COOPERATION, EIGENVALUES, REPELLOR AND ATTRACTOR

Aydın ALTIN*

SUMMARY

In this paper we derive some general conditions for a polygon of orientable hypersurfaces to be a repellor (respectively attractor) using modern geometric methods.

Key Words: Manifold, Hypersurface, Cooperation, Orientable. 1980 Subject Classification: 53AOB.

ÖZET

Ortaklık, Eigen Değerler, Repellor ve Attractor

Bu makalede, geometrik yöntemler kullamlarak, yön koruyan hiperyüzeylerin bir poligonu için Repellor ve Attractor olma koşullarmi verdik.

INTRODUCTION

Although the matereal used in this scientific paper under the title "Cooperation, Eigenvalues, Repellor and Attractor" is geometric the result obtained cast light on many subjects such as medical sciences, population genetics, prebiotic development, differential equations, applied mathematics, physics and modern differential geometry.

[^0]
1. COOPERATION, EIGENVALUES, REPELLOR AND ATTRACTOR

Let us consider a C 1 -flow on a 2 -dimensional orientable manifold M which exhibits a finite number of cyclically connected 2-hypersurfaces. Of course the flow is then not structurally stable, but such situations often occur in concrete dynamical systems (defined on compact subsets of IR^{n} where the boundry is invariant).

Let L be this connected invariant set consisting of n 2-hypersurfaces F_{1}, $\mathrm{F}_{2}, \ldots, \mathrm{~F}_{\mathrm{i}}, \ldots, \mathrm{F}_{\mathrm{n}-1}, \mathrm{~F}_{\mathrm{n}}$ and n connecting orbits. Since the manifold is orientable, a certain neighbourhood U of L may be embedded diffeomorphically in the space IR^{2}. Let V be the component of U / L which lies "inside" the polygon L . An orbit starting in V (Close to L) which is not closed may have L as α-or as ω-limit.

One can choose "coordinates" $\mathrm{X}_{\mathrm{ij}}: \mathrm{M} \rightarrow$ IR such that $\mathrm{X}_{\mathrm{ij}}>0$ in $\mathrm{V}, \mathrm{X}_{\mathrm{ij}}=$ 0 along the orbit connecting $\mathrm{F}_{\mathrm{i}-1}$ with F_{i} and finally $\mathrm{X}_{\mathrm{i} 1} \times \mathrm{X}_{\mathrm{i} 2}$ is a diffeomorphism of a neighbourhood of F_{i} on to a neighbourhood of the origin in IR^{2}. Then consider the vector field near the 2-hypersurface F_{i} : Along the orbit $\mathrm{X}_{\mathrm{i} 1}=$ $\mathrm{X}_{\mathrm{i} 2}=0$ we have

$$
\frac{\mathrm{d}}{\mathrm{dt}} X_{i 1}(X(t)) \sim \mathrm{k}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 1}(\mathrm{X}(\mathrm{t})) \text { near } \mathrm{X}_{\mathrm{i} 1}=0, \ldots ., \text { and along }
$$

$X_{i 1}=X_{i 2}=0$ we have

$$
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{X}_{\mathrm{i} 2}\left(\mathrm{X}(\mathrm{t}) \sim \mathrm{k}_{\mathrm{i} 2} \mathrm{X}_{\mathrm{i} 2}(\mathrm{X}(\mathrm{t})) \text { near } \mathrm{X}_{\mathrm{i} 2}=0, \text { where } \mathrm{k}_{\mathrm{ij}} \neq 0, \mathrm{i}=1, \ldots\right.
$$ $\mathrm{n} ; \mathrm{j}=1,2$ are the Eigenvalues at the 2-pypersurface point.

A more detailed discussion of these and other notions may be found in [1], [2], [3], [4], [5], [6] and [7].
1.1. Proposition. Consider the function

$$
P=X^{P_{11}}{ }_{11} X^{P_{12}}{ }_{12} \ldots . . X^{p_{i 1}}{ }_{i 1} X^{p_{i 2}}{ }_{i 2} \ldots \ldots X^{p_{n 1}}{ }_{n 1} X^{p_{n 2}}
$$

where $\mathrm{p}_{\mathrm{ij}}>0$ will be specified later which is positive on V and equal to 0 on L. Then, we have

$$
\psi(x)=\frac{\dot{P}}{P}=\sum_{i, j=1}^{n, 2} \text { pij} \frac{\dot{X}_{i j}}{X_{i j}} .
$$

PROOF. Differentiating the function P with respect to t we have

$$
\dot{\mathrm{P}}=\mathrm{P}_{11} \dot{\mathrm{X}}_{11} \mathrm{X}^{-1}{ }_{11} \mathrm{P}+\ldots .+\mathrm{P}_{\mathrm{i} 1} \dot{\mathrm{X}}_{11} \mathrm{X}^{-1}{ }_{\mathrm{i} 1} \mathrm{P}+\ldots .+\mathrm{P}_{\mathrm{n} 2} \dot{\mathrm{X}}_{\mathrm{n} 2} \mathrm{X}^{-1}{ }_{\mathrm{n} 2} \mathrm{P} .
$$

Hence the proof is completed.
1.2. Proposition. The function

$$
\psi(\mathrm{x})=\frac{\dot{P}}{\mathrm{P}}=\sum_{\mathrm{i}, \mathrm{j}=1}^{\mathrm{n}, 2} \mathrm{pij} \frac{\dot{X}_{\mathrm{ij}}}{X_{\mathrm{ij}}} .
$$

reduces at the i -th corner to

$$
\psi\left(\mathrm{F}_{\mathrm{i}}\right)=\mathrm{p}_{\mathrm{i}} \lambda_{\mathrm{i}}+\mathrm{p}_{\mathrm{i}+1} \mu_{\mathrm{i}}
$$

where $\lambda_{\mathrm{i}}>0$ and $\mu_{\mathrm{i}}<0$ are the Eigenvalues at the saddle point F_{i}.
PROOF. Let F_{i} be the 2-hypersurface such that

$$
\left.\varphi\right|_{(x, y)}=(x, y, x y) .
$$

and $\mathrm{X}_{1}, \mathrm{X}_{2}$ be the orthhonormal basis vectors of $\mathrm{T}_{\mathrm{F}_{\mathrm{i}}}(0)$ at the origin. Let us define the unit normal vector field of F_{i} by

$$
\xi=\frac{(-y,-x, 1)}{\sqrt{1+x^{2}+y^{2}}}
$$

If we derivate the function $\varphi(\mathrm{x}, \mathrm{y})$, we have:

$$
\begin{aligned}
\varphi_{\mathrm{x}} & =(1,0, y) \\
\varphi_{\mathrm{y}} & =(0,1, \mathrm{x}) .
\end{aligned}
$$

It is clear that $\left\langle\zeta, \varphi_{x}\right\rangle=\left\langle\zeta, \varphi_{y}\right\rangle=0$ and $\|\zeta\|=1$. Hence ζ is really an unit normal vector field of the 2-hypersurface F_{i}. At the origin, we have

$$
\begin{aligned}
& \left.\varphi_{\mathrm{x}}\right|_{0}=(1,0,0) \\
& \left.\varphi_{\mathrm{y}}\right|_{0}=(0,1,0) \\
& \left.\zeta\right|_{0}=(0,0,1) .
\end{aligned}
$$

Then, $\left.\zeta_{x}\right|_{0}=\mathrm{x}_{1},\left.\zeta_{y}\right|_{0}=\mathrm{x}_{2}$. Now we can find the vector $\mathrm{S} \mid \mathrm{X}_{1}$,

$$
\begin{aligned}
& \mathrm{S}\left|\mathrm{X}_{1}=-\nabla_{\mathrm{X}_{1}} \zeta=-\zeta^{\prime}(0+\mathrm{tX})\right|_{\mathrm{t}=0}=-\left.\left\{\frac{(0,-\mathrm{t}, 1)}{\sqrt{1+\mathrm{t}^{2}}}\right\}^{\prime}\right|_{\mathrm{t}=0} \\
& \mathrm{~S}\left|\mathrm{X}_{1}=\frac{(0,1,0)}{\sqrt{1+\mathrm{t}^{2}}}\right|_{\mathrm{t}=0}+\left.\left\{(0, \mathrm{t},-1)\left(-\frac{1}{2}\right)\left(1+\mathrm{t}^{2}\right)^{-3 / 2} 2 \mathrm{t}\right\}\right|_{\mathrm{t}=0} \\
& \mathrm{~S} \mid \mathrm{X}_{1}=(0,1,0) \text { or } \mathrm{S} \mid \mathrm{X}_{1}=\mathrm{X}_{2} .
\end{aligned}
$$

In the same way, we may have $S \mid X_{2}=X_{1}$.
Let $\alpha=a X_{1}+\mathrm{bX}_{2},-\alpha=-\mathrm{aX} \mathrm{X}_{1}-\mathrm{bX} 2, \beta=\mathrm{a} \mathrm{X}_{1}-\mathrm{bX} 2,-\beta=-\mathrm{aX} \mathrm{X}_{1}+$ $\mathrm{bX} \mathrm{X}_{2}$ be the tangent vectors of F_{i} at the origin. Then we find

$$
\begin{aligned}
& \left.\mathrm{k}\right|_{\alpha}=<\mathrm{S} \alpha, \alpha>=\frac{1}{a^{2}+b^{2}}<a X_{2}+b X_{1}, a X_{1}+b X_{2}>=\frac{2 a b}{a^{2}+b^{2}} \\
& \left.k\right|_{-\alpha}=<S(-\alpha),-\alpha>=\frac{2 a b}{a^{2}+b^{2}} \\
& \left.k\right|_{\beta}=<S \beta, \beta>=\frac{1}{a^{2}+b^{2}}<a X_{2}-b X_{1}, a X_{1}-b X_{2}>=-\frac{2 a b}{a^{2}+b^{2}} \\
& \left.k\right|_{-\beta}=<S(-\beta),-\beta>=-\frac{2 a b}{a^{2}+b^{2}}
\end{aligned}
$$

where S denotes the shape operator of the 2-hypersurface F_{i}. On the other hand, it is clear that

$$
\begin{aligned}
& \left.\mathrm{k}\right|_{X_{1}}=<\mathrm{SX}_{1}, \mathrm{X}_{1}>=<\mathrm{X}_{1}, \mathrm{X}_{2}>=0 \\
& \left.\mathrm{k}\right|_{\mathrm{X}_{2}}=<\mathrm{SX}_{2}, \mathrm{X}_{2}>=<\mathrm{X}_{1}, \mathrm{X}_{2}>=0
\end{aligned}
$$

From the above results we understand that there exists the Eigenvalues $\lambda_{i}>0$, $\mu_{\mathrm{i}}<0$. \dot{x}_{j} is C^{1}.

In view of the above remarks, we may write

$$
\psi\left(\mathrm{F}_{\mathrm{i}}\right)=\mathrm{p}_{\mathrm{i} 1} \mathrm{k}_{\mathrm{i} 1}+\mathrm{p}_{\mathrm{i} 2} \mathrm{k}_{\mathrm{i} 2} .
$$

If we take, $\mathrm{p}_{\mathrm{i} 1}=\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{i} 2}=\mathrm{p}_{\mathrm{i}+1}, \mathrm{k}_{\mathrm{i} 1}=\lambda_{\mathrm{i}}>0, \mathrm{k}_{\mathrm{i} 2}=\mu_{\mathrm{i}}<0$ we may say that the proof is completed.
1.3. Proposition. Consider n 2-hypersurfaces. Let $\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, \mathrm{~F}_{\mathrm{i}}$, $\ldots, \mathrm{F}_{\mathrm{n}}$ be the 2 -saddles. Let L be the above polygon, $\lambda_{\mathrm{i}}>0$ and $\mu_{\mathrm{i}}<0$ the Eigenvalues of the 2 -saddles and let $v=\prod_{i=1}^{n}\left(-\frac{\lambda_{i}}{\mu_{i}}\right)$. Then L is a repellor if and only if $1<v$.

PROOF. At the i-th corner, we may write

$$
\psi\left(\mathrm{F}_{\mathrm{i}}\right)=\mathrm{p}_{\mathrm{i}} \lambda_{\mathrm{i}}+\mathrm{p}_{\mathrm{i}+1} \mu_{\mathrm{i}}
$$

which is positive if and only if

$$
\frac{p_{i+1}}{p_{i}}<-\frac{\lambda_{i}}{\mu_{i}}
$$

that is

$$
\begin{aligned}
\psi\left(F_{i}\right) & =p_{i} \lambda_{i}+p_{i+1} \mu_{i}>0 \Leftrightarrow \frac{p_{i+1}}{p_{i}}<-\frac{\lambda_{i}}{\mu_{i}} \\
& \Leftrightarrow \frac{p_{i+1}}{p_{i}}=-\frac{\lambda_{i}}{\mu_{i}} \cdot v^{-1 / n}<-\frac{\lambda_{i}}{\mu_{i}} \\
& \Leftrightarrow \Pi \frac{p_{i+1}}{p_{i}}=\prod_{i=1}^{n}\left(-\frac{\lambda_{i}}{\mu_{i}}\right) \underbrace{v^{-1 / n} \ldots \ldots v^{-1 / n}}_{n-\text { times }}<\prod_{i=1}^{n}\left(-\frac{\lambda_{i}}{\mu_{i}}\right) \\
& \Leftrightarrow v v^{-1}<v \\
& \Leftrightarrow 1<v .
\end{aligned}
$$

Then the proof is completed.
1.4. Proposition. Consider n 2-hypersurfaces. Let $\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, \mathrm{~F}_{\mathrm{i}}$, $\ldots, \mathrm{F}_{\mathrm{n}}$ be the 2 -saddles. Let L be the above polygon, $\lambda_{\mathrm{i}}>0$ and
$\mu_{i}<0$ the Eigenvalues of the 2-saddles and let $v=\prod_{i=1}^{n}\left(-\frac{\lambda_{i}}{\mu_{i}}\right)$.
Then L is a repellor if and only if $v<1$.
PROOF. Again, at the i-th corner, we have

$$
\psi\left(\mathrm{F}_{\mathrm{i}}\right)=\mathrm{p}_{\mathrm{i}} \lambda_{\mathrm{i}}+\mathrm{p}_{\mathrm{i}+1} \mu_{\mathrm{i}}
$$

which is negative if and only if

$$
\frac{p_{i+1}}{p_{i}}>-\frac{\lambda_{i}}{\mu_{i}}
$$

From this, we may find

$$
\begin{aligned}
\psi\left(F_{i}\right) & =p_{i} \lambda_{i}+p_{i+1} \mu_{i}<0 \Leftrightarrow \frac{p_{i+1}}{p_{i}}>-\frac{\lambda_{i}}{\mu_{i}} \\
& \Leftrightarrow \frac{p_{i+1}}{p_{i}}=-\frac{\lambda_{i}}{\mu_{i}} \cdot v^{-1 / n}>-\frac{\lambda_{i}}{\mu_{i}} \\
& \Leftrightarrow \prod_{i=1}^{n} \frac{p_{i+1}}{p_{i}}=\prod_{i=1}^{n}\left(-\frac{\lambda_{i}}{\mu_{i}}\right) \underbrace{v^{-1 / n} \ldots \ldots v^{-1 / n}}_{n-\text { times }}>\prod_{i=1}^{n}\left(-\frac{\lambda_{i}}{\mu_{i}}\right) \\
& \Leftrightarrow v v^{-1}>v \\
& \Leftrightarrow v<1 .
\end{aligned}
$$

Hence the proof is completed.
In these proofs we have used various preliminary results which may be found in [6], [7], [8], [9] and [10].

REFERENCES

1. ALTIN, A., ARSLANÖZ, A.R.: A General Cooperation Theorem for mPolygons, Marmara University Journal, Faculty of Dental, 16, 99-100, 1987.
2. ALTIN, A., ARSLANÖZ, A.R.: A General Cooperation Theorem for 3Polygons Related with 3-Hypersaddles, Marmara University Journal, Faculty of Dental, 16, 101-102, 1987.
3. ALTIN, A., ARSLANÖZ, A.R., HACISALİHOĞLU, H.H.: n-Çokgenler İçin Genel İşbirliği Teoremi, Journal of International Academic Publications, 1, 1-3, 1987.
4. ALTIN, A., ARSLANÖZ, A.R., HACISALİHOĞLU, H.H.: 3-Hiper Semer Yüzeylerle İlgili 3-Çokgenler İçin Genel İşbirliği Teoremi, Journal of International Academic Publications, 1, 4-6, 1987.
5. ALTIN, A., ARSLANÖZ, A.R., HACISALİHOĞLU, H.H.: A General Cooperation Theorem for 5-Polygons Related with 5-Manifolds, Journal of International Academic Publications, 1, 13-16, 1987.
6. ALTIN, A., ÖZDEMİR, H. B.: The Vectors Which Form Constant Angles with The Frenet Vectors in En, Uludağ University Journal, Faculties of Education, 4, 45-52, 1989.
7. ALTIN, A., ÖZDEMIR, H.B.: The Vectors which Form Constant Angles with the Frenet Vectors, Uludağ University Journal, Faculties of Education, 3, 97, 102, 1988.
8. ALTIN, A., ÖZDEMİR, H.B.: Spherical Images and Higher Curvatures, Uludağ Üniversity Journal, Faculties of Education, 3, 103-110, 1988.
9. HOFBAUER, J.: A General Cooperation Theorem for Hypercycles, Mh. Math., 91, 233-240, 1981.
10. SCHUSTER, P., SIGMUND, K., WOLFF, R.: Dynamical Systems Under Constant Organization III: Cooperative and Competitive Behaviour of Hypercycles, J. Diff. Equ. 32, 357-368, 1979.

[^0]: * Associate Professor; Department of Mathematics, Faculty of Science, Hacettepe University, Ankara-Turkey.

