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Abstract: This paper makes some contributions to  the   stability problem of  neutral-type Hopfield  neural 

network model having  a constant time delay in states of neurons and  a constant neutral delay in the time 

derivatives of  states of  neurons. With the help of a suitable Lyapunov functional, a novel  stability  criterion 

is derived for neutral-type Hopfield   neural network model. This  stability  criterion only requires to check 

the positive defineteness of the matrices involving  the system elements of this type  of neural networks.  

The presented stability  condition proved to be independently of these  time  and neutral delays. Therefore, 

this condition can be easily justified by applying the properties of some certain matrices. A numerical 

example for this type of neutral systems is studied to show the applicability of the presented stability result. 

 

 

Keywords : Neutral-Type Systems, Hopfield Neural Networks, Lyapunov Functionals, Stability Analysis. 
 
Sabit Gecikmeler İçeren Nötral-Tip Hopfield Yapay Sinir Ağlarının Kararlılığı için Yeni Bir Kriter  

 
Oz: Bu makale, hem nöron durumlarının hem de nöron durumlarının türevlerinde sabit gecikmeler içeren 

nötral-tip Hopfield yapay sinir ağı modelinin kararlılık problemine yeni katkılar yapmaktadır. Uygun bir 

Lyapunov fonksiyoneli yardımıyla, nötral-tip Hopfield yapay sinir ağlarının kararlılığını sağlayan yeni bir 

kriter sunulmaktadır. Bu kararlılık kriterinin en önemli avantajı sadece sistem elemanlarından oluşan özel 

bir matrisin pozitif tanımlı olmasını test edilmesine dayandırılmış olmasıdır. Ayrıca, elde edilen kararlılık 

koşulu zaman ve nötral gecikmelerden bağımsızdır. Bu nedenle, elde edilen kararlılık kriterinin geçerliliği 

bazı özel matris özellikleri yardımıyla kolayca test edilebilir. Diğer yandan, önerilen kararlılık koşulunun 

uygulanabilirliğini göstermek amacıyla sayısal bir örnek verilmiştir. 

 

Anahtar Kelimeler:  Nötral-Tip Sistemler, Hopfield Sinir Ağları, Lyapunov Fonksiyonelleri, Kararlılık 

Analizi 
 

1. INTRODUCTION 

Hopfield neural network model studied in (Hopfield, 1982) has been effectively  used for  

solving some typical practical  problems associated with  optimization problems, signal 

processing, associative memories design and control problems. When designing Hopfield neural 

networks in order to solve the related  engineering problems, our main issue  will be   ensuring  

the intended stability criteria for these  neural networks. If these neural networks are intended to 

be electronically implemented using the VLSI technology, then the main focus will be on the 

effect of finite switching speeds of operational amplifiers and neuronal communications within 

network as these two parameters may cause some unavoidable time delays in states of neurons. 
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A well known fact is that these time delays might change the desired dynamics to some undesired 

complex dynamics. Therefore, in determining the exact dynamical behavior of a neural network, 

it is crucial to present time delays to the mathematical representation of this neural system. In the 

past years, various sets of stability criteria of delayed-type neural network models have been 

reported (Zhu ve Cao, 2010), (Song ve diğ., 2018), (Manivannan ve diğ., 2018), (Wang ve diğ., 

2018), (Zhang ve diğ., 2018), (Manivannan ve diğ., 2017),  (Ge ve diğ., 2014),  (Arik, 2014a).  

However,  neural systems involving delays only in states of neurons may not exactly exhibit the 

required stability properties of neural systems. This case leads us to also include the delays in 

time derivatives of states of neurons. The class of neural networks involving time delays in states 

of neurons and the neutral delays in time derivatives of states of neurons is known as neutral-type 

neural networks. Such neural systems are capable of being employed in different practical 

applications regarding population ecology, distributed networks having lossless transmission 

lines, propagation and diffusion models (Niculescu, 2001), (Kolmanovskii ve Nosov, 1986),   

(Kuang, 1993), (Shi ve diğ., 2013). In recent years, some important results regarding the stability 

conditions of these neural networks have been given (Muralisankar ve diğ., 2015), (Shu ve diğ., 

2019), (Tu ve diğ., 2016), (Jian ve Duan, 2020),  (Chen ve diğ., 2010), (Lakshmanan ve diğ., 

2013), (Dharani ve diğ., 2015), (Shi ve diğ., 2015), (Zhang ve diğ., 2018), (Liao ve diğ., 2015), 

(Arik, 2014b), (Lien ve diğ., 2008), (Yang ve diğ., 2015), (Samli ve Arik, 2009), (Orman, 2012), 

(Cheng ve diğ., 2008), (Akca ve diğ., 2015), (Ozcan, 2018),  (Ozcan, 2019). This work will 

employ an enhanced Lyapunov functional and study stability issues of neutral-type Hopfield 

neural systems possessing both constant time and constant neutral delays. 

Consider a Hopfield neural network model whose dynamics is determined by a set of 

nonlinear equations of delayed type: 

 

 �̇�𝑖(t) + ∑ 𝑒𝑖𝑗

𝑛

𝑗=1

�̇�𝑗(t − ζ) = −𝑐𝑖𝑥𝑖(𝑡) + ∑ 𝑎𝑖𝑗𝑓𝑗

𝑛

𝑗=1

(𝑥𝑗(𝑡)) + ∑ 𝑏𝑖𝑗𝑓𝑗

𝑛

𝑗=1

(𝑥𝑗(𝑡 − 𝜏)) + 𝑢𝑖 , 𝑖 = 1,2, … , 𝑛      (1) 

where  the state of the ith  neuron is represented by 𝑥𝑖(𝑡), the  𝑐𝑖 are positive constants determining 

the convergence rates of the states, the nondelayed interconnections  parameters are denoted by 

𝑎𝑖𝑗, the delayed interconnections  parameters are denoted by 𝑏𝑖𝑗. 𝜏 is a constant time delay 

parameter and 𝜁 is a constant neutral delay parameter. The constant values 𝑒𝑖𝑗 are the coefficients 

of time derivatives of states with neutral delay. The functions  𝑓𝑗(𝑥𝑗(𝑡)) represent the neuronal 

activations and 𝑢𝑖 represents an external input to the ith neuron. In  (1), if 𝜉 = 𝑚𝑎𝑥{𝜏, 𝜁}, then 

neutral-type neural system defined by equation (1) will keep the initial conditions of 𝑥𝑖(𝑡) =
𝜑𝑖(𝑡) and �̇�𝑖(t) = 𝜗𝑖(𝑡)  ∈ 𝐶(⌊−𝜉, 0⌋, 𝑅). We note here that 𝐶(⌊−𝜉, 0⌋, 𝑅) represents all the 

continuous real valued functions which are from ⌊−𝜉, 0⌋ to 𝑅. 

A critical issue regarding the stability of system (1) is the properties of nonlinear functions  

𝑓𝑖(𝑥𝑖(𝑡)) as stability conditions are mainly determined depending on these functions. Therefore,  

we first express the class of the functions to be used in system (1). In this paper,  it will be 

supposed that there exist positive numbers ℓ𝑖 that establish the following relations between the 

states and outputs of the neurons 

 

         |𝑓𝑖(𝑥𝑖(𝑡)) − 𝑓𝑖(𝑦𝑖(𝑡))| ≤ ℓ𝑖|𝑥𝑖(𝑡) − 𝑦𝑖(𝑡)|, ∀𝑥𝑖(𝑡), ∀𝑦𝑖(𝑡)  ∈ 𝑅, 𝑥𝑖(𝑡) ≠ 𝑦𝑖(𝑡), ∀𝑖,           (2) 

     Neutral type system  (1)  has the mathematical nature of being represented in the vector and 

matrix form given below: 

                             �̇� (𝑡) + 𝐸�̇� (𝑡 − 𝜁) = −𝐶𝑥(𝑡) + 𝐴𝑓(𝑥(𝑡)) + 𝐵𝑓(𝑥(𝑡 − 𝜏)) + 𝑢                          (3) 

where   𝐶 = 𝑑𝑖𝑎𝑔(𝑐𝑖 > 0),  𝐴 = (𝑎𝑖𝑗)𝑛𝑥𝑛, 𝐵 = (𝑏𝑖𝑗)𝑛𝑥𝑛, 𝐸 = (𝑒𝑖𝑗)𝑛𝑥𝑛 and  



 Uludağ University Journal of The Faculty of Engineering, Vol. 25, No. 2, 2020                            

641 

𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡))𝑇, 

 �̇�(𝑡) = (�̇�1(𝑡), �̇�2(𝑡), … , �̇�𝑛(𝑡))𝑇,  

𝑓(𝑥(𝑡)) = (𝑓1(𝑥1(𝑡)), 𝑓2(𝑥2(𝑡)), … , 𝑓𝑛(𝑥𝑛(𝑡)))𝑇, 

 𝑓(𝑥(𝑡 − 𝜏)) = (𝑓1(𝑥1(𝑡 − 𝜏)), 𝑓2(𝑥2(𝑡 − 𝜏)), … , 𝑓𝑛(𝑥𝑛(𝑡 − 𝜏)))𝑇,  

�̇�(𝑡 − 𝜁) = (�̇�1(𝑡 − 𝜁), �̇�2(𝑡 − 𝜁), … , �̇�𝑛(𝑡 − 𝜁))𝑇,  

𝑢 = (𝑢1, 𝑢2, … , 𝑢𝑛)𝑇. 

 

2. STABILITY ANALYSIS 

        Establishing stability criteria for  equilibria  of delayed  neutral-type Hopfield neural system 

(1) is the essential purpose of this section. In order to derive the main result of the current work, 

the first step will be to transform the equilibrium points 𝑥∗ = (𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗ )𝑇 of Hopfield neural 

system (1) to the origin. This will be done by exploiting the formula 𝑧𝑖(𝑡) = 𝑥𝑖(𝑡) − 𝑥𝑖
∗, which 

transforms neutral-type neural network (1) into the following equivalent neutral-type neural 

network: 

      �̇�𝑖(t) + ∑ 𝑒𝑖𝑗

𝑛

𝑗=1

�̇�𝑗(t − ζ) = −𝑐𝑖𝑧𝑖(𝑡) + ∑ 𝑎𝑖𝑗𝑔𝑗

𝑛

𝑗=1

(𝑧𝑗(𝑡)) + ∑ 𝑏𝑖𝑗𝑔𝑗

𝑛

𝑗=1

(𝑧𝑗(𝑡 − 𝜏)) , 𝑖 = 1,2, … , 𝑛         (4) 

where 𝑔𝑖(𝑧𝑖(𝑡)) = 𝑓𝑖(𝑧𝑖(𝑡) + 𝑥𝑖
∗) − 𝑓𝑖(𝑥𝑖

∗), ∀𝑖. According to the conditions possessed by the 

activation functions of system (1) by (2), the new activation functions  𝑔𝑖(𝑧𝑖(𝑡))  in  (4) satisfy 

the following conditions: 

                                                     |𝑔𝑖(𝑧𝑖(𝑡))| ≤ ℓ𝑖|𝑧𝑖(𝑡)|, ∀𝑧𝑖(𝑡)  ∈ 𝑅, ∀𝑖                                                 (5) 

Neutral type neural system (4)  may be rewritten in the matrix and vector form as stated below: 

 

                             �̇�(𝑡) + 𝐸�̇�(𝑡 − 𝜁) = −𝐶𝑧(𝑡) + 𝐴𝑔(𝑧(𝑡) + 𝐵𝑔(𝑧(𝑡 − 𝜏))                                         (6) 

where  

 

𝑧(𝑡) = (𝑧1(𝑡), 𝑧2(𝑡), … , 𝑧𝑛(𝑡))𝑇, 

 �̇�(𝑡) = (�̇�1(𝑡), �̇�2(𝑡), … , �̇�𝑛(𝑡))𝑇,  

𝑔(𝑧(𝑡)) = (𝑔1(𝑥1(𝑡)), 𝑔2(𝑧2(𝑡)), … , 𝑔𝑛(𝑧𝑛(𝑡)))𝑇, 

 𝑔(𝑧(𝑡 − 𝜏)) = (𝑔1(𝑧1(𝑡 − 𝜏)), 𝑔2(𝑧2(𝑡 − 𝜏)), … , 𝑔𝑛(𝑧𝑛(𝑡 − 𝜏)))𝑇,  

�̇�(𝑡 − 𝜁) = (�̇�1(𝑡 − 𝜁), �̇�2(𝑡 − 𝜁), … , �̇�𝑛(𝑡 − 𝜁))𝑇. 

It can now be proceeded with the main stability criterion of this work: 
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       Theorem 1: For neutral-type Hopfield neural system (6), assume that the activation functions  

𝑔𝑖(𝑧𝑖(𝑡)) satisfy (5).  Let   ℒ = 𝑑𝑖𝑎𝑔(ℓ1, ℓ2, … , ℓ𝑛 ) and   Υ be a positive diagonal matrix defined 

as  0 < Υ < C. In this case,  the origin of  system  (6) is globally asymptotically stable, if there 

exist real constants  𝛼 > 0, 𝛽 > 0, 𝛾 > 0 and  𝛿 > 0 such that 

Θ = ℒ−2Υ − (
1

𝛽
+ 𝛿 + 1) 𝐴𝑇𝐶−1A − (

1

𝛾
+

1

𝛿
+ 1)𝐵𝑇𝐶−1B ≥ 0 

Φ = 𝐶 − Υ −
1

𝛼
𝐶 − (α + β + γ)𝐸𝑇𝐶E > 0                                     

Proof: Let us employ the state transformation 𝑦(𝑡) = z(t) + Ez(t − ζ). In this case, it follows 

that �̇�(𝑡) = �̇�(t) + E�̇�(t − ζ) implying that 

 

                                            �̇� (𝑡) = −𝐶𝑧(𝑡) + 𝐴𝑔(𝑧(𝑡)) + 𝐵𝑔(𝑧(𝑡 − 𝜏))                                         (7) 

 

We now make use of the  positive valued Lyapunov functional: 

 

𝑉(𝑡) = 𝑦𝑇(𝑡)𝑦(𝑡) + ∫ �̇�𝑇
𝑡

𝑡−𝜁

(𝑠)𝐶−1�̇�(𝑠)𝑑𝑠 + (α + β + γ) ∫ 𝑧𝑇
𝑡

𝑡−𝜁

(𝑠)𝐸𝑇𝐶Ez(s)ds 

                          +(
1

𝛾
+

1

𝛿
+ 1) ∫ 𝑔𝑇(𝑧(𝑠))

𝑡

𝑡−𝜏

𝐵𝑇𝐶−1Bg(z(s))ds                                                        (8) 

The time derivative of 𝑉(𝑡)  is calculated as 

�̇�(𝑡) = 2𝑦𝑇(𝑡)�̇�(𝑡) + �̇�𝑇(𝑡)𝐶−1�̇�(𝑡) − �̇�𝑇(𝑡 − 𝜁)𝐶−1�̇�(𝑡 − 𝜁)                                                     

   +(α + β + γ)𝑧𝑇(𝑡)𝐸𝑇𝐶Ez(t) − (α + β + γ)𝑧𝑇(𝑡 − 𝜁)𝐸𝑇𝐶Ez(t − ζ)                    

    +(
1

𝛾
+

1

𝛿
+ 1)𝑔𝑇(𝑧(𝑡)) 𝐵𝑇𝐶−1Bg(z(t))                                                                         

  −(
1

𝛾
+

1

𝛿
+ 1)𝑔𝑇(𝑧(𝑡 − 𝜏)) 𝐵𝑇𝐶−1Bg(z(t − τ))                                                       

  = (2𝐶
1
2𝑦(𝑡) + 𝐶−

1
2�̇�(𝑡))𝑇𝐶−

1
2�̇�(𝑡)    − �̇�𝑇(𝑡 − 𝜁)𝐶−1�̇�(𝑡 − 𝜁)                                    

    +(α + β + γ)𝑧𝑇(𝑡)𝐸𝑇𝐶Ez(t) − (α + β + γ)𝑧𝑇(𝑡 − 𝜁)𝐸𝑇𝐶Ez(t − ζ)                   

  +(
1

𝛾
+

1

𝛿
+ 1)𝑔𝑇(𝑧(𝑡)) 𝐵𝑇𝐶−1Bg(z(t))                                                                     

  −(
1

𝛾
+

1

𝛿
+ 1)𝑔𝑇(𝑧(𝑡 − 𝜏)) 𝐵𝑇𝐶−1Bg(z(t − τ))                                                      

≤ (2𝐶
1
2𝑦(𝑡) + 𝐶−

1
2�̇�(𝑡))𝑇𝐶−

1
2�̇�(𝑡)                                                                                    

     +(α + β + γ)𝑧𝑇(𝑡)𝐸𝑇𝐶Ez(t) − (α + β + γ)𝑧𝑇(𝑡 − 𝜁)𝐸𝑇𝐶Ez(t − ζ)                   
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+(
1

𝛾
+

1

𝛿
+ 1)𝑔𝑇(𝑧(𝑡)) 𝐵𝑇𝐶−1Bg(𝑧(𝑡))                                                                 

−(
1

𝛾
+

1

𝛿
+ 1)𝑔𝑇(𝑧(𝑡 − 𝜏)) 𝐵𝑇𝐶−1Bg(𝑧(𝑡 − 𝜏))                                                

= (2𝐶
1
2𝑧(𝑡) + 2𝐶

1
2𝐸𝑧(𝑡 − 𝜁) − 𝐶

1
2𝑧(𝑡) + 𝐶−

1
2𝐴g(𝑧(𝑡)) + 𝐶−

1
2𝐵g(𝑧(𝑡 − 𝜏)))𝑇 

× (−𝐶
1
2𝑧(𝑡) + 𝐶−

1
2𝐴g(𝑧(𝑡)) + 𝐶−

1
2𝐵g(𝑧(𝑡 − 𝜏)))                                         

+(α + β + γ)𝑧𝑇(𝑡)𝐸𝑇𝐶Ez(t) − (α + β + γ)𝑧𝑇(𝑡 − 𝜁)𝐸𝑇𝐶Ez(t − ζ) 

+(
1

𝛾
+

1

𝛿
+ 1)𝑔𝑇(𝑧(𝑡)) 𝐵𝑇𝐶−1Bg(𝑧(𝑡))                                                    

−(
1

𝛾
+

1

𝛿
+ 1)𝑔𝑇(𝑧(𝑡 − 𝜏)) 𝐵𝑇𝐶−1Bg(𝑧(𝑡 − 𝜏))                                   

              =  (𝐶
1
2𝑧(𝑡) + 2𝐶

1
2𝐸𝑧(𝑡 − 𝜁) + 𝐶−

1
2𝐴g(𝑧(𝑡)) + 𝐶−

1
2𝐵g(𝑧(𝑡 − 𝜏)))𝑇                              

× (−𝐶
1
2𝑧(𝑡) + 𝐶−

1
2𝐴g(𝑧(𝑡)) + 𝐶−

1
2𝐵g(𝑧(𝑡 − 𝜏)))                                

 +(α + β + γ)𝑧𝑇(𝑡)𝐸𝑇𝐶Ez(t) − (α + β + γ)𝑧𝑇(𝑡 − 𝜁)𝐸𝑇𝐶Ez(t − ζ) 

+(
1

𝛾
+

1

𝛿
+ 1)𝑔𝑇(𝑧(𝑡)) 𝐵𝑇𝐶−1Bg(𝑧(𝑡))                                                   

−(
1

𝛾
+

1

𝛿
+ 1)𝑔𝑇(𝑧(𝑡 − 𝜏)) 𝐵𝑇𝐶−1Bg(𝑧(𝑡 − 𝜏))                                   

=     −𝑧𝑇(𝑡)𝐶 z(t) − 2𝑧𝑇(𝑡 − 𝜁)𝐸𝑇𝐶𝑧(𝑡) + 2𝑧𝑇(𝑡 − 𝜁)𝐸𝑇𝐴g(𝑧(𝑡))             

+2𝑧𝑇(𝑡 − 𝜁)𝐸𝑇𝐵g(𝑧(𝑡 − 𝜏)) + 𝑔𝑇(𝑧(𝑡)) 𝐴𝑇𝐶−1Ag(𝑧(𝑡))               

        +𝑔𝑇(𝑧(𝑡 − 𝜏)) 𝐵𝑇𝐶−1Bg(𝑧(𝑡 − 𝜏)) + 2𝑔𝑇(𝑧(𝑡)) 𝐴𝑇𝐶−1Bg(𝑧(𝑡 − 𝜏)) 

    +(α + β + γ)𝑧𝑇(𝑡)𝐸𝑇𝐶Ez(t) − (α + β + γ)𝑧𝑇(𝑡 − 𝜁)𝐸𝑇𝐶Ez(t − ζ) 

+(
1

𝛾
+

1

𝛿
+ 1)𝑔𝑇(𝑧(𝑡)) 𝐵𝑇𝐶−1Bg(𝑧(𝑡))                                                

                           −(
1

𝛾
+

1

𝛿
+ 1)𝑔𝑇(𝑧(𝑡 − 𝜏)) 𝐵𝑇𝐶−1Bg(𝑧(𝑡 − 𝜏))                                                     (9) 

The following inequalities can be noted : 

                 −2𝑧𝑇(𝑡 − 𝜁)𝐸𝑇𝐶𝑧(𝑡) ≤  𝛼𝑧𝑇(𝑡 − 𝜁)𝐸𝑇𝐶𝐸𝑧(𝑡 − 𝜁) +
1

𝛼
𝑧𝑇(𝑡)𝐶 z(t)                        (10) 
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       2𝑧𝑇(𝑡 − 𝜁)𝐸𝑇𝐴𝑔(𝑧(𝑡)) ≤  𝛽𝑧𝑇(𝑡 − 𝜁)𝐸𝑇𝐶𝐸𝑧(𝑡 − 𝜁) +
1

𝛽
𝑔𝑇(𝑧(𝑡)) 𝐴𝑇𝐶−1Ag(𝑧(𝑡))     (11) 

2𝑧𝑇(𝑡 − 𝜁)𝐸𝑇𝐵𝑔(𝑧(𝑡 − 𝜏)) ≤  𝛾𝑧𝑇(𝑡 − 𝜁)𝐸𝑇𝐶𝐸𝑧(𝑡 − 𝜁) 

                                                                                            +
1

𝛾
𝑔𝑇(𝑧(𝑡 − 𝜏)) 𝐵𝑇𝐶−1Bg(𝑧(𝑡 − 𝜏))    (12) 

2𝑔𝑇(𝑧(𝑡)) 𝐴𝑇𝐶−1Bg(𝑧(𝑡 − 𝜏)) ≤  𝛿𝑔𝑇(𝑧(𝑡))𝐴𝑇𝐶−1Ag(𝑧(𝑡))   

                                                                                             +
1

𝛿
𝑔𝑇(𝑧(𝑡 − 𝜏)) 𝐵𝑇𝐶−1Bg(𝑧(𝑡 − 𝜏))   (13) 

If we use (10)-(13) in (9), then we can obtain 

�̇�(𝑡) ≤ −𝑧𝑇(𝑡)𝐶 z(t) + 𝛼𝑧𝑇(𝑡 − 𝜁)𝐸𝑇𝐶𝐸𝑧(𝑡 − 𝜁) +
1

𝛼
𝑧𝑇(𝑡)𝐶 z(t)                                      

+𝛽𝑧𝑇(𝑡 − 𝜁)𝐸𝑇𝐶𝐸𝑧(𝑡 − 𝜁) +
1

𝛽
𝑔𝑇(𝑧(𝑡)) 𝐴𝑇𝐶−1Ag(𝑧(𝑡))                         

+ 𝛾𝑧𝑇(𝑡 − 𝜁)𝐸𝑇𝐶𝐸𝑧(𝑡 − 𝜁) +
1

𝛾
𝑔𝑇(𝑧(𝑡 − 𝜏)) 𝐵𝑇𝐶−1Bg(𝑧(𝑡 − 𝜏))         

+𝛿𝑔𝑇(𝑧(𝑡))𝐴𝑇𝐶−1Ag(𝑧(𝑡)) +  
1

𝛿
𝑔𝑇(𝑧(𝑡 − 𝜏)) 𝐵𝑇𝐶−1Bg(𝑧(𝑡 − 𝜏))       

+(α + β + γ)𝑧𝑇(𝑡)𝐸𝑇𝐶Ez(t) − (α + β + γ)𝑧𝑇(𝑡 − 𝜁)𝐸𝑇𝐶Ez(t − ζ)       

+(
1

𝛾
+

1

𝛿
+ 1)𝑔𝑇(𝑧(𝑡)) 𝐵𝑇𝐶−1Bg(𝑧(𝑡))                                                          

− (
1

𝛾
+

1

𝛿
+ 1)𝑔𝑇(𝑧(𝑡 − 𝜏)) 𝐵𝑇𝐶−1Bg(𝑧(𝑡 − 𝜏))                                         

= −𝑧𝑇(𝑡)𝐶 z(t) +
1

𝛼
𝑧𝑇(𝑡)𝐶 z(t) +

1

𝛽
𝑔𝑇(𝑧(𝑡)) 𝐴𝑇𝐶−1Ag(𝑧(𝑡))                          

+𝑔𝑇(𝑧(𝑡)) 𝐴𝑇𝐶−1Ag(𝑧(𝑡)) + 𝛿𝑔𝑇(𝑧(𝑡))𝐴𝑇𝐶−1Ag(𝑧(𝑡))                           

                     +(α + β + γ)𝑧𝑇(𝑡)𝐸𝑇𝐶Ez(t) + (
1

𝛾
+

1

𝛿
+ 1)𝑔𝑇(𝑧(𝑡)) 𝐵𝑇𝐶−1Bg(𝑧(𝑡))               (14)  

(14) yields : 

�̇�(𝑡) ≤ − 𝑧𝑇(𝑡)(𝐶 − Υ)z(t) − 𝑧𝑇(𝑡)Υz(t) +
1

𝛼
𝑧𝑇(𝑡)𝐶 z(t)                                                

    +(
1

𝛽
+ 𝛿 + 1)𝑔𝑇(𝑧(𝑡))𝐴𝑇𝐶−1Ag(𝑧(𝑡)) + (α + β + γ)𝑧𝑇(𝑡)𝐸𝑇𝐶Ez(t) 
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    +(
1

𝛾
+

1

𝛿
+ 1)𝑔𝑇(𝑧(𝑡)) 𝐵𝑇𝐶−1Bg(𝑧(𝑡))                                                       

≤ − 𝑧𝑇(𝑡)(𝐶 − Υ)z(t) − 𝑔𝑇(𝑧(𝑡)) ℒ−2Υg(𝑧(𝑡)) +
1

𝛼
𝑧𝑇(𝑡)𝐶 z(t)                

       +(
1

𝛽
+ 𝛿 + 1)𝑔𝑇(𝑧(𝑡))𝐴𝑇𝐶−1Ag(𝑧(𝑡)) + (α + β + γ)𝑧𝑇(𝑡)𝐸𝑇𝐶Ez(t) 

 +(
1

𝛾
+

1

𝛿
+ 1)𝑔𝑇(𝑧(𝑡)) 𝐵𝑇𝐶−1Bg(𝑧(𝑡))                                                  

=  − 𝑧𝑇(𝑡)(𝐶 − Υ −
1

𝛼
𝐶 − (α + β + γ)𝐸𝑇𝐶E)z(t)                                       

                 −𝑔𝑇(𝑧(𝑡))( ℒ−2Υ − (
1

𝛽
+ 𝛿 + 1)𝐴𝑇𝐶−1A − (

1

𝛾
+

1

𝛿
+ 1)𝐵𝑇𝐶−1B)g(𝑧(𝑡)) 

                     = − 𝑧𝑇(𝑡)ϕz(t) − 𝑔𝑇(𝑧(𝑡)Θg(𝑧(𝑡))                                                                              (15)  

   In (15), the fact that Θ ≥ 0, ∀ z(t) ≠ 0 will  directly yield 

�̇�(𝑡) ≤ −𝑧𝑇(𝑡)ϕz(t)                            (16)                        

In (16), the condition that ϕ > 0, ∀ z(t) ≠ 0 will  directly yield that  �̇�(𝑡) < 0. It will now be 

assumed  that z(t) = 0.  Thus, (9) yields 

 

�̇�(𝑡) =   2𝑧𝑇(𝑡 − 𝜁)𝐸𝑇𝐵g(𝑧(𝑡 − 𝜏) + 𝑔𝑇(𝑧(𝑡 − 𝜏)) 𝐵𝑇𝐶−1Bg(𝑧(𝑡 − 𝜏))                                       

                −(α + β + γ)𝑧𝑇(𝑡 − 𝜁)𝐸𝑇𝐶Ez(t − ζ) − (
1

𝛾
+

1

𝛿
+ 1)𝑔𝑇(𝑧(𝑡 − 𝜏)) 𝐵𝑇𝐶−1Bg(𝑧(𝑡 − 𝜏)) 

= 2𝑧𝑇(𝑡 − 𝜁)𝐸𝑇𝐵g(𝑧(𝑡 − 𝜏) − (α + β + γ)𝑧𝑇(𝑡 − 𝜁)𝐸𝑇𝐶Ez(t − ζ)                            

                 −(
1

𝛾
+

1

𝛿
)𝑔𝑇(𝑧(𝑡 − 𝜏)) 𝐵𝑇𝐶−1Bg(𝑧(𝑡 − 𝜏))                                                                     (17) 

Using (10) in (17) leads to 

 

           �̇�(𝑡) =  −(α + β)𝑧𝑇(𝑡 − 𝜁)𝐸𝑇𝐶𝐸𝑧(𝑡 − 𝜁) −
1

𝛿
𝑔𝑇(𝑧(𝑡 − 𝜏)) 𝐵𝑇𝐶−1Bg(𝑧(𝑡 − 𝜏))      (18) 

In the light of (18), we get that 

 

                                      �̇�(𝑡) ≤  −(α + β)𝑧𝑇(𝑡 − 𝜁)𝐸𝑇𝐶𝐸𝑧(𝑡 − 𝜁)                                                  (19) 

 

Thus, (19) enables one to draw the conclusion of  �̇�(𝑡) < 0 if 𝑧(𝑡 − 𝜁) ≠ 0. Let 𝑧(𝑡 − 𝜁) = 0.  

We now observe that (18) also yields the equality 
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                                          �̇�(𝑡) =  −
1

𝛿
𝑔𝑇(𝑧(𝑡 − 𝜏)) 𝐵𝑇𝐶−1Bg(𝑧(𝑡 − 𝜏))                                      (20) 

 

In (20), if g(𝑧(𝑡 − 𝜏)) ≠ 0, (beacuse of  the properties of the nonlinear activities of 

neurons, g(𝑧(𝑡 − 𝜏)) ≠ 0 implies that 𝑧(𝑡 − 𝜏) ≠ 0), then �̇�(𝑡) < 0.  Letting 𝑧(𝑡) = 0, 

𝑧(𝑡 − 𝜏) = 0 and 𝑧(𝑡 − 𝜁) = 0 in (9)  yields 

                                                    �̇�(𝑡) =  −�̇�𝑇(𝑡 − 𝜁)𝐶−1�̇�(𝑡 − 𝜁)                                                     (21) 

 

In (21), if �̇�(𝑡 − 𝜁) ≠ 0, then �̇�(𝑡) < 0. Thus, we observe from (9) that  �̇�(𝑡) = 0 wherever 

�̇�(𝑡 − 𝜁) = 𝑧(𝑡) = 𝑧(𝑡 − 𝜏) = 𝑧(𝑡 − 𝜁) = 0, otherwise  �̇�(𝑡) < 0. Therefore, the origin of (6) is 

asymptotically stable. The Lyapunov functional stated in (8) satisfies : 

 

                                                      𝑉(𝑡) ≥  𝑦𝑇(𝑡)y(𝑡) = ‖𝑦(𝑡)‖2
2                                                         (22) 

By the virtue of  (22),   𝑉(𝑡) → ∞ as ‖𝑦(𝑡)‖ → ∞. On the other hand,  it has been adressed in 

(Lien ve diğ., 2008)  that, under the condition of 𝐸𝑇𝐸 < 𝐼, ‖𝑦(𝑡)‖ → ∞ if ‖𝑧(𝑡)‖ → ∞. 

Therefore, ‖𝐸‖ < 1 and ‖𝑧(𝑡)‖ → ∞ will guarantee that  𝑉(𝑡) → ∞.  This indicates the fact that   

𝑉(𝑡) → ∞ is radially unbounded,  concluding that  the origin of (6) is globally asymptotically 

stable, Q.E.D. 

 

3. AN EXAMPLE 

This section studies an  example to reveal the applicability of the stability criteria proposed in 

Theorem 1. 

 

 Example  : Let neutral-type system (1) possess the  system elements : 

 

 

𝐴 = [

𝑎 𝑎 𝑎 𝑎
𝑎 −𝑎 𝑎 −𝑎
𝑎

−𝑎
𝑎
𝑎

−𝑎 −𝑎
𝑎 −𝑎

] ,     𝐵 = [

𝑏 𝑏 𝑏 𝑏
𝑏 −𝑏 𝑏 −𝑏
𝑏

−𝑏
𝑏
𝑏

−𝑏 −𝑏
𝑏 −𝑏

] ,   𝐸 = [

𝑒 𝑒 𝑒 𝑒
𝑒 −𝑒 𝑒 −𝑒
𝑒

−𝑒
𝑒
𝑒

−𝑒 −𝑒
𝑒 −𝑒

] 

 

𝐶 = [

1 0 0 0
0 1 0 0
0
0

0
0

1 0
0 1

] ,      Υ =
1

2
[

1 0 0 0
0 1 0 0
0
0

0
0

1 0
0 1

] , ℒ = [

1 0 0 0
0 1 0 0
0
0

0
0

1 0
0 1

] 

 

where  𝑎, 𝑏 and  𝑒 are some positive constants. We have 

 

𝐴𝑇𝐶−1A = [

4𝑎2 0 0 0
0 4𝑎2 0 0
0
0

0
0

4𝑎2 0
0 4𝑎2

] , 𝐵𝑇𝐶−1B = [

4𝑏2 0 0 0
0 4𝑏2 0 0
0
0

0
0

4𝑏2 0
0 4𝑏2

], 

 

𝐸𝑇𝐶𝐸 =  [

4𝑒2 0 0 0
0 4𝑒2 0 0
0
0

0
0

4𝑒2 0
0 4𝑒2

] 
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For   𝛼 = 4,  𝛽 = 3 and  𝛾 = 2, we have 

 

ϕ = (
1

4
− 36𝑒2) 𝐼 

where   𝐼 is the unity matrix of 4x4. Thus, according the second  condition of Theorem 1,  𝑒 <
1

12
  

implies that ϕ > 0.  For 𝛿 =
2

3
 , Θ in Theorem 1 is determined as follows : 

 

Θ = (
1

2
− 8𝑎2 − 12𝑎2) 𝐼 

where   𝐼 is the unity matrix of 4x4. Thus, according the first  condition of Theorem 1, the choices   

𝑎 ≤
1

4√2
  and   𝑏 ≤

1

4√3
  imply that  Θ ≥ 0.  Hence, we have derived the constraints to be imposed 

on the elements of the example to establish the stability criteria in Theorem 1. 

 

4. CONCLUSIONS 

This paper has made some  contributions to  the   stability problem of  neutral-type Hopfield  

neural network model having  a constant time delay in states of neurons and  a constant neutral 

delay in the time derivatives of  states of  neurons. With the help of a suitable Lyapunov 

functional, a novel stability criterion has been derived for neutral-type Hopfield  neural network 

model. This stability criterion only requires to check the positive definiteness of the matrices 

involving  the system elements of this type  of neural networks.  The presented  stability  condition 

proved to be independently of these  time  and neutral delays. Therefore, this condition can be 

easily  justified   by applying  the  properties of some certain matrices. A constructive numerical 

example of this type of neural systems has been studied to show the applicability of the presented 

stability result. 
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