
Uludağ University Journal of The Faculty of Engineering, Vol. 23, No. 2, 2018                           RESEARCH 
 
DOI: 10.17482/uumfd.352833 

323 

 
 

STREAMFLOW AND SEDIMENT LOAD PREDICTION USING 

LINEAR GENETIC PROGRAMMING  
  

 

 

Ali DANANNDEH MEHR  
*
 

Ali Ünal ŞORMAN 
**

 

 
 

 Received: 14.11.2017; revised: 20.06.2018; accepted: 17.07.2018 

 
Abstract: Daily flow and suspended sediment discharge are two major hydrological variables that affect 

rivers’ morphology and ecosystem, particularly during flood events. Artificial neural networks (ANNs) 

have been successfully used to model and predict these variables in recent studies. However, these are 

implicit and cannot be simply used in practice. In this paper, linear genetic programming (LGP) approach 

has been suggested to develop explicit models to predict these variables in two rivers in Iran. The explicit 

relationships (prediction rules) evolved by LGP take the form of equations or program codes, which can 

be checked for its physical consistency. The results showed that the LGP outperforms ANNs to get global 

maximum and minimum discharges providing lowest root mean squared error and higher coefficient of 

efficiency both for training and validation periods.  
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Akım ve Sediment Yük Öngörümü İçin Doğrusal Genetik Programlamanın Uygulanması 

 

Öz: Nehirlerin morfolojisini, ekosistemi ve özellikle taşkın olaylarını etkileyen iki ana değişken askıdaki 

sediment ve günlük akımlardır. Yapay sinir ağları (YSA), bu değişkenleri modellemek ve tahmin etmek 

için yakın zamanda yapılmış çalışmalarda başarıyla kullanılmıştır. Bununla birlikte, bunlar kapalı 

yöntemlerdir ve pratik uygulamalarda kolaylıkla kullanılamazlar. Bu makalede, İran'daki iki nehirde bu 

değişkenleri tahmin etmek üzere açık modeller geliştirmek için doğrusal genetik programlama (DGP) 

yaklaşımı önerilmiştir. DGP tarafından geliştirilen açık ilişkiler (tahmin kuralları), fiziksel tutarlılığı 

açısından kontrol edilebilen denklemler veya program kodları şeklindedir. Sonuçlar, global maksimum ve 

minimum akımları elde etme noktasında, DGP’nin YSA’ya göre daha başarılı olduğunu gerek 

kalibrasyon gerekse doğrulama aşamalarında hataların karelerinin ortalamasının karekökünün en düşük, 

verimlilik katsayısının ise daha yüksek olmasını sağlayarak göstermiştir.  

  
Anahtar Kelimeler: Günlük akım, Sediment, Öngörüm, Doğrusal Genetik Pogramlama, Yapay sinir 

ağları 

 

1. INTRODUCTION 

Accurate prediction of hydrological variables such as daily streamflow and suspended 

sediment discharge plays an important role in floodplain management and river engineering. 

Many of the activities associated with the planning and operation of river systems require 

accurate prediction of flow characteristics. It is generally accepted that river flow variables, 

especially daily flow and sediment discharge have nonlinear behavior. Thus, accurate prediction 

of such variables can be a challenging task, especially during high flow periods. Several linear 
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and nonlinear methods have been applied in the prediction of discharge and sediment transport 

in rivers and successful results have been reported. Most of the earlier studies have focused on 

the prediction of discharge based on stage-discharge, rainfall-discharge or time-series of 

discharge relationships, using either conventional methods or soft computing techniques such as 

artificial neural networks (ANNs), genetic programming (GP), and fuzzy logic (FL) (e.g., Kisi 

and Cigizoglu 2007; Aytek and Kisi 2008; Guven 2009; Danandeh Mehr et al. 2013; Danandeh 

Mehr and Demirel 2016; Danandeh Mehr and Kahya 2017).  

In recent studies, GP has been pronounced as a robust alternative for the modelling of 

environmental process (Guven et al. 2008; Uyumaz et al. 2014; Roushangar and Homayounfar 

2015; Danandeh Mehr and Nourani 2017). For example, Babovic and Keijzer (2002) applied 

GP to rainfall-runoff modeling and Giustolisi (2004) showed that GP can be successfully used 

to determine Chezy resistance coefficient in corrugated channels. It was observed that only few 

studies existed in the relevant literature related to the use of linear GP (LGP) in the field of 

environmental studies. For instance, Aytek and Kisi (2008) used LGP for suspended sediment 

modeling at two stations on the Tongue River in Montana, USA, and  indicated that LGP 

formulation performs quite well compared to sediment rating curves and multi-linear regression 

models. In another study, Danandeh Mehr et al. (2014) showed that LGP can be used to model 

monthly streamflow between two successive stations on Çoruh River, Turkey. Tofiq and Guven 

(2014) explored the capability of LGP for creating quantitative relationship between large-scale 

climate variables (including NCEP re-analysis data and Coupled Global Climate Model 

CGCM3.1 outputs) and local-scale discharge flowing to Darbandikhan Dam, Iraq, as predictand 

variable in the statistical downscaling. The study demonstrated that transforming the discharge 

data through natural logarithm improves the performance of the LGP. In addition, the results 

showed that NCEP predictors have better correlation with the dam inflow data than the CGCM3 

predictors. More recently, a wavelet–LGP integration has been used by Ravansalar et al. (2017) 

to model and forecast monthly streamflow in Beshar River, Iran. The authors showed that 

discrete wavelet decomposition of flow time series can significantly increase forecasting 

accuracy of LGP. 

Our review showed both LGP and ANN are well enough to model variety of hydrological 

phenomena. However, more studies are required to compare pros and cons of these techniques. 

Thus, the main aim of the present research is to investigate/compare the capability of the 

techniques to predict daily streamflow and suspended sediment discharge. To this end, two case 

study applications are demonstrated in the following sections. 

 

2. THEORETICAL CONSIDERATIONS  

2.1. Linear GP (LGP) 

Genetic programming (Koza 1992) is a development for genetic algorithm. The main 

difference between genetic programming and genetic algorithm is the representation of the 

solution. Genetic programming creates computer programs in the lisp or any other computer 

languages as the solution; whereas genetic algorithm creates a string of numbers that represents 

the solution (Olyaie et al. 2017). GP uses four steps to solve problems.  

(i) Generate an initial population of random combinations of the functions and terminals of the 

problem (computer programs), (ii) execute each program in the population and assign it a fitness 

value according to how well the program solves the problem, (iii) create new population of 

computer programs using genetic operators including crossover, mutation, and reproduction, 

and (iv) select the best computer program in the population, the best-so-far solution. To the 

fundamental of GP, the reader is referred to Koza (1992). 

The LGP is an advancement of GP that uses fitness-based tournament selection to 

continuously improve a population of machine-code functions. In other words, the LGP is based 

on efficient GP processes using a linear genome. While the GP holds candidate solutions 
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(programs) in a tree structure (see Figure 1) and the genetic operators (crossover and mutation) 

act on tree nodes, in LGP transformation operators act on a linear (not tree-based) genome.  

 

Figure 1: 

Tree representation of the computer programs in GP representing (C1+X1)  Sin (X2)  

An example of LGP evolved program in C language describing the flow of water (Q) 

through porous media, the well-known Darcy’s Law: Q=K.I.A, is illustrated as follows (Hrnijca 

and Danandeh Mehr 2019): 

L0:  f [0] = 0.0; 

L1:  f [0] += I; 

L2:  f [0] *= K; 

L3:  f [0] *= A; 

where I = pressure gradient,  K = hydraulic conductivity, A = area, and f[0] is an 

accumulator variable representing the final output (i.e. Q) of the evolved program. LGP 

employs such temporary variable to store values while performing calculations (Uyumaz et al. 

2014). The temporary variable equals to zero by default and the output is the value remaining in 

it in the last line of the program. It should be mentioned that in this program, evolving introns 

have been removed previously. In analogy with natural introns, deoxyribonucleic acid (DNA) 

parts of genes with information that are not expressed in proteins, an intron in LGP is defined as 

a program portion without any effect on the calculation of the output(s) for all possible inputs. A 

simple examples of an introns is: 

L0:  f [0] += -1.00f; 

L1:  f [0] += +1.00f; 

 

2.2. Artificial Neural Networks (ANNs) 

ANNs are flexible regression methods in which a modeler uses input and output data sets to 

figure out the system attitude. Feed-forward backpropagation (FFBP) is probably of the most 

popular ANNs in hydro-environmental applications (Danandeh Mehr et al. 2015), which 

considered as general nonlinear approximation. FFBP is a supervised learning technique, 

meaning that the desired outputs are known in advance. The network generates the desired 

outputs from the inputs by minimizing the estimation error using a set of synaptic weights. 

FFBP networks typically contain three parts: a) input layer comprising a number of input nodes, 

b) one or more hidden layers and c) a number of output layer nodes. The number of hidden 

layers and nodes are key design parameters of FFBP. The design issues, training mechanisms 

and application of FFBP in hydrological modelling have been the subject for plenty of studies in 

recent three decades. To avoid redundancy, we refer the readers to Sajikumara and 
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Thandaveswara (1999), Abrahart et al. (2012) and Danandeh Mehr et al. (2015). An FFBP 

network with one hidden layer is illustrated in Figure 2. It shows that a neuron connection only 

exist from a neuron in the input layer to other neurons in the hidden layer or from a neuron in 

the hidden layer to other neurons in the subsequent output layer. The letters M, N and O in the 

figure denote the number of neurons in input, hidden and output layers, respectively. The 

weights are different in the hidden and output layers, and their values are adjusted during the 

back propagation training process. 

 

 
Figure 2: 

A three-layered FFBP network used in the study 

 

3. CASE STUDIES 

The study area includes Lighvan Chai and Absardeh rivers located in the northwest and 

west part of Iran, respectively (Figure 3). The daily flow and suspended sediment discharge data 

of Lighvan Station (37º 55' N, 46º 22' E) on Lighvan Chai River operated by Iran Ministry of 

Energy (MOE) were used for suspended sediment prediction. Daily flow discharge data of 

Mohammad haji Station (33º 44' 13” N, 48º 45' 15” E) on Absardeh River operated by MOE 

was used for streamflow forecasting. The locations of these stations are shown in Figure 3. For 

Lighvan Station, the data from January 1998 to December 2003 (6 water years) were used for 

modelling. The first five years were used for model training and the last year (2003 water year) 

was used for validation. For Absardeh River, the data from January 2004 to December 2007 (4 

water years) were utilized for modelling. The first three years were chosen for calibration and 

the data of last year (2007 water year) was used for validation. The statistical parameters of 

observed flow and sediment load at Lighvan and Mohammad haji stations are given in Table1.  

Before applying the LGP and ANN methods, all the input/target data were normalized to 

rescale in the range [0.1, 0.9]. The river flow and suspended sediment load were normalized by 

the following formula suggested by Danandehmehr et al. (2013): 

















minmax

min8.01.0
XX

XX
X O

n  (1) 

where Xn = normalized data, Xmax = maximum of the data values, Xmin = minimum of the data 

values and Xo= observed data. 
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Figure 3: 

Locations of the hydrometric stations used in the study 

 

Table 1. The daily statistical parameters of observed flow and sediment data 

Station Lighvan Mohammad haji 

Description 
Flow Discharge 

(m
3
/s) 

Sediment load 

(ton/day) 

Flow Discharge 

(m
3
/s) 

Number of data  2187 2187 1460 

Maximum 5.38 124.57 82.2 

Minimum 0.0 0.0 0.2 

Average 0.66 6.32 2.36 

Variance 0.54 105.65 19.33 

Standard Deviation 0.74 10.28 4.4 

 

4. MODELS APPLICATION AND DISCUSSION OF RESULTS 

The LGP commercial software, namely Discipulus (Francone 2001), was used in the 

present study to create both flow and discharge prediction programs. Here, 50 runs were 

performed to produce a wide range of models that use basic arithmetic operations together with 

random constants. Termination of each run was also considered as 100 generations without any 

improvement in fitness function. At each run, 30 best programs were selected and added to a 

pool of solutions. The best and ultimate solution is selected among 1500 programs 

(50*30=1500) available in the pool based on root mean square error (RMSE) statistic. ANN 

models were created using neural network toolbox of MATLAB software so that the optimum 

number of hidden neurons was obtained via trial and error procedure between number of 

neurons and the associated model accuracy as suggested by Danandeh Mehr et al. (2015). To 

avoid overfitting in LGP validation of the best models were done on the unseen validation 

dataset as was defined earlier in Section 3. In ANN runs, Different network structures were 

trained using Levenberg-Marquardt algorithm. At each epoch up to 1000 iterations were done 

and training was stopped when the validation error starts to increase.  
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Several input combinations are tested using LGP and ANN to estimate suspended sediment 

load and daily discharge from the collected data about suspended sediment and daily flow 

discharge time series at each station. The combinations for Lighvan station are: 

(i) )( tt QfS    

(ii) ),,( 11  tttt QSQfS   

(iii) ),,,,( 2211  tttttt QSQSQfS  

(iv) ),,,,,,( 332211  tttttttt QSQSQSQfS   

(v) ),,,,,,,,( 44332211  tttttttttt QSQSQSQSQfS   

(vi) ),,,,,,,,,,( 5544332211  tttttttttttt QSQSQSQSQSQfS   

where Qt and St denote the discharge and suspended sediment load at time t, respectively.  

The dimensionless values of RMSE and correlation coefficient (R) of LGP and ANN 

models in training and validation periods are compared in Table 2 and Table 3 for the Lighvan 

Station. As shown in Table 2, Combination iii provides the best LGP model having the lowest 

RMSE (0.002) at validation period. In this combination, the effective inputs are the current 

discharge as well as the flow discharge and suspended sediment load in two antecedent days. 

The LGP performance for the first input combination (having only current discharge) is the 

worst due to the hysteresis effect between sediment load and discharge. It implies that the 

suspended sediment for a given level of streamflow in the rising stage of a flow hydrograph is 

greater than in the falling stage. It is worth to mention a high value of R in this combination (= 

0.951) indicates a positive correlation between model and observed sediment load. Thus, it 

cannot be a signal for a perfect prediction. This is also the case for the first combination 

modeled by ANN. 

Table 2. Efficiency results of LGP models developed for Lighvan station at training and 

validation period 

Input 

model 
Iteration 

Training Validation 

RMSE R RMSE R 

i 50 0.045 0.878 0.044 0.951 

ii 50 0.015 0.982 0.003 0.914 

iii 50 0.001 0.998 0.002 0.953 

iv 50 0.016 0.979 0.006 0.784 

v 50 0.017 0.974 0.006 0.761 

vi 50 0.018 0.973 0.007 0.758 

Table 3. Efficiency results of ANN models developed for Lighvan station at training 

and validation period 

 

Input 

model 

Nodes in 

hidden layer 

Training Validation 

RMSE R RMSE R 

i 3 0.036 0.864 0.117 0.941 

ii 4 0.018 0.967 0.029 0.912 

iii 5 0.016 0.974 0.023 0.892 

iv 4 0.016 0.975 0.021 0.861 

v 3 0.015 0.977 0.021 0.891 

vi 5 0.018 0.966 0.022 0.871 
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Among the ANN models, the combination (V) exhibited the best performance. The time 

series and scatter plot of the observed versus the LGP (Combination iii) and ANN (Combination 

V) forecasts are illustrated in Figure 4. This figure shows that the LGP model has better 

accuracy than the ANN model. 

Similar to the sediment load prediction combinations, five input combinations are tried to 

estimate daily discharge flow from daily discharge time series at Mohammad haji station. The 

assumed combinations are: 
 

(i) )( 1 tt QfQ  

(ii)  ),( 21  ttt QQfQ  

(iii) ),,( 321  tttt QQQfQ  

(iv) ),,,( 4321  ttttt QQQQfQ  

(v) ),,,,( 54321  tttttt QQQQQfQ  

 

 
Figure4: 

Observed and computed suspended sediment load by LGP and ANN model (Lighvan station) 
 

The dimensionless values of RMSE and R of LGP and ANN models in training and 

validation period for Mohammad haji are given in Table 4 and Table 5, respectively. As seen 

from Table 4, the LGP model (Combination iii) whose inputs are current discharge and three 

previous discharges has the lowest RMSE (0.018) and the highest linear correlation R (0.97). 

This combination provides Nash–Sutcliffe efficiency coefficient around 0.94. Also from Table 

5, the combination iii has the lowest RMSE (0.021) and the corresponding R = 0.95. Among the 

ANN models, combination iii provides Nash–Sutcliffe efficiency coefficient around 0.90. 

Higher accuracy of the LGP model in comparison to the ANN model is shown in Figure 5. 
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Table 4. Efficiency results of LGP models developed for Mohammad haji station in 

training and validation period 

Input 

model 
iteration 

Training Validation 

RMSE R RMSE R 

i 50 0.017 0.92 0.025 0.94 

ii 50 0.018 0.92 0.018 0.97 

iii 50 0.014 0.96 0.018 0.97 

iv 50 0.018 0.92 0.022 0.95 

v 50 0.016 0.93 0.025 0.95 

Table 5. Efficiency results of ANN models Mohammad haji station in training and 

validation period 

Input model 
Nodes in 

hidden layer 

Training Validation 

RMSE  R RMSE  R 

i 2 0.016 0.94 0.036 0.95 

ii 2 0.013 0.72 0.03 0.92 

iii 2 0.016 0.94 0.021 0.95 

iv 2 0.018 0.94 0.012 0.87 

v 2 0.025 0.89 0.05 0.93 

 

 
Figure5: 

Observed and computed river flow by LGP and ANN model (Mohammad haji station) 
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5. CONCLUSIONS 

This study indicates the ability and enhanced performance of linear genetic programming 

(LGP) technique to estimate streamflow and suspended sediment load. The LGP model is 

explicit and simple that can be used by anyone not necessarily being familiar with LGP. The 

model gives a practical way for use of LGP in environmental studies. With respect to the used 

statistical measures, the results obtained by LGP were more accurate than those obtained by the 

ANN that confirm the ability of this approach to be used as useful tool in solving forecasting 

problems in hydrological works. For the case of sediment load prediction, the best ANN model 

provides some negative predictions which are not physically acceptable. Thus, some post-

processing issues should be considered in order to address this draw back of the ANN model. 

However, it was not the case for the LGP predictions. The results from second case study 

clearly showed that LGP was superior to the ANN to capture global minimum and global 

maximum discharge. Our study only uses data from two rivers and further work using longer 

and reliable data from various areas to cover temporal and spatial variability may be required to 

strengthen these conclusions. In the present study, LGP approach was used for the prediction of 

daily flow and suspended sediment–discharge. Other variants of GP, such as multigene GP or 

gene expression programing can be a subject of future studies.  
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