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ABSTRACT

For a single complex sinusoid (cisoid) in complex white Gaussian noise the de-
pendence of the Cramér-Rao (C-R) bounds on the first sampling time is known. In
this paper the first-sampling-time dependence of the bounds is examined for the two-
cisoid case. For two cisoids in complex white Gaussian noise it is shown that the lar-
gest and the smallest values of the C-R frequency and amplitude bounds do not de-
pend on the first sampling time and that the critical values of the C-R phase bounds
are smallest when the sampling times are symmetrical.

OZET
Kompleks Siniislerin Parametrelerinin Kestiriminde Orneklemenin Rolii

Kompleks beyaz Gauss giiriiltii igindeki bir kompleks siniis i¢in Cramér-Rao (C-
R) siirlanmin ilk mekleme zamanina baglihig bilinmektedir. Bu makalede sinirla-
nn ilk 6mekleme zamanina baglihig iki kompleks siniis durumu igin incelenmistir.
Komplcks beyaz Gauss giiriiltii igindeki iki kompleks siniis igin C-R frekans ve gen-
lik siirlaninin en biiyiik ve en kiigiik degerlerinin ilk Srnekleme zamanina bagl ol-

madig1 ve C-R faz sinirlarinun kritik degerlerinin 6mekleme zamanlar simetrik oldu-
gunda en az olacaf gosterilmistir.

Yard. Dog. Dr.; U.U., Miihendislik-Mimarlik Fakiiltesi, Elektronik Mithendisligi Biliimi; Burs
, Bursa.
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1. INTRODUCTION

It is well known that the Cramér-Rao (C-R) bound gives a lower bound on the va-

riance of any unbiased estimator!. Therefore, the C-R bound is frequently used for
testing the performance of parameter estimators for time-series data models.
.. The C-R bound expressions for the amplitudes, the phases and the frequencies of
superimposed cisoids in complex white Gaussian noise were derived by Rife and Bo-
orstynZ-3, For the single cisoid case, it is known that the C-R frequency bound and
the C-R amplitude bound are independent of the first sampling time while the C-R
phase bound attains its smallest value when the first sampling time is such that the
sampling instants are symmetrical?. For the multiple cisoid case, due to the comple-
xity of the C-R bound expressions, the dependence of the bounds on several parame-
ters of interest including the first sampling time typically is studied numerically rat-
her than analytically3.

Recently, the author has derived explicit expressions for the C-R bounds for the
two-cisoid case®. This paper builds upon the results of Ref. 4 to study the dependen-
ce of the C-R bounds on the first sampling time for the two-cisoid case. It is shown
that while the bounds depend on the first sampling time in general, the maximum and
the minimum values of the frequency and the amplitude bounds do not and that the
critical values of the phase bounds are smallest for the symmetric sampling case.

2. THE C-R BOUNDS

A. Single Cisoid Case: We first consider the case in which the data consist of
a single cisoid in noise:

¥(t) = Oy exp [(Wyt + @y)] + e(), t = n,...n+N - 1, (1)

Here O is the amplitude, @ is the frequency, (3, is the phase of the cisoid, e(1)
represents a zero-mean complex white Gaussian noise with variance 0 2, n is the
first value of the sampling time index ¢, and N is the total number of available data
samples. If the number of data samples N is odd and the first sampling time index,
n = -(N-1)/2, then the sampling is symmetric.

Let &0, qﬁo, and 300 be unbiased estimators of the cisoid parameters Oy, @, and
@y, respectively. Then the variance of the estimators satisfies the C-R theorem!:

A
var(&ot)hz 50%, var(@ ) 2 B 0:a.ncl var((’bo) 2 B“’O
B i 2
where the bounds oy B(poand B e given by

1
B = 2
0 2 wioyN "
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Here SNR;, denotes the signal-to-noise ratio

%2
SNRO =
o 2

and, forr=0, 1,2,

1 n+N-1
r

r,= 2t ®)
N r+l

=n

B. Two Cisoid Case: In this case the data consist of two cisoids in a zero-
mean complex white Gaussian noise:

y{f) = ia‘ cxp[j((.t},-[ + (p,)] + e(t), t=n,..,n+ N-1. (6)
i=1

A A & : .
If &f , ©; and (; are unbiased estimators of the signal parameters, respecti-
vely, O, ©; and @, i = 1, 2, then the variance of the estimates satisfies

var(&,-) 2By, var ((ﬁ,) 2 BQD:' and var((ft},-) ZBw_
1 1]

The bounds B o B(pfand Bwidepcnd on the frequencies and the phases of the

cisoids through the frequency difference 6@, = @), - i
; - @ and the phase diff
0g, = @, - ¢,. They are given by ' P e

) 1 1 Y+ Y cos(209) + Y sin(25¢)
= 1+
, 7
2.(1/6)-N A Xo + X¢ cos(200) + X sin25¢) 7
By~ 1 1 (1 LDtz cos(200) + Zg sin(25¢)
2-SNR;'N A, )

Xo + X cos(200) + Xg sin(25¢)

101



1 Z.AI.KO

Bo= C))
a)i . 5
2 - SNR; - N3 Xo+ X 005(25@ + X¢ sin(20Q)
Here SNR; denotes the signal-to-noise ratio for the ith cisoid
a?
SNR" =
o 2
and
Xo=2Ky - K - K¢ (10)
Xc=K¢ - K2 (11)
Xg =-2K K¢ (12)

Yo=(U?+ V2 + 2Y2)K, + QUY)K; + RVY)K
Yo =(U2- V2K + QUY)K, - QVY)K
Ys=QUVIK, + QVY)K¢ + QUY)K
Zy=(U?+ V2 + 229Ky + 2VZ)K, - QUZ)K
Zc=~(U2 - VK + (2VZ)K + QUZ)K;
Zs=-QUV)K) - QUZ)K + 2VZ)K
Ko=01,. A -T). T2+ C2+8,2) + 2I'(CoCy + 858)
Ke=-Cp. A1-Cop.(I2+C2-8.2) + 2C Tl - 8p8))
Ks=8;. Ay +SyI'y2-C2+ 842) - 25T, T, - CoCy)
Ay=T2-Cy2- 5,2
U= IS, -T';S,, V=T, -,
Y= CpS;-CSp, Z= Tl - CyCy - 8,84

where, for r = 0, 1, 2, the I, are given by (5), and

1 n+N-1
Ci= 2 " cos(Bw . 1)
N r+l t=n
1 n+N-1
= Z ;" sin(@w . 1)
N r+l tsi
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The expression in (9) was derived in Ref. 4 and the expressions in (7) and (8) fol-
low from the results in Ref. 4.

Using the explicit bound expressions given in (7)-(9) one can get the following
expressions for the maximum and the minimum values of the bounds with respect to
the phase difference 5(|J :

| A K
(Ba),-)mﬂz (13)
ZSNR,N3 Koz-Kcz- Ksz
] A
Bey, Inin= (14)
2'SNR,"N3 KO
1 | YO.MO+YC.MC+YS'MS
By Jmax = ————— 1+ ) (15)
2(1/02)N AI Xo'Mo‘l‘Xc'Mc‘l'Xs'Ms
| 1 Ya'ma+YC-mc+YS'mS
Bg Inin= — 1+ ) (16)
Z(I/OZ)N Al Xo'm0+Xc'mC+XS'ms
1 1 2y My+Z.- M "M’
(B¢)u1u= — 1+ ’ i ZC MC+ZS MS)
, 17
Z.SNR,».N A XG.M'O'I'XC'M‘C'*‘XS'M’S an
1 1 “m’ “m” .
B = ———(I+ Zg-my+Zc ’"C+Zs'ms)
s _ ; 1
2.5NR;.N A, Xo:mo+Xe-mc+ Xy mg (18)
where

=A2
My=A +32.MC=BC-A1A2+BZ-CZ. Ms=AC+B w2+ BT ¢z
= A2 :
my= A +32,mC=BC+AVA2+Bz-CZ Mms=AC-BYA2+ B2 _ 2
" _ » Mg=AC- +B-C
cho XOYC' BzXOYS-XSYO‘ C=XSYC_X Y
Ci§

and
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My=A2+B2, M =BC -AYAZ+B2-C?, Ms=AC +B YA2+B7-C7
my=A2?+B2mc=BC +AYAZ+B2-C?, ms=AC -B 1a2+B2-C?

A"=XcZo-XoZc, B =Xols-Xslo. C'=Xslc-Xcls.

3. THE DEPENDENCE OF THE BOUNDS ON THE FIRST
SAMPLING TIME

A. Single Cisoid Case: For this case we will show that the C-R amplitude bo-
und B, and the C-R frequency bound B wodo not depend on the first sampling
time index » and that the C-R phase bound B(Po is smallest when the sampling is
symmetric.

Proposition 1. The C-R amplitude bound B, is independent of the first sampling
time index n. 0

Proof: The proof is immediate from (2).

Lemma 1. For n; > n,, let the notation ()4 denote the quantity in parentheses for
n=ng,q=1,2. Let

(ng - ny) ‘
Tk (e ,C= cos(5a)(n1 - nz)) and s = sin(5a)(nl - nz)).
We then have
To=1 foralln (19)
@) =@),+v (20)
(rz), =, )2 +2v (T, )2 +v? (21)

(€0), =<6, +560),

(€ =), +65,), - el ~vsGso),
(€2), =clc,), +5(s,), -2ve(c, ), -2w(s,), +vidc, ), +v3s(s,),
(o), =<(80), - 5(co),

(1), =e61), - s(c), - w5, ), + welc, ),

620,662 =562, ~26.), +2(0,), + v2c(s,),

- VZI(CO )2

Proof: The lemma follows from strai

o ght forward cal i

. pr?pos.:tmn 2: The C-R frequency bound B is indepen?lanons.

ling time index n. @ ent of the first samp-

Proof: The proposition follows from substitution of (19)-(21) into (4)
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Proposition 3: The C-R phase bound Bgoois smallest for the symmetric sampling
case.
Proof: For the symmetric sampling case it follows from (5) that I'}=0s0
that (3) becomes.

1
(Bvu )sxm = 2-SNR, -N

Comparing this with (3) and noting that T/ (T, -T",2) 2 1 with the equality
holding if and only if I"} = 0, the proposition follows.

B. Two Cisoid Case: For this case we will show that the maximum and the mi-
nimum values of the C-R amplitude and frequency bounds B and BCO,' do not
change with n and that the maximum and minimum values of the C-R phase bound
B @; & smallest for the symmetric sampling case.

Proposition 4: The critical values of the C-R frequency bound (Bw )unax and

(B o; )mm are independent of the first sampling time index n.
Proof: From Lemma 1 we get

@,)=G@,), (22)
(&), = (x,), 23)
(&), =clke), +5(ks), 24)
(ks ), =clks ), -skc ), ; (25)

The proposition now follows from substitution of (22)-(25) into (13) and (14).

Proposition 5: The critical values of the C-R amplitude bounds (B )max and
(B a, )min are independent of the first sampling time index n.

Proof: From (23)-(25) we have
(Xu)| = (X0)2 (26)
(Xc )I = (cz =2 XXC )2 + ch(Xs )2 @7
(XS)| = GZ_SZIXS)Z - 20‘(XC)Z

(28)
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From Lemma 1 and (23)-(25) we have

(Yo) = (Yo ) (29)
) (c -5 XY + 2(3()’ (30)
(v, )l = (._»2 _ 52 Iys )2 - 2L‘5(YC )2 (31)

Now, (26)-(31) give

(M), = (o), Py
(1), = € -5 Yo, 200, ), .
(), = € 5 Yoy, ~2es(i1.), o
(), = ), o5
(me), = (=5 Yonc ), + 25(ms ), (36)
(mg), = (¥ =5 Yoms ), ~2es(enc. ), (37

The proposition now follows from substitution of (22) and (26)-(37) into (15) and
(16).

Proposition 6: The critical values of the C-R phase bound (B )max and (B (p.)min
are smallest for the symmetric sampling case. :

Proof: It is easy to show that for the symmetric sampling case (B(p.)mm is
]

given by
1 1
(N )minsym “25NR, N A, (8
Note from (38) that
A >0 39)
Now (39) and (14) imply that
Ko>0 ] (40)

From (39), (40) and (13) we have

O I g N @1
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and from (39), (40) and (9) we have

X o+ X cos(280 )+ X sin(26¢) > 0 (42)
Comparison of (8) with (38) and use of (39) and (42) show that

Bo, 20 ),

if we can prove that

Zy+7Z cos(28p )+ Z sin(26¢) 20 (43)
Now note that

Zo+Z¢ cos(280)+Zs sin(26p) 27, - Jz_é;_zf_

From (10)-(12) we have

22-22 -z2 =4z?[(U? + v k2 - K2 - K2 o (2ky +VE ~UK, )] (44)

Use of (41) in (44) shows that 72 —z%-273 20 . This and the fact (which is
not shown here) that Zy 2 0 give (43).

To prove
Co )2 Co )

we show that

(BWI )ma\ - (B¢' )mln:z (B¢| l\a\,sym = (Bw' )mn.sym

From (17) and (18) we get

@“)m‘@w‘)m 1 1 2447 +B?-C"?

“2-SNR, N A, Gi-2i-5)

We have from (39) and (42) that A >0and  (Xo -XZ-X])>0  and from
(22) and (26)-(28) that A ; and (X (f -X é -X f) do not depend on n. Thus, it

remains to show that ,’ A +B? - issmallest for the symmetric sampling case.
Assume now that N is odd and n, = -(N - 1)/2. Straight forward calculation gives

JOT @ -7 =), +2v (6 K, ), (k. @)
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Since (A, 20, (B),=0, (C)y=0; (A'), is just \fA’)i +(8);-(C); and
(40) shows that the second term on the nght -hand-side of (45) is nonnegative. This
completes the proof.

4. CONCLUSIONS

We have studied the dependence of the C-R bounds on the first sampling time in-
dex n for the time-series data models consisting of one or two cisoids in complex
white Gaussian noise. For the single cisod case we have shown that the frequency
and the amplitude bounds do not depend on n and the phase bound is smallest for the
symmetric sampling case. For the two cisoid case we have shown that while the
bounds depend on n in general, the critical values of the frequency and amplitude
bounds do not and the critical values of the phase bounds are smallest for the
symmetric sampling case.
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