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Abstract: In this study, the spray characteristics of an outwardly-opening injector have been investigated 

numerically. Numerical analyses are carried out by taking temperature and pressure statuses of the 

internal combustion engine in cold temperature operations into consideration. The effects of these 

parameters on the evaporation rate, penetration, spray morphology, angle of the fuel spray and the Sauter 

Mean Diameter were key issues to be addressed. N-heptane fuel was used and the Kelvin-Helmholtz / 

Rayleigh-Taylor breakup model was adopted. The analyses were performed in the comprehensive 

environment of Fluent software. It was observed that the results complied with experimental data taking 

part in literature. Consequences demonstrated that increasing the ambient pressure intensified vortex 

formation, decreased penetration and increased fuel cone angle by forming a more compact fuel bundle. 

In addition, it was ascertained that the effect of the temperature parameter on the evaporation was less 

effective than the pressure parameter. 

Keywords: spray atomization and characteristics, mixture formation, hollow cone spray, KH-RT 

Farklı Ortam Koşullarında Dışa Doğru Açılan Piezoelektrik Benzin Enjektöründe Püskürtme 

Karakteristiklerinin Sayısal Olarak İncelenmesi 

 

Öz: Bu çalışmada, dışa doğru açılan bir enjektörün püskürtme karakteristikleri nümerik olarak 

incelenmiştir. Soğukta ilk çalıştırmada içten yanmalı motorun sıcaklık ve basınç durumları dikkate 

alınarak nümerik analizler yapılmıştır. Bu parametrelerin buharlaşma hızı, penetrasyon, püskürtme 

morfolojisi, yakıt püskürtme açısı ve Sauter Ortalama Çapı üzerindeki etkileri ele alınmıştır. N-heptan 

yakıtı kullanılmış ve Kelvin-Helmholtz / Rayleigh-Taylor ayrılma modeli benimsenmiştir. Analizler, 

Fluent yazılımı ile kapsamlı olarak gerçekleştirilmiştir. Sonuçların literatürde yer alan deneysel verilerle 

uyum içinde olduğu görülmüştür. Artan ortam basıncı vorteks oluşumunu şiddetlendirmiş, yakıt nüfuziyet 

derinliğini azaltmış ve daha kompakt bir yakıt demeti oluşturarak yakıt püskürtme açısını azaltmıştır. 

Ayrıca, sıcaklık parametresinin buharlaşma üzerindeki etkisinin basınç parametresinden daha az etkili 

olduğu tespit edilmiştir. 

Anahtar Kelimeler: püskürtme atomizasyonu ve karakteristiği, karışım oluşumu, içi boş koni püskürtme, 

KH-RT 
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1. INTRODUCTION 

The transformation of the internal combustion engines from larger to smaller volumes has 

been necessitated due to increasing concern of fossil fuel issues stemming from the oil crisis in 

1970. The fact that the oil-based fuels used by the internal combustion engines are not unlimited 

has led authorities to conduct serious researches in order to increase the efficiency in defiance of 

decreasing engine volumes. What is more, by 1990, lower fuel consumption and lower rate of 

emission release have become a legal requirement. As an ideal alternative to the solution of this 

problem, gasoline direct injection (GDI) engines have emerged. The performance of these 

engines increases while reducing fuel consumption. Particularly, spray-guided GDI engines 

reduce emissions and fuel consumption while increasing engine performance. In gasoline direct 

injection engines, the formation of the mixture plays a major role in fuel consumption, 

emissions and engine performance (V. Basshuysen, 2009; Stiesch, 2003; Baumgarten, 2006). 

The air-fuel mixture is poor due to the lack of evaporation in port spray gasoline engines; 

hence, the mixture is required to be enriched a little. The GDI engine operating in stratified 

charging mode produces a cleaner exhaust gas than it is the case with port injection gasoline 

engines (Dahlander et al., 2008). The production of clean exhaust gas in the direct fuel injection 

spark-ignition engines depends directly on the quality of combustion. The quality of the 

combustion depends on many characteristics of the engine such as combustion chamber and 

piston shape, spark plug and injector position, particularly adequate composition of the fuel-air 

mixture with each other (V. Basshuysen, 2009; Stiesch, 2003; Baumgarten, 2006). 

In order to benefit from the superior characteristics of GDI engines, some problems should 

be avoided. The most important of these problems is that a flammable mixture is formed around 

the spark plug at the time of combustion. It is difficult to form a flammable mixture around the 

spark plug in the cylinder. The shape of the fuel spray sent into the cylinder and towards to 

spark plug is particularly important in cold conditions. However, due to some outstanding 

features of the outwardly-opening type injector which is the subject of this study, it can 

overcome this challenge.  

This injector has many outstanding features. These superior properties can be listed as 

shorter penetration depth, smaller Sauter Mean Diameter, reproducibility of spray, multiple 

injections capability and faster response time. Due to these features, the most modern direct-

injection gasoline engines use outwardly-opening type injectors. 

In modern GDI engines, numerical modeling and imaging techniques are extensively used 

to figure out fuel atomization and mixture formation. Thanks to the enhancement of computer 

performances and the development of multidimensional computational fluid dynamics (CFD) 

techniques, the CFD method has become a more efficient and efficient tool to investigate the 

formation of the mixture and the spraying process. Several different CFD models have been 

developed to explain the process of fuel atomization and breakup.  

In real-world applications, comprehensive model calibration works are carried out to 

provide proper estimates of decomposition and disintegration for different nozzles under various 

operating conditions. 

Over the last thirty years, many researchers have done countless studies to fully understand 

the mechanism of breakup of the liquid fuel spray in the combustion chamber.  

With an outwardly-opening piezoelectric injector, they have experimentally studied the 

spray characterization for the cold start conditions of the engine. The spray pressure, ambient 

pressure and temperature in the constant volume combustion chamber (CVCC) and then 

examined the variation in spray velocity and penetration. Also, they performed multiple 

injections in a single cycle and observed changes in spray morphology (Dahlander et al., 2008). 

Wang (2019) performed the injection of an externally opened piezoelectric driven injector 

used in direct gasoline injection engines, numerically and experimentally, with the help of the 

commercially accessible computational fluid dynamics software STAR-CD. In their study, 
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while the fuel temperature was 293 K, they evaluated the robustness of the disintegration 

models at two different ambient pressures, 1 and 10 bar. 

Das and Lim (2017) conducted physical experiments in a constant-volume combustion 

chamber to determine the effect of ambient pressure and temperature on spray characterization 

using n-heptane fuel under actual operating conditions of a diesel engine. With ANSYS 

FORTRE, they conducted high-pressure jet splitting using KH-RT atomization model. They 

used the k-epsilon turbulence model to simulate turbulence occurring during the formation of 

the mixture.  

Skogsberg et al. (2007) investigated the spray formation and atomization properties of a 

piezoelectric energized injector known as having A-nozzle geometry. A high-speed video 

camera was used with Phase Doppler Anemometry (PDA) to identify the basic mechanisms, 

droplet sizes and velocities of spray formation. Then, in order to examine these mechanisms in 

detail, Planar Mie Scattering and Planar Laser Source Fluorescent (LIF) were used. The systems 

used for the research changed various boundary conditions such as ambient pressure and 

temperature in the CVCC used in carrying out the experiments and also experimentally 

examined various injection strategies. They also compared the piezo- energized injector with a 

multi-hole solenoid driven injector. 

Sim et al. (2016) conducted experimental and numerical studies with an externally opened 

piezo-energized injector. They observed string-like structures at the time of spraying and 

revealed the missing aspects of the widely used disintegration models. Because the nozzle 

geometry in the injectors is not well known, they mentioned the importance of estimating the 

first drop diameter value in modeling studies. In contrast to previous studies suggesting that the 

first droplet diameter may be equal to the diameter of the injector or needle lift, they have 

proposed a calculation model for the first droplet diameter value. They also proposed a new 

modeling technique for more accurate simulation of string-like structures in numerical modeling 

of fuel fraction. 

Shi et al. (2008) performed an experimental and numerical study for a GDI engine with 

equipped an outwardly-opening cone type injector. In their research, were carried out in a 

pressurized chamber in spray characterization experiments by using a Mie scattering technique 

and PDA measurement. In the absence of evaporation, the fuel temperature was initially kept at 

-10  C and the temperature of the conditioned room were kept constant at 20  C and they 

carried out the experiments with various fuel types. They have obtained spray contours, droplet 

diameter, and velocity for the various injector and ambient pressures. 

The aim of the study was to examine the spray properties of the hollow cone type injector 

opened to the outside by considering the ambient pressure and temperature at the start of the 

engine in the cold. The effect of ambient pressure and temperature on spray penetration, fuel 

spay angle and Sauter Mean Diameter (SMD) was investigated. In the literature, experimental 

studies have been presented for the cold start situation but no numerical studies have been 

conducted. Therefore, this study was made to cover this the deficit in the literature. In addition, 

in our study, it is distinguished from other studies by numerically investigating how piezo 

triggered injectors used in gasoline engines are affected by ambient conditions under cold 

working conditions. Numerical studies with ANSYS Fluent software were validated using the 

experimental results and then numerical results of the parameters were compared. 

2. MATERIALS AND METHODS 

2.1. Spray Modeling 

Computer-aided engineering software, which is used by researchers and experts, has 

become widespread with the rapid development of computational capabilities of computers and 

mathematical modeling based calculation methods and methods in science and engineering. 

Ansys Fluent software, which is widely used in spray modeling studies, was also used in this 

study.  
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The lack of gasoline and derivative mixtures of the fuel to be used in experimental studies 

increases the reproducibility and reliability of the experiments. In the simulation studies, n-

heptane fuel was chosen because of the fact that it does not exhibit unstable properties in fuel 

blends and all chemical and thermodynamic properties are known. The physical properties of n-

heptane fuel are given in Table 1 (Das, 2017). Air is used as the ambient gas. The ambient gas 

(air) is from the database of the Fluent software. The air consists of carbon dioxide (CO2), 

nitrogen (N2), oxygen (O2) and water vapor (H2O). However, carbon dioxide and water vapor 

were not included in the analysis because they were negligible. The air is also considered as the 

ideal gas. 

 

Table 1.  Physical features of n-heptan fuel (Das, 2017) 

Fuel Properties N-heptan 

Density at 15   (kg/
3m ) 684 

Formula       
Hydrogen (weigth %) 16.1 

Carbon (weigth %) 83.9 

Kinematic Viscosity (cSt) 0.51 

Cetan Number 56.3 

 

The k-ε turbulence model from the Reynolds-Averaged Navier-Stokes (RANS) based 

renormalization group (Realizable) has been used for calculations in numerous research studies 

in the literature. In addition, liquid parcels (droplet groups) are included in the gas phase 

calculation area and Lagrangian discrete parcel method is used for spray modeling (Sim et al., 

2016).  

The hybrid fragmentation model consists of combining at least two different disintegration 

models. The main idea in the development of hybrid fragmentation models comes from more 

accurate modeling of primary and secondary atomization. For this reason, Kelvin-Helmholtz / 

Rayleigh-Taylor (KH-RT) atomization model was used for numerical calculations. This model 

has been developed to model the deterioration of fuel at high injection pressure as in diesel 

engines. This atomization model is also preferred because of high spray pressures in modern 

gasoline engines up to 350 bar. This atomization model deals with atomization in two stages, 

while the KH model for the primary atomization model provides a solution in the region near 

the injector nozzle and with the RT model for the secondary atomization model (Beale and 

Reitz, 1999; Lefevre and McDonell, 2017). A schematic representation of this atomization 

model is shown in Figure 1 (Ansys 18.1 Fluent Tutorials, 2019). For more detailed information, 

see (V. Basshuysen, 2009; Stiesch, 2003; Baumgarten, 2006; Kim et al., 2008; Rotondi and 

Bella, 2006). 

As can be seen from eq. (12), the high pressure causes an increase in the droplet velocity. 

The increased droplet velocity results in an increase in the number of Weber (We) in  

eq. (1). This results in more severe fragmentation.  
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Figure 1: 

Schematic representation of KH-RT breakup model (Ansys 18.1 Fluent Tutorials, 2019) 

 

In the following equations rV  is the relative velocity between the ambient gas and the 

droplet velocity and the droplet diameter is r, also here, f and g indices indicate fuel and ambient 

gas, respectively.   
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where the KH breakup model constant    is taken as equal to 40 as recommended by Lee 

and Park. For more detailed information, see article (Lee and Park, 2002). 

As the farther away from the injector nozzle, the Rayleigh-Taylor (RT) disintegration 

process takes place. In the process of RT fragmentation the droplet diameter    should be 

greater than the wavelength of     the fastest growing wave. The relationship between these 

two variables is expressed by the equation given below. 

 

          (9) 

 

where the     is from 0.1 to 1.0. 
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2.2. Validation                 

In the determination of the coefficients related the KH-RT fragmentation model, i.e. the 

calibration of the injector, the experimental study in the literature has been utilized. The 

boundary conditions, injector spray and ambient pressure of the tests are 200 and 5 bar, 

respectively (Şentürk, 2015). For the time to inject the injector and the time taken for the 

images, the values in the Şentürk (2015) study were accepted as reference. These values are 

1000 and 700 microseconds, respectively (Şentürk, 2015). 

The spray angle determination in boundary conditions according to Bosch norms is 

described as follows. At the maximum needle opening, an arc is drawn which will be tangent to 

5 mm below the needle upper surface. The drawn arc is intersected with the edges of the fuel 

cloud. The arc radius is considered as the fuel beam angle. For more details on how to perform 

other measurements of the spray cloud characteristic, see (Şentürk, 2015). 

 

 
Figure 2: 

Comparison of simulation and experimental result 

 

As a result of validation studies for the current experimental work, the breakdown model 

constants and ambient test conditions are given in Table 2 and Table 3, respectively. 
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Table 2. KH-RT atomization model parameters 

Parameters Value 

KH-RT - 

   0.61 

    0.10 

   0.50 

   40 

   5 

 

 
Figure 3: 

Comparison of experimental data and simulation results according to the depth of penetration 

(Experimental data were obtained from Zheng, 2013.) 

 

In addition, the penetration depth, which is one of the important characteristics of the fuel 

spray, is widely used in calibration studies. Figure 4 shows the change in the penetration depth 

of the spray cluster depending on time. In the calibration studies carried out with KH-RT  

breakup model constants given in Table 2, experimental results and numerical results are 

observed to be in harmony. 

2.3. Outwardly-Opening Injector 

The outward-opening hollow cone type injectors used in GDI engines respond precisely and 

very fast even at high operating pressures. As shown in Figure 3, the needle is opened out and 

the needle lift amount is maximum 35   and the needle diameter is 4 mm (Mathieu et al., 

2010). By controlling the needle lift and energized times, the mass flow of the fuel exiting the 

injector is controlled. In order to calculate the flow rate of the fuel according to the mass fuel 

flow formula, it is necessary to know the fuel discharge rate, density and the cross-sectional area 

of the injector. 
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The theoretical velocity value can be obtained by writing the Bernoulli Equation between 

the combustion chamber (   ) and the injector pressure (    ) to calculate the output velocity. 

The actual velocity (    ) can be obtained by multiplying the theoretical velocity by the injector 

discharge rate. The discharge coefficient (  ) varies between 0.7 and 0.78 according to number 

of (Sim et al., 2016). In this study, the 
DC was taken as 0.75. 

 

 
Figure 4: 

Schematic representation of the outward opening hollow cone 

 

In numerical spray modeling studies, the initial SMD value is as important as the correct 

estimate of the minimum injector output speed. The initial SMD value of the injector was 

determined to be equal to 90% of the maximum needle lift amount (Sim et al., 2016).  

The injector was energized over 1000  s and fuel injection continued during this time. 

Evaporation and fuel bundle distortion is increasing gradually as spraying continues. This 

makes it difficult to carry out the specified measurements. Therefore, when measuring the 

velocity vectors and the spray cone angle, images will be taken after 700  s after the start of 

spraying. 

2.4. Mesh Structure and Boundary Conditions of Simulation 

While this geometry was generated, the combustion chamber volume of the internal 

combustion engines and the spray injected during the fuel injection were determined to be so 

large that they could not come into contact with the combustion chamber walls. In the 

simulation studies, a cylindrical geometry with a diameter of 80 mm and a height of 55 mm was 

determined for the calculation domain. If this domain is designed to be larger than what is 

required, the calculation domain increases so the calculation time increases. Therefore, the most 

appropriate sizing process has been performed (Huang and Lipatnikov, 2011). 

If the spray point is started on the surface in the full top plane of the cylinder, there is a 

convergence problem during the solution. Therefore, the injection point is inside the calculation 

area with a cylindrical volume and is thought to be 5 mm below the top of the cylinder center 

(Huang and Lipatnikov, 2011). Also, the injector body is not included in the calculation volume. 

Therefore, it is not modeled for the spraying point. The type and size of the mesh structure is 
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Cut Cell and 1.5 mm, respectively. The total number of elements is 85692. The visual 

representation of the calculation volume is given in Figure 4. 

 

 
Figure 5: 

Calculation domain and injection point; 

a. Isometric view     b. Left view 

 

For the simulation boundary conditions, the injector pressure was kept constant at 350 bar 

and the pressure and temperature of the environment where the fuel was sprayed was changed. 

Simulation boundary conditions are given in Table 3. 

 

Table 3. Boundary conditions for simulation  

Variables Value 

Ambient Pressure (bar) 5, 10, 15, 20 

Ambient Temperature (K) 243, 253, 263, 273, 283, 293, 303, 313 

 

These parameters are chosen in order to determine the effect of the engine on the fuel-air 

mixture condition, spray characterization and shape during extreme cold climate/weather 

conditions or in environments with these atmospheric conditions.  

3. RESULTS AND DISCUSSION 

3.1. Effect of Ambient Temperature on SMD 

The fuel droplets interact with the ambient as they move through the ambient and the 

aerodynamic forces begin to influence the fuel particles due to the relative speed between the 

droplet and the surrounding and this enforce the fuel particles to deformation. If a sufficiently 

large force affects the fuel particle, the fuel droplets begin to disintegrate. The shattered large 

fuel droplets produce smaller fuel particles. The ratio of the total volume of these fuel particles 

to the total surface area, which is known as the SMD, indicates that atomization of the spray has 

improved.  

As can be seen from Figure 5, while the ambient pressure was kept constant, increasing the 

ambient temperature allowed the SMD to tend to shrink. Increasing the ambient temperature 

allows the fuel particles to get more energy so that the evaporation of the fuel becomes easier 

and the average diameter decreases. Şentürk (2015), reported that the SMD diameter value for 

a. b. 
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piezo energized injector is 10-15   . In addition, Iyer et al. (2004) presented similar results for 

the SMD diameter of 14.3   . 

 
Figure 6: 

Effect of ambient temperature on SMD 

3.2. Effect of Ambient Pressure on SMD 

The effect of ambient pressure on the droplet diameter indicated that the increase in ambient 

pressure caused the aerodynamic forces to increase. Increasing the pressure of the environment 

causes more intensive environmental conditions. Fuel means that droplets will be subject to 

more severe degradation as a result of contact with the site-intensive environment. As it is 

understood from Figure 6, the atomization intensity increases with the increasing pressure at the 

same ambient temperature and thus the SMD value decreases. 

 
Figure 7: 

Effect of ambient pressure on SMD 



Uludağ University Journal of The Faculty of Engineering, Vol. 24, No. 2, 2019 

 
 

195 

3.3. Effect of Ambient Temperature and Pressure on Spray Penetration 

The farthest distance that fuel can travel in the cylinder is of great importance in terms of 

both fuel air mixture and unburned hydrocarbon (UH) and soot emissions. It is not desirable for 

the fuel discharged from the injector to hit the cylinder walls or the piston plate. This affects 

hydrocarbon household emissions. On the other hand, it is desirable for fuel particles leaving 

the injector to reach sufficiently distant distances. For the fuel air mixture to be sufficiently rich 

in the vicinity of the spark plug, the fuel must reach an appropriate amount in this region. If the 

proper fuel-air mixture does not occur in the vicinity of the spark plug occurs event that is 

known as misfiring. In other words, the unburned fuel is removed from the cylinders and the 

unburned hydrocarbon emissions are increased. For these reasons, the spraying efficiency is of 

great importance in the formation of the mixture (V. Basshuysen, 2009; Dahlander et al., 2008; 

Dong et al., 2013; Park et al., 2002). 

At increased ambient pressure, the fuel delivery rate of the injector is reduced due to a 

decrease in the difference between the ambient pressure and the injector pressure. This is given 

in eq. (12). In addition to the decrease in velocity, the increase in the ambient density increases 

the intensity of the aerodynamic forces which strengthen the splitting. With the increase of the 

fraction, the fuel droplets are separated into smaller pieces and rapidly evaporate by drawing 

energy from the environment. Reduces the momentum of the droplet with the decrease in speed 

and the stronger evaporation of the droplets. 

More severe vortices in the fuel bundle that interacts with the environment more violently. 

In this way, the kinetic energy of the fuel bundle turns into the rotation and the spray depth is 

reduced. The results of this situation are given in Figure 7 (Kim et al., 2008; Schmid, 2012; Das, 

2008; Stiehl et al., 2013; Migliaccio et al., 2017).  
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a. 

 

b. 

 

c. 

 

d. 

 

e. 

 

f. 

 

g. 

 

h. 

 

i.  

 

j. 

 

k. 

 

l. 

 

Figure 8: 

Velocity vector based on ambient pressure and temperature 

a. 5 bar 243 K, b. 10 bar 243 K, c. 15 bar 243 K, d. 20 bar 243 K, e. 5 bar 263 K, f. 10 bar 263 

K, g. 15 bar 263 K, h. 20 bar 263 K, i. 5 bar 283 K, j. 10 bar 283 K, k. 15 bar 283 K, l. 20 bar 

283 K 

The fuel spray form can be investigated by dividing into 4 zones as shown in Figure 7. The 

velocity vectors in each region are shown in Figure 7a-1 for different ambient pressures and 

temperatures. (1) is the region forming the hollow cone through the needle. (2) shows the vortex 

region formed in the opposite direction at the fuel spray tip due to the air resistance. (3) is the 

vortex formed by the stream moving in direction 4. (4) is the flow region from the center to the 

needle.  

In Figure 7a-7d, at 243 K constant temperature and different ambient pressures (5 bar, 10 

bar, 15 bar and 20 bar), the velocity values of the fuel spray in the direction of the arrow “1” 

were 66.6 m/s, 59.6 m/s, 55.3 m/s and 53.1 m/s, respectively. The increased ambient pressure 

1 

2 3 

4 
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reduced the fuel spray speed in direction 1. Similarly, in Figure 7i-7l at 283 K constant 

temperature and different ambient pressures (5 bar, 10 bar, 15 bar and 20 bar), the velocity 

values of the fuel spray in the direction of the arrow “1” were 68.9 m/s, 61.1 m/s, 57.0 m/s and 

54.2 m/s, respectively. As the temperature increase decreases the density of the environment, 

there has been a slight increase in the velocity. Speed vectors of other regions (2, 3 and 4) can 

be investigated from graphics. 

Figure 8 shows that the spray penetration decreases with increasing ambient pressure at the 

same temperature. On the other hand, there was an increase in spray penetration with increasing 

temperature at the same ambient pressure. An increase in ambient temperature will result in a 

decrease in the density of gas, provided that the amount of the gas and the ambient pressure 

remain the same. The decrease in density will reduce the resistance forces acting on the fuel 

particles, so it will be difficult to disintegrate the fuel. As the bundle of non-fractured fuel can 

reach more distant points, an increase in spray depth occurs (V. Basshuysen, 2009; Stiesch, 

2003; Baumgarten, 2006; Schmid, 2012). 

 

Figure 9: 

Effect of ambient pressure and temperature on spray penetration 

 

3.4. Effect of Ambient Temperature and Pressure on Evaporation Rate 

The boiling point of liquids such as fuels varies depending on the environment pressure. 

Increasing ambient pressure is expected to increase with boiling point and a decrease in 

evaporation percentage. However, the increase in ambient pressure allows the viscous forces to 

be more effective. Thus, the process of disintegration is easier and the percentage of evaporation 

has increased. In addition, this situation decreases the value of SMD and hence also affects the 

quality of the mixture formation (Sim et al., 2016). 

As can be seen from the graph in Figure 9, the evaporation rate increased with increasing 

temperature. In addition, evaporation became more effective by increasing the ambient pressure. 
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Figure 10: 

Effect of ambient temperature and pressure on evaporation rate 

Another point is that if the vertical axis is followed in the horizontal axis for any constant 

temperature in Figure 9, the pressure increases and the effect on evaporation is higher. For 

example, for a constant temperature of 303 K, at 5 bar, 10 bar, 15 bar and 20 bar ambient 

pressures, the evaporation rates are 0.97, 1.13, 1.49, 2.25 respectively. The difference between 

the given values is increasing and this shows the greater role of evaporation in ambient pressure. 

3.5. Effect of Ambient Temperature and Pressure on Spray Morphology 

The image shown in Figure 10 is arranged according to the spray penetration and with the 

increasing ambient pressure, the spray cloud appears to be compact in a narrower volume. The 

compactness of the fuel cloud allows the formation of a fuel-air mixture in a narrower area 

(Park et al., 2002). 

If Figure 10 is carefully examined, the distance between the region where the spraying 

begins (where the blue color) and the point where the fuel cloud reaches (where the red color 

here) is reduced depending on the increased ambient pressure. In addition, the vortex regions of 

the spray bundle were agglomerated with increasing ambient pressure. With increasing ambient 

pressure, the larger amount of the fuel bundle is encapsulated in this ellipse. For example, in the 

images indicated by (a), (b), (c), (d), the ambient temperature is the same and the pressures are 

5, 10, 15, 20 bars in order. On the other hand, the increase in the ambient temperature was not 

as effective as the pressure on the compacting of the fuel cloud. The ambient pressures in the 

images indicated by (a), (e), (i) are the same and the temperatures are 243 K, 263K, 283 K, 

respectively (Iyer et al., 2004; Park et al., 2002; Schmid et al., 2010).  
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(d) 

 

(e)  

 

(f)  

 

(g)  

 

(h) 
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(j)  

 

(k)  

 

(l) 

 

Figure 11: 

Spray tip penetration and change of droplet diameters depending on ambient pressure and 

temperature 

a. 5 bar 243 K, b. 10 bar 243 K, c. 15 bar 243 K, d. 20 bar 243 K, e. 5 bar 263 K, f. 10 bar 263 

K, g. 15 bar 263 K, h. 20 bar 263 K, i. 5 bar 283 K, j. 10 bar 283 K, k. 15 bar 283 K, l. 20 bar 

283 K  

  

Figure 10 shows that the droplet diameters increase with the increase of ambient pressure in 

the regions shown with black circles. This increased the possibility of the droplets colliding with 

each other because the pressure in the environment increased and the fuel cloud became more 

compact. This explains that droplets in these regions (black circular region) have a larger 

diameter (Schmid, 2012; Oh et al., 2012). On the other hand, while the end portions of the large 

vortices have small droplet diameters, the droplet diameters of the sprayer end regions (the area 

shown in the blue circular) are larger (Schmid, 2012). 
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4. CONCLUSION 

In this study, calibration studies of a piezo-triggered gasoline injector with 350 bar spray 

pressure and A-nozzle geometry were investigated numerically with Ansys Fluent software. 

Using the parameters of this injector, the effect of ambient pressure and temperature on the 

spray shape, Sauter Mean Diameter (SMD), spray depth and evaporation rate were investigated. 

Results of the study: 

 

1) The Sauter Mean Diameter (SMD) is reduced while the ambient temperature and 

pressure increase. 

 

2) With the increase of ambient pressure, it decreased the speed of the fuel leaving the 

injector and thus reduced the amount of penetration. 

 

3) As expected, increasing the ambient temperature, the rate of evaporation increased, but 

the increase in ambient pressure was found to be more effective on the evaporation rate. 

 

4) The fuel cluster has become more compact when the ambient pressure is increased. This 

increased the probability of collision of the droplets in the lower vortex region of the fuel 

bundle. For this reason, an increase in the diameters of the fuel droplets in the region has been 

observed, and also the diameters of the fuel droplets in the vortex end zone have increased. 

 

5) The temperature parameter does not show a significant change on the fuel cluster shape. 

 

 

Nomenclature 

 

   Discharge coefficient 

P Pressure 

V Velocity 

r Radius 

D Diameter  

Re Reynolds number 

T  Taylor number 

We Weber number 

Z Ohnesorge number 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Greek symbols 

 

  hollow cone angle 

  surface tension  

  wavelength 

  density 

  time 

  dynamic viscosity 

 

Subscript 

 

0 initial 

c critical  

ch chamber 

d  droplet 

g  gas 

l liquid 

inj  injection 

noz nozzle 

r relative (gas–liquid) 

KH Kelvin-Helmholtz 

RT Rayleigh-Taylor 
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