THE VECTORS WHICH FORM CONSTANT ANGLES WITH THE FRENET VECTORS

Aydın ALTIN* Hasan Basri ÖZDEMİR**

SUMMARY

In this work, we first, give the following proposition; if the first Frenet Vectors of a curve in E^5 form a constant angle with the direction of a vector E, then

$$\left[\frac{1}{t_{45}}\left[\frac{t_{12}t_{34}}{t_{23}} + \left[\frac{1}{t_{34}}\left(\frac{t_{12}}{t_{23}}\right)'\right]'\right] + \frac{t_{45}}{t_{34}}\left(\frac{t_{12}}{t_{23}}\right)' = 0$$

and conversly, if this relation is fulfilled, then the first Frenet Vectors of the curve form a constant angle with the direction of some vector, where t_{ij} , $1 \le i \le 4$, $2 \le j \le 5$, are the higher curvatures of the curve. Further, we may write this vector and the angle as the following;

$$E = X_1 + \frac{t_{12}}{t_{23}} X_3 + \frac{1}{t_{34}} \left(\frac{t_{12}}{t_{23}}\right)' X_4 + \frac{1}{t_{45}} \left[\frac{t_{12}t_{34}}{t_{23}} + \left[\frac{1}{t_{34}} \left(\frac{t_{12}}{t_{23}}\right)'\right]'\right] X_5$$
$$Cos\theta = \frac{1}{|E|} = constant$$

where θ is the agale between X_1 and E.

Using the fifth Frenet vectors, we give a similar proposition. In the special case we present some useful examples.

ÖZET

Bu makalede ilk olarak, aşağıdaki önermeyi verdik.

 E^{5} de bir eğrinin birinci Frenet Vectörleri bir E vectörü ile sabit bir açı yapıyorsa

$$\left[\frac{1}{t_{45}}\left[\frac{t_{12}t_{34}}{t_{23}} + \left[\frac{1}{t_{34}}\left(\frac{t_{12}}{t_{34}}\right)'\right]\right]' + \frac{t_{45}}{t_{34}}\left(\frac{t_{12}}{t_{23}}\right)' = 0 \text{ olur.}$$

Karşıt olarak, bu bağıntı gerçeklendiğinde, bu eğrinin birinci Frenet Vectörleri bir vektör yönü ile sabit bir açı yapar. Bundan ziyade, bu vektörü ve açıyı,

* Hacettepe Universitesi Fen Fakültesi Matematik Bölümü

** Uludağ Üniversitesi Necatibey Eğitim Fakültesi Fen Bilimleri Eğitimi Bölümü

- 97 -

$$E = X_1 + \frac{t_{12}}{t_{23}} X_3 + \frac{1}{t_{34}} \left(\frac{t_{12}}{t_{23}}\right)' X_4 + \frac{1}{t_{45}} \left[\frac{t_{12}t_{34}}{t_{23}} + \frac{1}{t_{34}} \left(\frac{t_{12}}{t_{23}}\right)'\right]' X_5$$

$$\cos \theta = \frac{1}{|E|} = constant$$

biçiminde yazabiliriz. Burada θ, X ve E arasındaki açıdır. Beşinci Frenet vektörlerini kullanarak benzer bir önerme sunduk. Özel durumda yararlı bazı örnekler sunduk.

0. INTRODUCTION

We first, give a proposition of the expression of a tanget vector to E^n . Our notation and terminology may be found in¹ and²

In the theory of Differential Geometry, the concept of higher curvatures of curves in Euclidean Space was given by GLUCK³ and⁴. Recently, we use the Higher curvatures in our studies of many branches of Differential Geometry⁴ and⁵.

The purpose of this manuscript, is to express some preliminaries about Diferential Geometry, and show the basic properties of the vector which forms a constant angle with the direction of a Frenet Vector.

1. PRELIMINARIES

PROPOSITION 1.1. Let $e_1, e_2, ..., e_n$ be a frame at a point P of E^n . If V is any tangent vector to E^n at P, then

$$V = \sum_{i=1}^{n} \langle V, e_i \rangle e_i$$

where <, > denotes the inner product (dot product). A more detailed discussion of this proposition may be found in¹ and².

PROPOSITION 1.2. Let X_1, X_2, X_3, X_4, X_5 be the positive oriented orthonormal frame at each point of a curve a in E^5 , where

$$X_1 = \alpha_{\bigstar} \left(\frac{\partial}{\partial s}\right)$$
, and $\frac{dX_1}{ds} = dX_1 \left(\frac{\partial}{\partial s}\right) \neq 0$.

Then, we have the Frenet Formulas

$$X'_{i}(s) = -t_{i-1}(s) X_{i-1}(s) + t_{i}(s) X_{i+1}(s), 2 \le i \le 4$$

 $X'_{5}(s) = -t_{45}(s) X_{4}(s)$

or

[X'1]	×	Го	t12	0	0	0]	X1
X'2	8	- t12	0	t23	0	0	X2
X'3	0.000	0	- t ₂₃	0	t34	0	X ₃
X'4		0	0	- t ₃₄	0	tas	X4
X's		0	0	0	- t4 5	0	Xs

- 98 -

where $t_{ij}: S \rightarrow IR$. A detailed knowledge of this proposition may be found in³.

DEFINITION 1.3. Using the above notation, the coefficients t_{ij} are called the higher curvatures of the curve α in E⁵³...

2. THE MAIN RESULTS

PROPOSITION 2.1. If the first principal vectors of a curve form a constant angle with the direction of a vector E, then

$$\left[\frac{1}{t_{45}}\left[\frac{t_{12}t_{34}}{t_{23}} + \left[\frac{1}{t_{34}}\left(\frac{t_{12}}{t_{23}}\right)'\right]'\right]' + \frac{t_{45}}{t_{34}}\left(\frac{t_{12}}{t_{23}}\right)' = 0$$

and vonversly, if this relation is fulfilled, then the first principal vectors of the curve form a constant angle with the direction of some vector. Further, we may write this vector and the angle as the following,

$$E = X_1 + \frac{t_{12}}{t_{23}} X_3 + \frac{1}{t_{34}} \left(\frac{t_{12}}{t_{23}}\right)' X_4 + \frac{1}{t_{45}} \left[\frac{t_{12}t_{34}}{t_{23}} + \left[\frac{1}{t_{34}} \left(\frac{t_{12}}{t_{23}}\right)'\right]' \right] X_5$$

$$\cos \theta = \frac{1}{|\mathbf{E}|} = \text{Constant}$$

where θ is the angle between X₁ and E.

PROOF. We may write

$$< E, X_1 > = C$$

where C is a real number. By differentiating, we have

$$t_{12} < E, X_2 > = 0$$

< E, X_2 > = 0

or

In the same pay, we obtain

$$-t_{12} < E, X_1 > + t_{23} < E, X_3 > = 0$$

or

$$< E, X_3 > = C \cdot \frac{t_{12}}{t_{23}}$$

Differentiating again, we have

$$-t_{23} < E, X_2 > +t_{34} < E, X_4 > = C. (\frac{t_{12}}{t_{23}})$$

or

$$< E, X_4 > = C \cdot \frac{1}{t_{34}} \cdot (\frac{t_{12}}{t_{23}})'$$

Differentiating once again, we have

$$-t_{23} < E, X_3 > + t_{45} < E, X_5 > = C. \left[\frac{1}{t_{34}} \left(\frac{t_{12}}{t_{23}}\right)'\right]'$$

$$\langle E, X_5 \rangle = C \cdot \frac{1}{t_{45}} \left[\frac{t_{12} t_{34}}{t_{23}} + \left[\frac{1}{t_{34}} \left(\frac{t_{12}}{t_{23}} \right)' \right]' \right]$$

Finally, in the same way, we obtain

$$\left[\frac{1}{t_{45}}\left[\frac{t_{12}t_{34}}{t_{23}} + \left[\frac{1}{t_{34}}\left(\frac{t_{12}}{t_{23}}\right)'\right]'\right] + \frac{t_{45}}{t_{34}}\left(\frac{t_{12}}{t_{23}}\right)' = 0$$

Conversly, if the relation is held, then this vector is constant. The constant vector E forms with the vector X_1 an angle whose cosine equals 1/|E| = constant. Without loss generality, we may assume that C = 1. Hence, we have proved the proposition.

PROPOSITION 2.2. If the fifth Frenet Vectors of a curve in E^5 form a constant angle with the direction of a vector \widetilde{E} , then

$$\left[\frac{1}{t_{12}}\left[\frac{t_{23}t_{45}}{t_{34}} + \left[\frac{1}{t_{23}}\left(\frac{t_{45}}{t_{34}}\right)'\right]'\right]' + \frac{t_{12}}{t_{23}}\left(\frac{t_{45}}{t_{34}}\right)' = 0$$

and conversily, if this relation is fulfilled, then the fifth Frenet Vectors of the curve form a constant angle with the direction of some vector. Further, we may express this vector and the angle as the following,

$$E = \frac{1}{t_{12}} \left[\frac{t_{23}t_{45}}{t_{34}} + \left[\frac{1}{t_{23}} \left(\frac{t_{45}}{t_{34}} \right)' \right]' \right] X_1 - \frac{1}{t_{23}} \left(\frac{t_{45}}{t_{34}} \right)' X_2 + \frac{t_{45}}{t_{34}} X_3 + X_5$$
$$\cos \theta = \frac{1}{|\widetilde{E}|} = \text{constant}$$

where θ is the angle between X₅ and \tilde{E} .

PROOF. Consider,

$$< \widetilde{E}, X_5 > = C$$

where C is a real number. Hence, we have

$$-t_{45} < \widetilde{E}, X_5 > = 0$$
$$< \widetilde{E}, X_4 > = 0$$

or

Differentiating, we have

$$-t_{34} < \widetilde{E}, X_3 > + t_{45} < \widetilde{E}, X_5 > = 0$$

$$\langle \widetilde{E}, X_3 \rangle = C \cdot \frac{t_{45}}{t_{34}}$$

Differentiating again, we obtain

$$-t_{23} < E, X_2 > +t_{34} < \widetilde{E}, X_4 > = C(\frac{t_{45}}{t_{34}})'$$

- 100 -

$$< \widetilde{E}, X_2 > = -C \cdot \frac{1}{t_{23}} \left(\frac{t_{45}}{t_{34}} \right)'$$

Differentiating again, we obtain

$$-t_{12} < \widetilde{E}, X_1 > + t_{23} < \widetilde{E}, X_3 > = -C \cdot \left[\frac{1}{t_{23}} \left(\frac{t_{45}}{t_{34}} \right)' \right] '$$
$$< \widetilde{E}, X_1 > = \frac{C}{t_{12}} \left[\frac{t_{23}t_{45}}{t_{34}} + \left[\frac{1}{t_{23}} \left(\frac{t_{455}}{t_{34}} \right)' \right]' \right]$$

Differentiating once again, we obtain

$$t_{12} < \widetilde{E}, X_2 > = C \left[\frac{1}{t_{12}} \left[\frac{t_{23} t_{45}}{t_{34}} + \left[\frac{1}{t_{23}} \left(\frac{t_{45}}{t_{34}} \right)' \right]' \right] \right]$$

or

$$\left[\frac{1}{t_{12}}\left[\frac{t_{23}t_{45}}{t_{34}}+\left[\frac{1}{t_{23}}\left(\frac{t_{45}}{t_{34}}\right)'\right]'\right]\right]'+\frac{t_{12}}{t_{23}}\left(\frac{t_{45}}{t_{34}}\right)'=0$$

Conversiy, if the relation is held, then this vector is constant. This constant vector E forms with the vector X_5 an angle whose cosine equals 1/|E| = constant. Without loss generality, we may assume that C = 1. These results complete the proof of our proposition.

We can say similar results for the Frenet Vectors X_2, X_3, X_4 .

It is clear that the results which we have found above may be written again using the higher curvatures of curves in Euclidean Space E^n .

In the special case we have the following results:

If the first Frenet Vectors of a curve in E^3 form a constant angle with the direction of a vector e, then

$$\left(\frac{\tau}{\kappa}\right)'=0$$

and conversily, if this relation is fulfilled, then the first Frenet Vectors of the curve form a constant angle with the direction of some vector. Further, we may express this vector and the angle as following,

$$e = X_1 + \frac{\kappa}{\tau} X_3$$
$$\cos \theta = \frac{1}{|e|}$$

where θ is the angle between X_1 and e

If the principal normals of a curve form a constant angle with the direction of a vector $\tilde{\mathbf{e}}$, then

$$\left[\frac{\kappa^2 + \tau^2}{\kappa \left(\frac{\tau}{\kappa}\right)'}\right]' + \tau = 0$$

conversly, if this relation is fulfilled, then the principal normals of the curve form a constant angle with the direction of some vector. We can express this vector by

$$\widetilde{\mathbf{e}} = \frac{\tau}{\kappa^2} \frac{\kappa^2 + \tau^2}{\left(\frac{\tau}{\kappa}\right)'} \mathbf{X}_1 + \mathbf{X}_2 + \frac{1}{\kappa} \frac{\kappa^2 + \tau^2}{\left(\frac{\tau}{\kappa}\right)'} \mathbf{X}_3$$

This constant vector \tilde{e} forms with the vector X_2 an angle whose cosine equals $1/|\tilde{e}| = \text{constant}$.

If the binormals of a curve form a constant angle with the direction of a vector $\overset{\approx}{e},$ then

$$\left(\frac{\tau}{\kappa}\right)' = 0$$

conversity, if this relation is fulfilled, then the binormals of the curve form a constant angle with the direction of some vector. We can express this vector by

$$\widetilde{\widetilde{e}} = \frac{\tau}{\kappa} X_1 + X_3$$

This constant vector \tilde{e} forms with the vector X_3 an angle whose cosine equals $1/|\tilde{e}| = \text{constant}$.

REFERENCES

- ALTIN, A.: Her Düzeyde Matematik Üzerine Notlar, Altın Betik Yayınları, 57, 70, 85, 1986.
- 2. ALTIN, A.: Spherical Images, and Higher Curvatures, 1-8, 1986.
- GLUCK, H.: Higher Curvatures of Curves in Euclidean Space. Amer. Math. Month., 73, 699-704, 1966.
- 4. ALTIN, A.: A General Cooperation Theorem for M-Polygons, The Journal of The Dental Faculty of Marmara University, 16, 99-100, 1987.
- ALTIN, A.: A General Cooperation Theorem for 3-Polygons Related with 3-Hypersaddles, The Journal of The Dental Faculty of Marmara University, 16, 101-102, 1987.