntem sunulmaktadır. Isı transferini ve Nusselt sayısını hesaplamak için alternatif bağıntılar çıkarılmıştır. Boyutsuz 
eksenel koordinat ve boyutsuz sıcaklık arasındaki ilişki için bir bağıntı önerilmiştir. Ortalama Nusselt sayısının belir-
lenmesi için bir korelasyon geliştirilmiştir. Sonuçlar sonsuz seri çözümleri ile karşılaştırılmış ve bu çalışmadaki ba-
ğıntıların oldukça iyi sonuç verdiği gösterilmiştir. 
Anahtar Kelimeler: Isıl-giriş uzunluğu, Borularda ısı transferi. 

Nomenclature 

A area, m2 
cp specific heat at constant pressure 
D diameter, m 
hx local convection coefficient, W/m2K 
h mean convection coefficient, W/m2K 
i enthalyp of fluid, J/kg, m2/s2 
k  thermal conductivity, W/mK 
m& mass flow rate, kg/s 
p perimeter, m 
Pr Prandtl number, ν/α 
r0 radius, m 
Re Reynolds number, umD/ν 
NTU number of transfer units, hA/ m&cp 
Nu mean Nusselt number, hD/k 
Nu∞ value of mean Nusselt number when x+ → ∞ 
T temperature, K 
Te mean fluid temperature at exit, K 
Ti mean fluid temperature at inlet, K 
Tm mean fluid temperature, K 
Ts surface temperature, K 
um mean velocity, m/s 
x axial coordinate, m 
x+ dimensionless axial coordinate, (x/r0) /RePr 
Q& rate of heat transfer, W 

xQ&  the rate of heat transfer from inlet to any x location, W 
 

                                                      
* Uludağ Üniversitesi, Mühendislik-Mimarlık Fakültesi Makine Mühendisliği Bölümü, Bursa 



 

 118

Greek letters 
α thermal diffusivity, k/ρcp, m2/s 
θm nondimensional temperature, (Ts-Tm) / (Ts-Ti)  
ρ fluid density, kg/m3 
ν kinematic viscosity, m2/s 
 
Subscripts 
e exit 
i inlet 
m mean 
max maximum 
s surface 

1. INTRODUCTION 

Pipes or ducts, in which fluids flow through, are one of the essential elements of the heating and 
cooling applications. The fluid in such applications is forced to flow by a fan or pump through a tube that 
is sufficiently long to accomplish the desired heat transfer. Laminar forced convection in circular ducts was 
investigated by Graetz (1883, 1885) and Nusselt (1910). These independent investigations led to a classical 
problem usually referred as the Graetz-Nusselt problem in the literature. Graetz-Nusselt problem considers 
the development of the temperature profile (or thermal-entry length) in the case of a fully developed veloc-
ity profile, but with a uniform fluid temperature at the point where heat transfer begins. A more compre-
hensive literature survey with detailed information on this topic for circular and noncircular ducts has been 
compiled by Shah and London (1978), and an updated review has been reported by Shah and Bhatti 
(1987). A complete literature review is not given here for the sake of brevity, instead, a brief account will 
be given only. For the analytical solution of the Graetz-Nusselt problem, many studies have been presented 
in the literature. The solutions for the fluid temperature in the duct has been presented in the form of an 
infinite series in terms of eigenvalues and eigenfunctions. The main feature of these analytical procedures 
are that only one term needs to be evaluated in the region where the temperature is considered as fully de-
veloped. On the contrary, it is unattractive feature is that the number of terms in the series is required for 
good accuracy increases drastically close to the entrance.  

More studies on this subject have been carried out recently and they are outlined in References 
(Shah and Bhatti (1987), Shah and London (1978), Kays and Crawford (1993)). These investigations em-
ployed cumbersome mathematical procedures which required the evaluation of intricate functions for its 
practical interpretation. While the investigations have contributed greatly to an understanding of the 
mathematical procedures to the classical problems, the basic issue of providing simple solutions still re-
mains unresolved.  

It should be noted that these solutions apply rigorously only when a hydrodynamic starting length 
is provided so that the velocity profile is fully developed before heat transfer starts, a condition rarely en-
countered in technical applications. However, these kind of solutions are excellent approximations for flu-
ids whose Prandtl numbers are high relative to unity. If the Prandtl number is bigger than about unity, it 
must follow that the velocity profile develops more rapidly than the temperature profile. In fact, if the 
Prandtl number is greater than about five, the velocity profile leads the temperature profile sufficiently that 
a solution based on an already fully developed velocity profile will apply quite accurately even though 
there is no hydrodynamic starting length. 

The present study is concerned with an approximate solution methodology for the thermal-entry-
length problem. The procedure deals with global (or mean) values. In view of this approach, heat transfer 
parameters are provided for the thermal-entry-length problems. 

2. BASIC FORMULATION and ANALYSIS 

When a fluid heated or cooled as it flows through a tube, the temperature of a fluid at any cross-
section changes from Ts at the surface of the wall at the cross section to some maximum (or minimum in 
the case of heating) at the tube center. For the internal flow cases, it is convenient to work with an average 
or mean temperature Tm. The mean temperature Tm will continue to change in the flow direction whenever 
convection heat transfer exist between the surface and the fluid. In the absence of any work interactions as 
well as negligible potential and kinetic energy changes, the conservation of the energy equation for the 
steady flow of a fluid in a tube can be expressed as 
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)( ie iimQ −= &&   (W)  (1)  

 
where ii and ie are the fluid enthalpies at the inlet and exit of the tube, respectively, and Q& is the rate of 
heat transfer to or from the fluid. If the fluid is not undergoing a phase change and constant specific heat is 
assumed, equation (1) can be expressed as:  

 
)( iep TTcmQ −= &&   (W)  (2)  

 
where Ti and Te are the mean fluid temperatures at the inlet and exit of the tube, respectively.  

 
 
 
 
 
 
 
 

Figure 1: 
Differential control volume for internal flow in a tube. 

 
Consider the heating of a fluid in a tube of constant cross-section whose inner surface is main-

tained at a constant temperature of Ts. It is known that the mean temperature of the fluid Tm will increase in 
the flow direction as a result of heat transfer. The energy balance on a differential control volume shown in 
Fig. 1 gives  

 
dATThdTcm msxmp )( −=&   (W)  (3)  

 
where hx is the local heat transfer coefficient and Ts and Tm are the surface and the mean temperatures at 
that location. That is, the increase in the energy of the fluid (represented by an increase in its mean tem-
perature by dTm) is equal to the heat transferred to the fluid from the tube surface by convection. Noting 
that the differential surface area is dA = pdx where p is the perimeter of the tube, and that dTm = -d (Ts-Tm), 
since Ts is constant, the relation above can be rearranged as 
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Integrating from x = 0 (tube inlet where Tm = Ti) to x =L (tube exit where Tm = Te) gives 
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where A = pL is the surface area of the tube and h is the mean convection heat transfer coefficient and it is 
defined as: 
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Taking the exponential of both sides of the equation (5) and solving for Te gives the following very 
useful relation for the determination of the mean fluid temperature at the tube exit: 

 
pcmhA

isse eTTTT &/)( −−−=   (7)  

 
This relation can also be used to determine the mean fluid temperature Tm (x) at any x by replacing 

A = pL and Te by px and Tm (x), respectively. 
 

pcmhpx
issm eTTTxT &/)()( −−−=  (8)  

 
Note that the temperature difference between the fluid and the surface decays exponentially in the 

flow direction, and the rate of decay depends on the magnitude of the exponent hA/ m&cp. This dimen-
sionless parameter is called number of transfer units, denoted by NTU, and is a measure of the effective-
ness of the heat transfer systems. 

Assuming that in the limit situation, mean temperature will be equal to the surface temperature. In 
the case of Tm = Ts, the rate of heat transfer reaches its maximum value and can be determined from: 

 

)(max isp TTcmQ −= &&   (W)  (9)  
 
From inlet to any x location, the rate of heat transfer can be obtained from: 
 

))(( impx TxTcmQ −= &&   (W)  (10)  
 
Combining equations (9) and (10), a relation can be expressed as: 
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Now, it is convenient to introduce the following dimensionless variables: 
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where x is the axial distance from the point where heat transfer starts, r0 is the radius of the pipe. Now, 
combining equations (11) and (12) results: 
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This results is quiet interesting since the rate of heat transfer can be easily calculated by the knowl-

edge of dimensionless temperature. Rearranging the equation (8) yields 
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Equation (15) can be rewritten in terms of the NTU (which is also function of x) as: 
 
NTU

m e−=θ  or  NTUm =− θln  (16)  
 
Substituting this into equation (14), it is obtained 
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For any axial location equation (5) can be rearranged as 
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and equation (13) substituted into equation (18), it can be found that 
 

+⋅=− xNum 2lnθ  or  
+⋅−= xNu

m e 2θ  (19)  
 
Comparing equations (16) and (19), it can be shown that 
 

+⋅= xNuNTU 2  (20)  
 
Solving equation (18) for pcm& , it can be obtained as 
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Substituting this into equation (10), it can be found that 
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where ∆Tln is the logarithmic mean temperature difference. ∆Ti =Ts – Ti and ∆Tm =Ts – Tm are the tempera-
ture differences between the surface and the fluid at the inlet and the any x location of the tube, respec-
tively. 

One point left undetermined is the relation between x+ and θm. This can be obtained from the ana-
lytical solution of the differential equation as a series form mentioned in the introduction section. Instead 
of this way, more practical an easy way will be presented here, an approximate function is proposed for the 
relation between x+ and θm.For very large values of x+, the mean value of Nusselt number, Nu∞, can be 
easily determined or can be found in the literature. A relation between x+ and θm may be assumed as fol-
low: 

 



 

 122

( )
∞

+ −
−=

Nu
x mm θθ 1

2
ln

 (24)  

 
and using equations (19) and (20), and rearranging equation (24), it can be shown that: 
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Note that all the equations given above valid for all the constant surface temperature convection 

problems in ducts. It means that these equations can be used in both laminar and turbulent flow cases, and 
they can be also used for hidrodynamically and thermally developing or fully developed flows. 

3. RESULTS and DISCUSSION 

By the use of equations (16) and (17), the change of θm and Q/Qmax with NTU is shown in Table I. 
As it can be seen from the equation (16), θm decreases exponentially from unity to zero with increasing 
NTU. Whereas, Q/Qmax increases exponentially from zero to unity with increasing NTU, and it reaches the 
value of about 0.99 at NTU ≈ 5. Considering equation (20), Table I also presents the change of θm and 
Q/Qmax with Nu2x+ (or NTU). It can be concluded that these results are unique, and the value of Nu2x+ can 
be easily calculated from equations (19) and (20).  

 
Table I. Comparison the present results with the infinite series solution given by  

Kays and Crawford (1993) on the selected x+ values. 

x+ NTU 
(2Num x+) Q/Qmax 

θm 
(Eq. 24) 

Num 
(Eq. 25) 

θm 
(Ser. Sol.) 

Num 
(Ser. Sol.) 

0.00001 0.00175 0.00175 0.99825 87.52 0.99805 97.47 
0.00002 0.00278 0.00278 0.99722 69.46 0.99717 70.87 
0.00005 0.00512 0.00511 0.99489 51.21 0.99488 51.34 
0.0001 0.00814 0.00811 0.99189 40.65 0.99178 41.21 
0.001 0.038 0.03729 0.96271 18.95 0.96202 19.31 
0.002 0.0605 0.05871 0.94129 15.11 0.94061 15.29 
0.004 0.0966 0.09208 0.90792 12.06 0.90763 12.10 
0.006 0.1272 0.11944 0.88056 10.59 0.88083 10.56 
0.008 0.1547 0.14333 0.85667 9.67 0.85755 9.60 
0.01 0.1803 0.16498 0.83502 9.01 0.83649 8.92 
0.02 0.2915 0.25286 0.74714 7.28 0.75122 7.14 
0.04 0.4760 0.37874 0.62126 5.95 0.62818 5.81 
0.06 0.6392 0.47229 0.52771 5.33 0.53505 5.21 
0.08 0.7918 0.54698 0.45302 4.95 0.45921 4.86 
0.1 0.9400 0.60937 0.39063 4.69 0.39476 4.64 
0.2 1.6350 0.80505 0.19495 4.08 0.18924 4.15 
0.4 3.0060 0.95051 0.04949 3.75 0.04385 3.91 
0.6 4.4200 0.98797 0.01203 3.68 0.01017 3.82 
0.8 5.8660 0.99717 0.00283 3.67 0.00236 3.78 
1 7.3240 0.99934 0.00066 3.66 0.00055 3.76 
2 14.640 0.9999996 4.4x10-7 3.66 3.6x10-7 3.71 
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It can be also seen from Table I that for NTU >5, the exit temperature of the fluid becomes almost 
equal to the surface temperature, Tm ≈ Ts. Noting that the fluid temperature can approach the surface tem-
perature but cannot cross it, and NTU of about 5 indicates that the limit is reached for heat transfer, and the 
heat transfer will not increase no matter how much we extend the length of the tube. A small value of 
NTU, on the other hand, indicates more opportunities for heat transfer, and the heat transfer will continue 
increasing as the tube length is increased. And all these conclusions can be seen numerically in Table I. 

Table I. also shows the comparisons between the present results obtained from the equations (24) 
and (25) and the infinite series solution given by Kays and Crawford (1993) on the selected x+ values. The 
constants and eigenvalues for the infinite series are given in Appendix. Fifty terms are considered in the 
series calculations. The value of Nu∞ in the equations (24) and (25) was taken as 3.66 for the present calcu-
lations. When the results in the first row are compared, there are about 10% differences between the pre-
sent and the series solution results. This differences mainly resulted by the series calculations. Table II 
shows that how θm and Nusselt number (especially at small x+ locations) are affected by the number of the 
terms considered in the series. To get correct results, they requires more terms involved in the calculations 
for small x+ values. It can be easily seen that for x+ ≥ 0.00002 the differences between the present results 
and the infinite series solution are less than 4%. And it is interesting that comparing the results presented in 
Table I and Table II, it can be seen that the infinite series solutions are approaching the present results 
when the number of the terms in the series are increased. 

 
Table II. The effect of the number of the terms in the  

infinite series on the θm and Nusselt number. 

x+ θm 
7 Term 

Num 
7 Term 

θm 
30 Term 

Num 
30 Term 

θm 
40 Term 

Num 
40 Term 

θm 
50 Term 

Num 
50 Term 

0.00001 0.98278 868.38 0.99706 147.10 0.99773 113.68 0.99805 97.47 
0.0001 0.98047 98.51 0.99164 41.92 0.99176 41.31 0.99178 41.21 
0.001 0.95951 20.62 0.96202 19.31 0.96202 19.31 0.96202 19.31 
0.002 0.93987 15.48 0.94061 15.29 0.94061 15.29 0.94061 15.29 
0.004 0.90755 12.11 0.90763 12.11 0.90763 12.10 0.90763 12.10 
0.006 0.88082 10.57 0.88083 10.56 0.88083 10.56 0.88083 10.56 
0.008 0.85754 9.60 0.85755 9.60 0.85755 9.60 0.85755 9.60 
0.01 0.83649 8.92 0.83649 8.92 0.83649 8.92 0.83649 8.92 

 

4. CONCLUSIONS 

Thermal-entry-length problem with constant surface temperature in tubes has been studied system-
atically. Different heat transfer parameters have been evaluated for comparative assessment. Alternative 
relations are derived to calculate the rate of heat transfer and Nusselt number. An approximate function is 
proposed for the relation between dimensionless axial coordinate, x+, and dimensionless temperature, θm. 
The proposed function is used to evaluate the mean Nusselt number. The present solution was compared 
with the available results and the series solution in the literature. As a whole the present method sets forth a 
systematic procedure of evaluation of heat transfer parameters and yields quiet good results with less effort 
compare to the other analytic and numerical solution procedures. Although, in the present study only circu-
lar cross sectional tubes are considered, the present method can also be used with the tubes which have 
noncircular cross section. And this may be considered as quiet useful tool for many practical applications. 
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Appendix 

For circular tube with constant surface temperature, the infinite series solution of the dimensionless 
mean temperature θm is given by Kays and Crawford [6] as 

 

∑
∞

=

+−=
0

2
2 )exp(8

n
n

n

n
m x

G
λ

λ
θ  (A.1) 

  
Where λn is the eigenfunction and Gn is the constant. From n = 0 to 4, the values of λn

2 and Gn are 
given in Table A.I. 

 
For n > 2, λn =4n+ (8/3), Gn = 1.01276λn

-1/3 
 

Table A.I. Infinite series solution functions for the circular tube with 
constant surface temperature. 

n λn2 Gn 

0 7.313 0.749 
1 44.61 0.544 
2 113.9 0.463 
3 215.2 0.415 
4 348.6 0.383 

 


