SPHERICAL IMAGES, AND HIGHER CURVATURES

Aydın ALTIN* Hasan Basri ÖZDEMİR**

SUMMARY

We generalize the concepts Spherical Tangent Image, Spherical principal Normal Image, Spherical Normal Image, and Spherical Indicatrix. Further, we give different expressions of higher curvatures of a curve, and present so me general results about them.

ÖZET

Bu makalede Küresel Teğet *Görüntüsü, Küresel Asli Normal görüntüsü, Küresel Normal Görüntü ve Küresel Gösterge* kavramlarını gen lleştirdik. *Bundan* başka *bir* eğrinin *yüksek mertebeden* eğriliklerini değişik *biçimlerde ifade ettik ve onlarla ilgili olara k* baz ^ı*genel sonuçlar sunduk.*

O. INTRODUCTION

The spherical Images may be found in many Differential Geometry Text Books [Altın, (1979), (1986), (1987)]. The key manuscripts about the higher curvatures of a curve are given in 1966 by GLUCK. I think, the results, which we found, help us for understanding Differential Geometry with many-sided.

1. PRELIMINARIES

DEFFINITION 1.1: Let (ψ, U) be a coordinate neighborhood for the submanifold M. This means that the mapping $\psi: U \rightarrow M$ is a diffeomorhism. Then

$$
\psi_{\perp}: \mathrm{T}_{\mathrm{E}}\mathrm{r} \,(\mathrm{u}) \rightarrow \mathrm{T}_{\mathrm{M}} \,(\psi \,(\mathrm{u}) \,)
$$

is a linear transformation which corresponds to the Jacobian matrix ψ . We denote the adjoint of ψ_{\star} by ψ^{\star} whic is a transformation.

DEFINITION 1.2:
$$
\psi^{\star}: T^{\star}_{M}(\psi(u)) \to T^{\star}_{E^{r}}(u)
$$

^{*} *Hacettepe üniversitesi Fen Fakültesi Matematik Bölümü.*

^{**} ludağ *üniversitesi Necatibey* Eğitim *Fakültesi Fen Bilimleri* Eğ timi *Bölümü.*

where T_M^{\star} (ψ (u)) and T_{F}^{\star} (u) are the dual spaces of T_M (ψ (u)) and T_{E}^{\star} (u), respectively. The vector spaces T_M^{\star} (ψ (u)) and T_{E}^{\star} (u) are the cotangent spaces at the corresponding points.

DEFINITION 1.3: Let U be an Euclidean neighborhood A 1-form ω is a mapping

$$
\omega:U\,\to\, \cup T^\bigstar_U\left(x\right)\,,\,x\in U
$$

where the union is taken over all $x \in U$, such that p o $\omega : U \rightarrow U$ is the identity mapping

$$
P: \bigcup T_{\overline{U}}^{\uparrow}(x) \to U, \quad t_x \in T_{\overline{U}}^{\uparrow}(x), \quad P(t_x) = x
$$

DEFINITION 1.4: A vector field is a function

$$
X:U\to \cup T_{\text{II}}(m)
$$

Such that

$$
\mathtt{Po} \; X: U \,\twoheadrightarrow\, U
$$

is the identity mapping, and

$$
P:UT_U(x) \rightarrow U. \quad P(t_x) = x, t_x \in T_U(x).
$$

DEFINITION 1.5: Let $(x_1, ..., x_n)$ be a Euclidean coorinate system in E^n , then $\left[\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right]$ is a basis of the vector space x_p of all the parallel vector fields on Eⁿ, and $[dx_1, ..., dx_n]$ is the dual basis of dual space Ω of χ_p . Let M be a r-dimensional submanifold of E^n with local coordinates $(u_1, ..., u_r)$ given by

 $x_i = x_i (u_1, ..., u_r), \quad 1 \le i \le n$

Then a 1-form on M has the analytic expression

$$
\omega = \sum_{i,j=1}^{n,r} \frac{\partial x_i}{\partial u_j} du_j \bigcirc \frac{\partial}{\partial x_i}
$$

where \circlearrowright denotes the tensor product. Hence, $\omega \in T_{\text{II}}^{\star}(\mathfrak{u}) \circlearrowright T_{\text{M}}(\mathfrak{m})$

2. THE MAIN RESULTS

DEFINITION 2.1: If the initial points of all the unit tangent vectors X_1 of a curve α in Eⁿ are shifted to the origin, their new end points trace out a curve $\overline{\alpha}$ (s) on the unit sphere, where $X_1 = \alpha_* \left(\frac{\partial}{\partial s} \right)$, and $\frac{dX_1}{ds} = dX_1 \left(\frac{\partial}{\partial s} \right) \neq 0$. This new curve is called the spherical indicatrix (or spherical tangent image) of the curve α .

PROPOSITION 2.2: Let α be a curve in Eⁿ, Let $\overline{\alpha}$ (s) be the spherical indicatrix (or spherical tangent image) of α , Let s be arc length on the spherical indicatritx, then

$$
t_{12} = \frac{d\overline{s}}{ds}
$$

 $-104-$

Where s denotes arc-length on α , and t_{12} denotes the first curvature of the curve α .

PROOF: Assume that α is a regular arbitrary speedcurve in E^{n} , then we know that

$$
\frac{\mathrm{d}s}{\mathrm{d}t} = \parallel \dot{\alpha} \parallel, \ \frac{\mathrm{d}s}{\mathrm{d}t} = \vartheta
$$

where $\dot{\alpha}$ denotes the derivative of α with respect to t. In the same way, we may write

$$
\frac{d\overline{s}}{dt} = || \dot{x}_1 ||
$$

where X_1 denotes the derivative of X_1 with respect to t. Now let's write the $\frac{1}{dt}$ detaily,

$$
\frac{\mathrm{d}\overline{s}}{\mathrm{d}t} = \parallel \dot{X}_1 \parallel, \quad \frac{\mathrm{d}\overline{s}}{\mathrm{d}t} = \parallel \frac{\mathrm{d}X_1}{\mathrm{d}s} \cdot \frac{\mathrm{d}s}{\mathrm{d}t} \parallel.
$$

From the equations $\frac{dX_1}{ds} = t_{12} X_2$, and $\frac{ds}{dt} = ||\dot{\alpha}||$ we have

$$
\frac{ds}{ds} = \frac{\frac{ds}{dt}}{\frac{ds}{dt}}
$$

$$
\frac{\mathrm{ds}}{\mathrm{ds}} = \frac{\parallel X_1 \parallel}{\parallel \alpha \parallel}
$$

$$
\frac{ds}{ds} = \frac{\|\frac{dX_1}{ds} \cdot \frac{ds}{dt}\|}{\|\alpha\|}
$$

$$
\frac{ds}{ds} = \frac{\parallel t_{12} X_2 \vartheta \parallel}{\vartheta}
$$

$$
\frac{\mathrm{ds}}{\mathrm{ds}} = | \mathbf{t}_{12} |
$$

where X_2 is the second vector of the Frenet Frame along α . Hence, we have proved our proposition.

DEFINITION 2.3: If the initial points of all the unit vectors X_i of a curve α in $Eⁿ$ are shifted to the origin, their new end points trace out a curve $\dot{\tilde{\alpha}}$ (s) on the unit sphere, where X_i denotes the ith orthonormal vector of the Frenet Frame along α . This new curve is called the ith spherical indicatrix of the curve α .

PROPOSITION 2.4: Let α be a curve in E^{H} , Let α (s) be the ith spherical indicatrix of α , and Let $\bar{\bar{s}}$ be arc length on the ith spherical indicatrix, then

$$
\frac{d\bar{s}}{ds} \leq ||t_{i-1}|| + ||t_{i}||, \quad 2 \leq i \leq n-1
$$

or

$$
\frac{d\dot{s}}{ds} \leq ||t_{(i-1)i}|| + ||t_{i(i+1)}||, 2 \leq i \leq n-1
$$

where s denotes arc length on α , and $t_{i(i+1)}$ denotes the i.th curvature of the curve *a.* ·

PROOF: Let α be a regular arbitrary speed-curve in E^n , then we may write

$$
\frac{ds}{dt} = || \alpha || \text{ or } \frac{ds}{dt} = \vartheta
$$

where α denotes the derivative of α with respect to t. In the same way, we have

$$
\frac{\mathrm{d}\bar{s}}{\mathrm{d}t} = ||\mathbf{x}_i||
$$

where X_i denotes the derivative of X_i with respect to t. We can write that

$$
\frac{d\vec{s}}{dt} = || X_i ||
$$

$$
\frac{d\vec{s}}{dt} = || \frac{dX_i}{ds} \cdot \frac{ds}{dt} ||.
$$

From the results
$$
\frac{dX_i}{ds} = -t_{(i-1)i} X_{i-1} + t_{i(i+1)} X_{i+1}, \text{ and } \frac{ds}{dt} = ||\alpha||
$$

we have the following.

$$
\frac{d\overrightarrow{s}}{ds} = \frac{\frac{d\overrightarrow{s}}{dt}}{\frac{ds}{dt}}
$$

$$
\frac{\mathrm{d}\bar{s}}{\mathrm{d}s} = \frac{\parallel X_i \parallel}{\parallel \alpha \parallel}
$$

$$
\frac{d\dot{\vec{s}}}{ds} = \frac{\|\frac{dX_i}{ds} \cdot \frac{ds}{dt}\|}{\|\alpha\|}
$$

$$
\frac{d\vec{s}}{ds} = \frac{\| -t_{(i-1)i} X_{i-1} \vartheta + t_{i(i+1)} X_{i+1} \vartheta \|}{\vartheta}
$$

$$
\frac{d\vec{s}}{ds} \le \| t_{(i-1)i} \| + \| t_{i(i+1)} \|
$$

where X_i denotes the ith vector of the Frenet Frame along α . Hence the proof is completed.

DEFINITION 2.5: If the initial points of all the unit vectors X_i of a curve α in Eⁿ are shifted to the origin, their new end points trace out a curve \mathbf{a}^* (s) on the unit sphere, where $\mathrm{X_{i}}$ denotes the jth vector of the Frenet Frame along α . This new curve is called the jth spherical indicatrix of the curve α .

PROPOSITION 2.6: Let α be a curve in $E^{\prime\prime}$, Let α (s) and α^* (s) be the ith and jth spherical indicatrices of α , and Let $\bar{\hat{s}}$ and $\bar{\hat{s}}$ be arc lengthes on the spherical indicatrices, then,

$$
\frac{d\overrightarrow{s}}{d\overrightarrow{s}} = \frac{\| -t_{(i-1)i} X_{i-1} + t_{i(i+1)} X_{i+1} \|}{\| -t_{(j-1)j} X_{j-1} + t_{j(i+1)} X_{j+1} \|}
$$

where $t_{i(i + 1)}$ and $t_{i(i + 1)}$ denote the ith and jth curvatures of α respectively.

PROOF: Let α be a regular arbitrary speed-curve in E^{n} , then we may write

$$
\frac{\mathbf{d}\mathbf{x}^{\star}}{\mathbf{d}\mathbf{t}} = \parallel \mathbf{X}_i \parallel \text{ and } \frac{\mathbf{d}\mathbf{x}^{\star}}{\mathbf{d}\mathbf{t}} = \parallel \mathbf{X}_j \parallel
$$

where X_i and X_j denote the derivatives of X_i and X_j with respect to t respectively. Now, we know that

$$
\frac{d\overset{\star}{s}}{dt} = ||X_j|| = ||\frac{dX_j}{ds} \cdot \frac{ds}{dt}|| \text{ and } \frac{d\overset{\star}{s}}{dt} = ||X_j|| = ||\frac{dX_j}{ds} \cdot \frac{ds}{dt}||.
$$

From the equations $\frac{dX_i}{ds} = -t_{(i-1)i}X_{i-1} + t_{i(i+1)}X_{i+1}$, and

 $\frac{dX_{j}}{ds}=-t_{(j-1)j}X_{j-1}+t_{j\ (j+1)}X_{j+1}$ we obtain that

 ϵ .

$$
\frac{d\stackrel{\star}{s}}{d\stackrel{\star}{s}} = \frac{\| -t_{(i-1)i}X_{i-1}\vartheta + t_{i(i+1)}X_{i+1}\vartheta \|}{\| -t_{(j-1)j}X_{j-1}\vartheta + t_{j(j+1)}X_{j+1}\vartheta \|}
$$
\n
$$
\frac{d\stackrel{\star}{s}}{d\stackrel{\star}{s}} = \frac{\| -t_{(i-1)i}X_{i-1} + t_{i(i+1)}X_{i+1} \|}{\| -t_{(j-1)j}X_{j-1} + t_{j(j+1)}X_{j+1} \|}
$$

This result compeletes the proof of our proposition.

DEFINITION 2.7: If the initial points of all the vectors X_n of a curve α in E^H are shifted to the origin, their new end points trace out a curve $\tilde{\alpha}$ (s) on the unit sphere where X_n is the nth vector of the Frenet Frame along α . The new curve is called the nth spherical indicatrix of the curve α .

PROPOSITION 2.8: Let α be a curve in Eⁿ, Let $\tilde{\alpha}$ (s) be the nth spherical indicatrix of α , and let \tilde{s} be arclength on the nth spherical indicatrix then,

$$
t_{(n-1)n} = \frac{d\tilde{s}}{ds}
$$

where s denotes arc length on α , and $t_{(n - 1)n}$ denotes the $(n - 1)$ th curvature of the curve *a.*

PROOF: Let α be a regular arbitrary speed-curve in E^n , then we may write

$$
\frac{\mathrm{d}s}{\mathrm{d}t} = \vartheta \quad \text{and} \quad \frac{\mathrm{d}\tilde{s}}{\mathrm{d}t} = \parallel X_{\Pi} \parallel
$$

where X_n denotes the derivative of X_n with respect to t. Again we know that

$$
\frac{d\tilde{s}}{dt} = ||\frac{dX_n}{ds} \cdot \frac{ds}{dt}||
$$

If we think the equations $\frac{dX_n}{ds} = -t_{(n-1)n} X_{n-1}$, and $\frac{ds}{dt} = \vartheta$ we see

that

$$
\frac{d\tilde{s}}{ds} = \frac{\frac{d\tilde{s}}{ds}}{\frac{ds}{dt}}
$$

$$
\frac{d\tilde{s}}{ds} = \frac{\parallel X_n \parallel}{\parallel \alpha \parallel}
$$

 $-108 -$

 \overline{M}

$$
\frac{\mathrm{d}\widetilde{\mathrm{s}}}{\mathrm{d}\mathrm{s}} = \frac{\parallel \mathrm{t}_{(n-1)n} \, \mathrm{X}_{n-1} \, \vartheta \parallel}{\vartheta}, \quad \frac{\mathrm{d}\widetilde{\mathrm{s}}}{\mathrm{d}\mathrm{s}} = \mathrm{t}_{(n-1)n}
$$

where $X_{n} = 1$ denotes the $(n - 1)$ th vector of the Frenet Frame along α . This completes the proof of our proposition.

PROPOSITION 2.9: Let α be a curve in E^n , let $\tilde{\alpha}$ (s) and α (s) be the first and ith spherical indicatrices of α , and let \tilde{s} and \tilde{s} be arc lengthes on the spherical indicatrices, then

$$
\frac{d\widetilde{s}}{d\widetilde{s}} = \frac{\| \mathbf{t}_{12} \mathbf{X}_2 \|}{\| - \mathbf{t}_{(i-1)i} \mathbf{X}_{i-1} + \mathbf{t}_{i(i+1)} \mathbf{X}_{i+1} \|}
$$

where t_{12} and $t_{i(i+1)}$ denote the first and ith curvatures of α respectively.

PROOF: Let α be a regular arbitrary speed-curve in E^n , then we have

$$
\frac{\mathrm{d}\widetilde{s}}{\mathrm{d}t} = \parallel X_1 \parallel \quad \text{and} \quad \frac{\mathrm{d}\dot{\overline{s}}}{\mathrm{d}t} = \parallel X_1 \parallel
$$

where X_1 and X_i denote the derivatives of X_1 and X_i with respect to t respectively. Again we can write,

$$
\frac{\mathrm{d}\widetilde{s}}{\mathrm{d}t} = \|\frac{\mathrm{d}X_1}{\mathrm{d}s} \cdot \frac{\mathrm{d}s}{\mathrm{d}t} \| \text{ and } \frac{\mathrm{d}\dot{\widetilde{s}}}{\mathrm{d}t} = \|\frac{\mathrm{d}X_i}{\mathrm{d}s} \cdot \frac{\mathrm{d}s}{\mathrm{d}t} \|.
$$

From the equations
$$
\frac{dX_1}{ds} = t_{12}X_2
$$
, and
\n
$$
\frac{dX_i}{ds} = -t_{(i-1)i}X_{i-1} + t_{i(i+1)}X_{i+1}
$$
\nwe have
\n
$$
\frac{d\tilde{s}}{ds} = \frac{||t_{12}X_2 \vartheta||}{||-t_{(i-1)i}X_{i-1} \vartheta + t_{i(i+1)}X_{i+1} \vartheta||}
$$

or ·

$$
\frac{d\widetilde{s}}{d\widetilde{s}} = \frac{\| \mathbf{t}_{12} \mathbf{X}_2 \|}{\| - \mathbf{t}_{(i-1)i} \mathbf{X}_{i-1} + \mathbf{t}_{i(i+1)} \mathbf{X}_{i+1} \|}
$$

Hence, we have proved our proposition.

PROPOSITION 2.10: Let α be a curve in E^n , Let $\widetilde{\alpha}$ (s) and $\widetilde{\alpha}$ (s) be the first and nth spherical indicatrices of α , and let \tilde{s} and \tilde{s} be arc lengthes on the spherical indicatrices, then

$$
\frac{d\widetilde{s}}{d\widetilde{s}} = |\frac{t_{12}}{t_{(n-1)n}}|
$$

where t_{12} and $t_{(n-1)n}$ denote the first and nth higher curvatures of α respectively. PROOF: Let α be a regular arbitrary speed-curve in Eⁿ, then we obtain

$$
\frac{d\widetilde{s}}{dt} = || X_1 || \text{ and } \frac{d\widetilde{s}}{dt} = || X_n ||
$$

where X_1 and X_n denote the derivatives of X_1 and X_n with respect to t respectively. On the other hand we know that

$$
\frac{d\widetilde{s}}{dt} = \|\frac{dX_1}{ds}\cdot\frac{ds}{dt}\| \text{ and } \frac{d\widetilde{s}}{dt} = \|\frac{dX_n}{ds}\cdot\frac{ds}{dt}\|
$$

If we think the equations $\frac{dX_1}{dr} = t_{12}X_2$, and $\frac{dX_n}{dr} = -t_{(n-1)n}X_{n-1}$ we see that

$$
\frac{d\widetilde{s}}{d\widetilde{s}} = \frac{\|t_{12} X_2\|}{\| - t_{(n-1)n} X_{n-1}\|} \quad \text{or} \quad \frac{d\widetilde{s}}{d\widetilde{s}} = \frac{t_{12}}{t_{(n-1)n}}
$$

This result completes the proof of our proposition.

REFERENCES

- i. ALTIN, A.: The Euler Theorem For Hypersurfaces, Ph. Deg. Thesis, 25-52, 1979.
- 2. ALTIN, A.: A General Cooperation Theorem For M-Polygons, The Journal of the Dental Faculty of Marmara University, 16, 99-100, 1987.
- 3. ALTIN, A.: A General Cooperation Theorem For 3-Polygons Related With 3-Hypersaddles, The Journal of the Dental Faculty of Marmara University, 16,101-102,1987.
- 4. GLUCH, H.: Higher Curvatures of Cıırves in Euclidean Space, Amer. Math. Month., 73, 699-704, 1966.