THE VECTORS WHICH FORM CONSTANT ANGLES WITH THE FRENET VECTORS

Aydın ALTIN*
Hasan Basri ÖZDEMiR**

SUMMARY

In this work, we first, give the following proposition; if the first Frenet Vectors of a curve in E^{5} form a constant angle with the direction of a vector E, then

$$
\left[\frac{1}{t_{45}}\left[\frac{t_{12} t_{34}}{t_{23}}+\left[\frac{1}{t_{34}}\left(\frac{t_{12}}{t_{23}}\right)^{\prime}\right]^{\prime}\right]\right]^{\prime}+\frac{t_{45}}{t_{34}}\left(\frac{t_{12}}{t_{23}}\right)^{\prime}=0
$$

and conversly, if this relation is fulfilled, then the first Frenet Vectors of the curve form a constant angle with the direction of some vector, where $t_{i j}, 1 \leqslant i \leqslant 4$, $2 \leqslant j \leqslant 5$, are the higher curvatures of the curve. Further, we may write this vector and the angle as the following;

$$
\begin{gathered}
E=X_{1}+\frac{t_{12}}{t_{23}} X_{3}+\frac{1}{t_{34}}\left(\frac{t_{12}}{t_{23}}\right)^{\prime} X_{4}+\frac{1}{t_{45}}\left[\frac{t_{12} t_{34}}{t_{23}}+\left[\frac{1}{t_{34}}\left(\frac{t_{12}}{t_{23}}\right)^{\prime}\right]^{\prime}\right] X_{5} \\
\operatorname{Cos} \theta=\frac{1}{|E|}=\text { constant }
\end{gathered}
$$

where θ is the agnle between X_{1} and E.
Using the fifth Frenet vectors, we give a similar proposition.
In the special case we present some useful examples.

ÖZET

Bu makalede ilk olarak, aşağıdaki önermeyi verdik.
E^{5} de bir eğrinin birinci Frenet Vectörleri bir E vectörü ile sabit bir açı yapıyorsa

$$
\left[\frac{1}{t_{45}}\left[\frac{t_{12} t_{34}}{t_{23}}+\left[\frac{1}{t_{34}}\left(\frac{t_{12}}{t_{34}}\right)^{\prime}\right]\right]^{\prime}+\frac{t_{45}}{t_{34}}\left(\frac{t_{12}}{t_{23}}\right)^{\prime}=0\right. \text { olur. }
$$

Karşıt olarak, bu bağıntı gerçeklendiğinde, bu eğrinin birinci Frenet Vectörleri bir vektör yönü ile sabit bir açı yapar. Bundan ziyade, bu vektöriü ve açıyı,

[^0]\[

$$
\begin{gathered}
\left.E=X_{1}+\frac{t_{12}}{t_{23}} X_{3}+\frac{1}{t_{34}}\left(\frac{t_{12}}{t_{23}}\right)^{\prime} X_{4}+\frac{1}{t_{45}}\left[\frac{t_{12} t_{34}}{t_{23}}+\frac{1}{t_{34}}\left(\frac{t_{12}}{t_{23}}\right)^{\prime}\right]^{\prime}\right] X_{5} \\
\operatorname{Cos} \theta=\frac{1}{|E|}=\text { constant }
\end{gathered}
$$
\]

biçiminde yazabiliriz. Burada θ, X ve E arasındaki açıdır.
Beşinci Frenet vektörlerini kullanarak benzer bir önerme sunduk.
Ozel durumda yararlı bazı örnekler sunduk.

0. INTRODUCTION

We first, give a proposition of the expression of a tanget vector to E^{n}. Our notation and terminology may be found in ${ }^{1}$ and ${ }^{2}$

In the theory of Differential Geometry, the concept of higher curvatures of curves in Euclidean Space was given by GLUCK ${ }^{3}$ and ${ }^{4}$. Recently, we use the Higher curvatures in our studies of many branches of Differential Geometry ${ }^{4}$ and ${ }^{5}$.

The purpose of this manuscript, is to express some preliminaries about Diferential Geometry, and show the basic properties of the vector which forms a constant angle with the direction of a Frenet Vector.

1. PRELIMINARIES

PROPOSITION 1.1. Let $e_{1}, e_{2}, \ldots, e_{n}$ be a frame at a point P of E^{n}. If V is any tangent vector to E^{n} at P, then

$$
\mathrm{V}=\sum_{\mathrm{i}=1}^{\mathrm{n}}<\mathrm{V}, \mathrm{e}_{\mathrm{i}}>\mathrm{e}_{\mathrm{i}}
$$

where $<,>$ denotes the inner product (dot product). A more detailed discussion of this proposition may be found in ${ }^{1}$ and ${ }^{2}$.

PROPOSITION 1.2. Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \mathrm{X}_{4}, \mathrm{X}_{5}$ be the positive oriented orthonormal frame at each point of a curve a in E^{5}, where

$$
X_{1}=\alpha_{\star}\left(\frac{\partial}{\partial s}\right), \text { and } \frac{\mathrm{dX}_{1}}{\mathrm{ds}}=\mathrm{dX}_{1}\left(\frac{\partial}{\partial \mathrm{~s}}\right) \neq 0
$$

Then, we have the Frenet Formulas

$$
\begin{aligned}
& X_{i}^{\prime}(s)=-t_{i-1}(s) X_{i-1}(s)+t_{i}(s) X_{i+1}(s), 2 \leqslant i \leqslant 4 \\
& X_{5}^{\prime}(s)=-t_{45}(s) X_{4}(s)
\end{aligned}
$$

or

$$
\left[\begin{array}{l}
X_{1}^{\prime} \\
X_{2}^{\prime} \\
X_{3}^{\prime} \\
X_{4}^{\prime} \\
X_{5}^{\prime}
\end{array}\right]=\left[\begin{array}{ccccc}
0 & t_{12} & 0 & 0 & 0 \\
-t_{12} & 0 & t_{23} & 0 & 0 \\
0 & -t_{23} & 0 & t_{34} & 0 \\
0 & 0 & -t_{34} & 0 & t_{45} \\
0 & 0 & 0 & -t_{45} & 0
\end{array}\right] \quad\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4} \\
X_{5}
\end{array}\right]
$$

where $t_{i j}: S \rightarrow$ IR. A detailed knowledge of this proposition may be found in^{3}.
DEFINITION 1.3. Using the above notation, the coefficients t_{ij} are called the higher curvatures of the curve α in $E^{5}{ }^{3}$..

2. THE MAIN RESULTS

PROPOSITION 2.1. If the first principal vectors of a curve form a constant angle with the direction of a vector E, then

$$
\left[\frac{1}{t_{45}}\left[\frac{t_{12} t_{34}}{t_{23}}+\left[\frac{1}{t_{34}}\left(\frac{t_{12}}{t_{23}}\right)^{\prime}\right]^{\prime}\right]\right]^{\prime}+\frac{t_{45}}{t_{34}}\left(\frac{t_{12}}{t_{23}}\right)^{\prime}=0
$$

and vonversly, if this relation is fulfilled, then the first principal vectors of the curve form a constant angle with the direction of some vector. Further, we may write this vector and the angle as the following,

$$
\begin{gathered}
E=X_{1}+\frac{t_{12}}{t_{23}} X_{3}+\frac{1}{t_{34}}\left(\frac{t_{12}}{t_{23}}\right)^{\prime} X_{4}+\frac{1}{t_{45}}\left[\frac{t_{12} t_{34}}{t_{23}}+\left[\frac{1}{t_{34}}\left(\frac{t_{12}}{t_{23}}\right)^{\prime}\right]^{\prime}\right] X_{5} \\
\operatorname{Cos} \theta=\frac{1}{|E|}=\text { Constant }
\end{gathered}
$$

where θ is the angle between X_{1} and E .
PROOF. We may write

$$
<\mathrm{E}, \mathrm{X}_{1}>=\mathrm{C}
$$

where C is a real number. By differentiating, we have
or

$$
\begin{gathered}
\mathrm{t}_{12}<\mathrm{E}, \mathrm{X}_{2}>=0 \\
<\mathrm{E}, \mathrm{X}_{2}>=0
\end{gathered}
$$

In the same pay, we obtain

$$
-\mathrm{t}_{12}<\mathrm{E}, \mathrm{X}_{1}>+\mathrm{t}_{23}<\mathrm{E}, \mathrm{X}_{3}>=0
$$

or

$$
<\mathrm{E}, \mathrm{X}_{3}>=\mathrm{C} \cdot \frac{\mathrm{t}_{12}}{\mathrm{t}_{23}}
$$

Differentiating again, we have

$$
-t_{23}<E, X_{2}>+t_{34}<E, X_{4}>=C .\left(\frac{t_{12}}{t_{23}}\right)^{\prime}
$$

or

$$
<\mathrm{E}, \mathrm{X}_{4}>=\mathrm{C} \cdot \frac{1}{t_{34}} \cdot\left(\frac{t_{12}}{t_{23}}\right)^{\prime}
$$

Differentiating once again, we have

$$
-t_{23}<E, X_{3}>+t_{45}<E, X_{5}>=C .\left[\frac{1}{t_{34}}\left(\frac{t_{12}}{t_{23}}\right)^{\prime}\right]^{\prime}
$$

or

$$
<E, X_{5}>=C \cdot \frac{1}{t_{45}}\left[\frac{t_{12} t_{34}}{t_{23}}+\left[\frac{1}{t_{34}}\left(-\frac{t_{12}}{t_{23}}\right)^{\prime}\right]^{\prime}\right]
$$

Finally, in the same way, we obtain

$$
\left[\frac{1}{t_{43}}\left[\frac{t_{12} t_{34}}{t_{23}}+\left[\frac{1}{t_{34}}\left(\frac{t_{12}}{t_{23}}\right)^{\prime}\right]^{\prime}\right]\right]^{\prime}+\frac{t_{45}}{t_{34}}\left(\frac{t_{12}}{t_{23}}\right)^{\prime}=0
$$

Conversly, if the relation is held, then this vector is constant. The constant vector E forms with the vector X_{1} an angle whose cosine equals $1 /|\mathrm{E}|=$ constant. Without loss generality, we may assume that $C=1$. Hence, we have proved the proposition.

PROPOSITION 2.2. If the fifth Frenet Vectors of a curve in E^{5} form a constant angle with the direction of a vector $\widetilde{\mathrm{E}}$, then

$$
\left[\frac{1}{t_{12}}\left[\frac{t_{23} t_{45}}{t_{34}}+\left[\frac{1}{t_{23}}\left(\frac{t_{45}}{t_{34}}\right)^{\prime}\right]^{\prime}\right]\right]^{\prime}+\frac{t_{12}}{t_{23}}\left(\frac{t_{45}}{t_{34}}\right)^{\prime}=0
$$

and conversly, if this relation is fulfilled, then the fifth Frenet Vectors of the curve form a constant angle with the direction of some vector. Further, we may express this vector and the angle as the following,

$$
\begin{gathered}
E=\frac{1}{t_{12}}\left[\frac{t_{23} t_{45}}{t_{34}}+\left[\frac{1}{t_{23}}\left(\frac{t_{45}}{t_{34}}\right)^{\prime}\right]^{\prime}\right] X_{1}-\frac{1}{t_{23}}\left(\frac{t_{45}}{t_{34}}\right)^{\prime} X_{2}+\frac{t_{45}}{t_{34}} X_{3}+X_{5} \\
\operatorname{Cos} \tilde{\theta}=\frac{1}{|\tilde{E}|}=\text { constant }
\end{gathered}
$$

where $\tilde{\theta}$ is the angle between X_{5} and \widetilde{E}.
PROOF. Consider,

$$
<\widetilde{\mathrm{E}}, \mathrm{X}_{5}>=\mathrm{C}
$$

where C is a real number. Hence, we have

$$
-t_{45}<\widetilde{\mathrm{E}}, \mathrm{X}_{5}>=0
$$

or

$$
<\widetilde{\mathrm{E}}, \mathrm{X}_{4}>=0
$$

Differentiating, we have

$$
\begin{gathered}
-t_{34}<\tilde{E}, X_{3}>+t_{45}<\tilde{E}, X_{5}>=0 \\
<\tilde{E}, X_{3}>=C \cdot \frac{t_{45}}{t_{34}}
\end{gathered}
$$

Differentiating again, we obtain

$$
-t_{23}<E, X_{2}>+t_{34}<\tilde{E}, X_{4}>=C\left(\frac{t_{45}}{t_{34}}\right)^{\prime}
$$

or

$$
<\tilde{\mathrm{E}}, \mathrm{X}_{2}>=-\mathrm{C} \cdot \frac{1}{t_{23}}\left(\frac{t_{45}}{t_{34}}\right)
$$

Differentiating again, we obtain

$$
\begin{gathered}
-t_{12}<\widetilde{E}, X_{1}>+t_{23}<\widetilde{E}, X_{3}>=-C \cdot\left[\frac{1}{t_{23}}\left(\frac{t_{43}}{t_{34}}\right)^{\prime}\right]{ }^{\prime} \\
\left.<\widetilde{E}, X_{1}>=\frac{C}{t_{12}}\left[\frac{t_{23} t_{45}}{t_{34}}+\left[\frac{1}{t_{23}}\left(\frac{t_{455}}{t_{34}}\right)^{\prime}\right]\right]^{\prime}\right]
\end{gathered}
$$

Differentiating once again, we obtain

$$
t_{12}<\tilde{E}, X_{2}>=C\left[\frac{1}{t_{12}}\left[\frac{t_{23} t_{45}}{t_{34}}+\left[\frac{1}{t_{23}}\left(\frac{t_{45}}{t_{34}}\right)^{\prime}\right]^{\prime}\right]\right]^{\prime} .
$$

or

$$
\left[\frac{1}{t_{12}}\left[\frac{t_{23} t_{45}}{t_{34}}+\left[\frac{1}{t_{23}}\left(\frac{t_{45}}{t_{34}}\right)^{\prime}\right]^{\prime}\right]\right]^{\prime}+\frac{t_{12}}{t_{23}}\left(\frac{t_{45}}{t_{34}}\right)^{\prime}=0
$$

Conversly, if the relation is held, then this vector is constant. This constant vector E forms with the vector X_{5} an angle whose cosine equals $1 /|\mathrm{E}|=$ constant. Without loss generality, we may assume that $\mathrm{C}=1$. These results complete the proof of our proposition.

We can say similar results for the Frenet Vectors $\mathrm{X}_{2}, \mathrm{X}_{3}, \mathrm{X}_{4}$.
It is clear that the results which we have found above may be written again using the higher curvatures of curves in Euclidean Space E^{n}.

In the special case we have the following results:
If the first Frenet Vectors of a curve in E^{3} form a constant angle with the direction of a vector e, then

$$
\left(\frac{\tau}{\kappa}\right)^{\prime}=0
$$

and conversly, if this relation is fulfilled, then the first Frenet Vectors of the curve form a constant angle with the direction of some vector. Further, we may express this vector and the angle as following,

$$
\begin{gathered}
\mathrm{e}=\mathrm{X}_{1}+\frac{\kappa}{\tau} \mathrm{X}_{3} \\
\operatorname{Cos} \theta=\frac{1}{|\mathrm{e}|}
\end{gathered}
$$

where θ is the angle between X_{1} and e
If the principal normals of a curve form a constant angle with the direction of a vector $\widetilde{\mathrm{e}}$, then

$$
\left[\frac{\kappa^{2}+\tau^{2}}{\kappa\left(\frac{\tau}{\kappa}\right)^{\prime}}\right]^{\prime}+\tau=0
$$

conversly, if this relation is fulfilled, then the principal normals of the curve form a constant angle with the direction of some vector. We can express this vector by

$$
\widetilde{\mathrm{e}}=\frac{\tau}{\kappa^{2}} \frac{\kappa^{2}+\tau^{2}}{\left(\frac{\tau}{\kappa}\right)^{\prime}} \mathrm{X}_{1}+\mathrm{X}_{2}+\frac{1}{\kappa} \frac{\kappa^{2}+\tau^{2}}{\left(\frac{\tau}{\kappa}\right)^{\prime}} \mathrm{X}_{3}
$$

This constant vector $\widetilde{\mathrm{e}}$ forms with the vector X_{2} an angle whose cosine equals $1 /|\tilde{\mathrm{e}}|=$ constant .

If the binormals of a curve form a constant angle with the direction of a vector \widetilde{e}, then

$$
\left(\frac{\tau}{\kappa}\right)^{\prime}=0
$$

conversly, if this relation is fulfilled, then the binormals of the curve form a constant angle with the direction of some vector. We can express this vector by

$$
\widetilde{\mathrm{e}}=\frac{\tau}{k} \mathrm{X}_{1}+\mathrm{X}_{3}
$$

This constant vector $\widetilde{\mathrm{e}}$ forms with the vector X_{3} an angle whose cosine equals $1 /|\widetilde{\mathrm{e}}|=$ constant .

REFERENCES

1. ALTIN, A.: Her Düzeyde Matematik Üzerine Notlar, Altın Betik Yayınlan, 57, 70, 85, 1986.
2. ALTIN, A.: Spherical Images, and Higher Curvatures, 1-8, 1986.
3. GLUCK, H.: Higher Curvatures of Curves in Euclidean Space. Amer. Math. Month., 73, 699-704, 1966.
4. ALTIN, A.: A General Cooperation Theorem for M-Polygons, The Journal of The Dental Faculty of Marmara University, 16, 99-100, 1987.
5. ALTIN, A.: A General Cooperation Theorem for 3-Polygons Related with 3 -Hypersaddles, The Journal of The Dental Faculty of Marmara University, 16, 101-102, 1987.

[^0]: * Hacettepe Üniversitesi Fen Fakültesi Matematik Bölümü
 ** Uludağ Üniversitesi Necatibey Eğitim Fakültesi Fen Bilimleri Eğitimi Bölümü

