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Abstract 

 
The Probability Distribution of Lengths of Stay in Hospital is a matter of 

debate. Weibull, Gamma and Lognormal distributions are commonly used 
distributions for the Lengths of Stay in hospital data in the related Literature. In 
recent years, researchers found evidence that Power Law Probability Distribution 
fits well to this data.   

This study focused on the investigation of whether the distribution of the 
data follows Power Law, Weibull, Gamma and Lognormal or not. For this purpose, 
a sample of a Turkish Hospital data was used and tested. Results show that the data 
follows a Lognormal Probability Distribution for the Turkish Case. 

Key Words: Probability Distributions, Power Law Probability Distribution, 
Lengths of Stay in Hospital. 

 
Hastanede Yatma Süreleri İçin Olasılık Dağılımı  

Modellerinin Test Edilmesi  
 

Özet 
 
Hastanede Yatma Sürelerinin Olasılık Dağılımı tartışma konusudur. 

Literatürde, hastanede yatma süreleri verileri için Weibull, Gamma ve Lognormal 
dağılımları çoğunlukla kullanılan dağılımlardır. Son yıllarda, araştırmacılar Kuvvet 
Yasası Olasılık Dağılımının bu veriye iyi uyduğuna yönelik kanıtlar bulmuştur. 
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Bu çalışma, verilerin Kuvvet Yasası, Weibull, Gamma ve Lognormal 
dağılımına sahip olup olmadığının araştırılmasına odaklanmıştır. Bu amaçla, bir 
Türk hastanesi örneklemi kullanılmış ve test edilmiştir. Sonuçlar, Türkiye örneği için 
verilerin Lognormal Olasılık Dağılımına sahip olduğunu göstermektedir.  

Anahtar Kelimeler: Olasılık Dağılımları, Kuvvet Yasası Olasılık Dağılımı, 
Hastanede Yatma Süresi. 

1. LITERATURE  
The length of stay (LOS) in hospital is defined as the number of days 

of a patient’s stay in hospital to get treatment in a certain period (Esatoğlu 
and Bozat (2002) and number of days a patient remains in the hospital from 
admission to discharge (Chassin, 1983). This concept was examined from 
different perspectives in academic studies. These studies generally focused 
on management of hospital care, quality control, appropriateness of hospital 
use and hospital planning (Marazzi, Paccaud and Ruffieux, 1998), health 
planning and formation of payment policy (Xiao, Lee and Vemuri (1999), 
and performance indicator for an acute care hospital (Keefler, Duder and 
Lechman (2001). Especially, LOS is a basic decision making factor (Faddy, 
Graves and Pettitt, 2009) for evaluating the quality and effectiveness of the 
medical care in hospital (Esatoğlu and Bozat, 2002), for measuring the 
hospital efficiency (Rafiei, Ayatollahi and Behboodian, 2007), for resource 
allocation process in the hospital (Hellervik and Rodgers, 2007). Lim and 
Tongkumchum (2009) expressed that the length of hospital stay is a common 
parameter used to indicate health resource utilization, health care cost and 
severity of disease. Lee and others (2010) declared that prolonged inpatient 
care, acute care and rehabilitation therapy are the main causes of hospital 
expenditure inflation. Bai and others (2014) considered the LOS in hospital 
as a reasonable estimate of resource use inpatient care as well as treatment 
outcomes. 

It is well known that the empirical distribution of LOS is positively 
skewed (Xiao, Lee and Vemuri, 1999). The best way to model LOS is to use 
logarithmic transformation of the variable and use it with ordinary least 
square (OLS) regression (Faddy, Graves and Pettitt, 2009). The lying factor 
behind the logarithmic transformation is to attain normality so that multiple 
regression and associated tests can be applied (Xiao, Lee and Vemuri, 1999). 
Because of the empirical distribution of LOS is very asymmetrical with a 
broad tail, it makes many statistical estimates less robust (Hellervik and 
Rodgers, 2007). The determination of the distribution of LOS comes into 
prominence within this scope. Marazzi, Paccaud and Ruffieux (1998) 
represent the adequacy of three commonly used models for describing the 
distributions of LOS. These are: Weibull, Gamma and Lognormal 
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probability distributions. Besides these widely used models, Hellervik and 
Rodgers (2007) showed that the distribution of LOS in hospitals is found to 
be well approximated by power law distribution.   

In the context above, the aim of this paper is to investigate whether 
the distribution of the Lengths of Stay in Hospital data (a sample of a 
Turkish Hospital in Edirne) follows a Power Law, Weibull, Gamma or 
Lognormal probability distribution or not. To do so, in Section 2 and Section 
3 the probability distributions that are mentioned above are explained 
theoretically. Research process and results were given Section 4. In this 
section, our approach will be to test the recent evidence that the Lengths of 
Stay data follows a Power Law probability distribution at first. Then, we will 
test whether the data follows one of the commonly used distributions. And 
the final section covers the summary and conclusion. 

2. POWER LAW PROBABILITY DISTRIBUTION 
Mathematically a random variable  is said to have a Power Law 

Distribution if 
 (1) 

for constants  and  (Mitzenmacher, 2003).   is known as the 
exponent or scaling parameter (Clauset, Shalizi and Newman, 2009: 2). 

 
Figure 1. 

Visual View of the Power Law Distribution (Newman, 2005: 326) 
 
Figure 1(a) presents the histogram of the set of random numbers 

which have a power-law distribution with exponent  and Figure 1(b) 
shows the same histogram on logarithmic scales. Most power-law 
distributions occurring in the nature have  (Newman, 2005: 326). 
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There are occasional exceptions that the scaling parameter ranges between 
1.5 . 

There are two main ways of the determination of whether the 
empirical data follow Power Law distribution or not. These are graphical and 
formal methods.  

2.1. Graphical Method 

In graphical method, a histogram and the same histogram on 
logarithmic scales of the empirical data is drawn. Then, the shapes of these 
two graphs are evaluated with naked eye. A histogram of a quantity with a 
power-law distribution appears as is seen in Figure 1(a) and appears as is 
seen in Figure 1(b) as a straight line when plotted on logarithmic scales. 

2.2. Formal Methods 

In formal methods, there are a variety of ways to detect whether the 
empirical data follow a power-law distribution or not. These are value of 
scaling parameter, Transformation Method and Kolmogorov Smirnov (KS) 
Test. 

2.2.1. Value of Scaling Parameter 

One way is to take logarithms of both sides of the equation 1 as 
below: 

 (2) 
The parameters of this equation are estimated with Ordinary Least 

Squares (OLS) Estimation Method. If the estimated value of the scaling 
parameter ( ) ranges between 1.5 and 3 then it can be said that the data 
follow Power Law probability distribution. However, the estimated value of 
the scaling parameter is biased (Newman, 2005: 327; Clauset, Shalizi and 
Newman, 2009: 665). In this situation, Maximum Likelihood Estimates 
(MLE) is proposed by Clauset, Shalizi and Newman (2009). When the 
variable is continuous then the parameters and standard deviation of the 
scaling parameter is estimated with the following formulas: 

                                        (3) 

                       (4) 

                                       (5) 

On the other hand, when the variable is discrete then the parameter 
estimates turn into following formulas: 
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                                      (6) 

                    (7) 

Researchers indicated that when the  value is taken equal to or 
greater than six ( ), the data fits well to the power-law distribution. 
In the end, the data should be reduced. After the MLE estimation, if the 
estimated value of the scaling parameter ( ) ranges between 1.5 and 3 then it 
can be said that the data follow Power Law probability distribution. 

In some cases the behavior of power-law probability distribution 
breaks down. For instance; the noise is seen in the tail of the histogram on 
the logarithmic scales as it is in lower side of Figure 1(b). In such case, the 
estimation of  becomes important in order to take its proposed value 6. 
Because,  represents the starting point of the behavior of power-law 
probability distribution. By estimating the true value of more reliable 
estimate of the scaling parameter can be obtained with the MLE method 
above.  

2.2.2. Transformation Method  

One of the ways of testing the data in a formal way is to use the 
transformation method which was proposed by Clauset, Shalizi and Newman 
(2009). 1000 uniformly distributed random real numbers that are between 
zero and one  reproduced with this approach.  parameter that 
was estimated with MLE method,  value and reproduced random 
numbers   are used in the following transformation formula to produce 
random numbers that follow Power Law probability distribution. 

                  (8) 
After this simulation, 95 th percentile of the reduced data and 95 th 

Percentiles of 100 samples for n=1000 are compared. When 95 th Percentiles 
of 100 samples for n=1000 is higher than 95 th percentile of the reduced 
data, then it is said that the data follows a Power Law distribution. The 
weakness of this approach is the usage of , not estimating it . 

2.2.3. Kolmogorov Smirnov Test 

More reliable formal method is goodness of fit test named 
Kolmogorov Smirnov Test. KS statistic (D) is simply the maximum distance 
between cumulative distribution function  of the data for the 
observations with value at least  and cumulative distribution function 
for the power-law model that fits the data in the region . 
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                      (9) 
The usage of estimation of  minimizes D (Clauset, Shalizi and 

Newman, 2009: 672). The hypotheses are as follows: 

 
 

The p-value of D statistic that is close to “1” indicates that the data 
follows a Power Law probability distribution. On the other hand, Goldstein 
and others (2004) derived following KS Test Table for Power Law 
Distribution which considers different n: 

 
Table 1. KS Test Table for Power Law Distribution 

(Goldstein and others, 2004:3) 
 Quantile 

n 0.9 0.95 0.99 0.999 
10 0.1765 0.2103 0.2835 0.3874 
20 0.1257 0.1486 0.2003 0.2696 
30 0.1048 0.1239 0.1627 0.2127 
40 0.0920 0.1075 0.1439 0.1857 
50 0.0826 0.0979 0.1281 0.1719 
100 0.0580 0.0692 0.0922 0.1164 
500 0.0258 0.0307 0.0412 0.0550 
1000 0.0186 0.0216 0.0283 0.0358 
2000 0.0129 0.0151 0.0197 0.0246 
3000 0.0102 0.0118 0.0155 0.0202 
4000 0.0087 0.0101 0.0131 0.0172 
5000 0.0073 0.0086 0.0113 0.0147 
10000 0.0059 0.0069 0.0089 0.0117 
50000 0.0025 0.0034 0.0061 0.0077 

 
If the D statistic is lower than the Table value, then then it is said 

that the data follows a Power Law distribution. 

3. WEIBULL, GAMMA AND LOGNORMAL 
PROBABILITY DISTRIBUTIONS 

A random variable  is said to have a Weibull Distribution with 
parameters  and  if the probability density function of   is 

                 (10) 

Here,  and . 
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Figure 2. 
Visual View of the Weibull Distribution 

 
The figure above shows that the Weibull distribution’s shape 

changes depending on the different values of  and  parameters. 
 If  is a continuous random variable then is said to have a 

Gamma Distribution if the probability density function of  is 

 
Here ,  and  (Aytaç, 2004: 308). 

When  then we have the standard Gamma Distribution.  parameter 
governs the shape of the gamma density and  parameter is a scale 
parameter. Gamma distribution shape changes depending on the different 
values of  parameter as is seen below.      

                              𝑓𝑓(𝑥𝑥) 

 
𝑥𝑥 

        

α=0.5 and β=1 
    
           α=1 and β=1 
        
                       α=1.5 and β=1 
                
                      
                             

 
 

 
 

 

 
Figure 3. 

Visual View of the Gamma Distribution 
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A random variable  is said to have a Lognormal Distribution if 
the random variable  has a normal distribution. The resulting 
probability density function of a lognormal random variable when  is 
normally distributed with parameters  and  is 

 
       

 
 

Figure 4. 
Visual View of the Lognormal Distribution 

 
There are two main ways of the determination of whether the 

empirical data follow one of the common distributions or not. These are 
graphical and formal methods.  

3.1. Graphical Method 

Probability plot (pp-plot) is a graphical method for assessing 
whether or not a data set follows a given distribution such as Normal, 
Weibull, Gamma or Lognormal and etc. The values of the given variable 
which was arranged in ascending order (vertical axis) are plotted against the 
percentiles of a given distribution (horizontal axis). 
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Figure 5. 

Probability Plot 
 
The data are plotted against a theoretical distribution in such a way 

that the points should form approximately a straight line. Departures from 
this straight line and upper and lower bounds (the dashed lines) indicate 
departures from the specific distribution.  

pp-plot provide the information about the outliers of the given data 
and the skewness of the data graphically (Ravi and Butar, 2010: 2). If the 
points are above the straight line, then this means that the data is left skewed 
data. If the points are below the straight line, then this means that the data is 
right skewed data. 

3.2. Formal Methods  

The formal methods are Kolmogorov Smirnov (KS) Test and its 
modification named Anderson Darling (AD) Test for assessing whether or 
not a data set follows a given distribution such as Normal, Weibull, Gamma 
or Lognormal and etc.  

The Anderson Darling Test is used to test if a sample of data came 
from a population with a specific distribution. It is the modification of the 
KS Test and gives more weight to tails than does KS test. The KS test is 
distribution free in the sense that the critical values do not depend on the 
specific distribution being tested. On the other hand, the Anderson Darling 
test makes use of the specific distribution in calculating critical values. This 
has the advantage of allowing a more sensitive test. Hypotheses of this test 
are as follows:  
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4. RESEARCH AND RESULTS  
In this section, whether the Lengths of Stay in Hospital data (a 

sample of a Turkish Hospital in Edirne) follows a Power Law probability 
distribution or not will be tested at first. Then, the commonly used 
distributions Weibull, Gamma or Lognormal will be tested.  
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Figure 6. 
Histograms of the Length of Stay in Hospital 

 
In the figures above the histograms of the data of Lengths of Stay in 

Hospital are seen (See Appendix 1 for the data). The distributions of both 
data (raw data and classified data) have very asymmetrical distributions. The 
right tail of the both distribution is longer which means that the distribution 
is right skewed or right-tailed.  Mode, median and mean of the raw data are 
respectively in ascending order Mo=2, Me=4 and . The data gives 
signals that it follows a Power Law distribution. 

The log-log regression estimation results are shown in the table 
below: 

 
Table 2. Log-log Regression Estimation Results 

               Models 
Estimates 

Log-log model with  
Raw Data 

Log-log model with  
Classified Data 

 6.940 8.250 
p-value 0,000 0,000 

  

 -0.805 -1.970 
p-value 0.000 0.000 

  

 0.85 0.88 
  

 14363.51 287.2 
p-value 0.000 0.000 



Testıng The Probabılıty Dıstrıbutıon Models For The Patıents’… 

 

129 

In both models,  and  parameters were found statistically 
significant (all p-values < α=0.05). Namely, the coefficient of determinations 
and F Statistics are fine, as well. However, main interest is  parameter’s 
value that may give clue whether the data follows a Power Law probability 
distribution or not. The expectation of its value is only satisfied with 
classified data model which is between . The data gives 
signals that it follows a Power Law distribution. However, as is mentioned 
before this estimation is biased. This value can’t be used as an indicator for 
the behavior of power-law. More appropriate method MLE used to solve this 
problem. To do so the reduced data ( ) used (See Appendix 2 for the 
reduced data) as is proposed. The MLE estimation results are shown below: 

 
 and  parameters found respectively 28.63 and -2.65. In addition 

to this, standard error of the scaling parameter ( ) found 0.275. Although, 
the  value (2.65) is between , we can’t say that the data 
follows a Power Law distribution. The data gives signals that it follows a 
Power Law distribution, again. 

One of the ways of testing the data in a formal way is to use the 
transformation method which was proposed by Clauset, Shalizi and Newman 
(2009). 1000 uniformly distributed random real numbers that are between 
zero and one  reproduced with this approach.  parameter that 
was estimated with MLE method,   value and reproduced random 
numbers   are used in the following transformation formula to produce 
random numbers that follow Power Law probability distribution. 

 
After this simulation, 95 th Percentiles of 100 samples for n=1000 

are given in Appendix 3. Note that 95 th percentile of the reduced data is 27 
days. When 95 th percentile of the reduced data (27) is compared with the 95 
th Percentiles of 100 samples for n=1000 are given in Appendix 3, it is 
determined that all percentile values are higher than this value. This 
indicates that the data of lengths of stay in hospital follow a Power Law 
distribution. 

In the above analysis, some signals observed that the data of lengths 
of stay in hospital may follow a Power Law distribution. However, unless 
we estimate  value and perform KS test we cannot still say that the data 
exactly follow a Power Law probability distribution. Because more reliable 

 and  parameter MLE estimates can be obtained by estimating  value. 
Following two tables present the mentioned MLE estimates, KS test 
statistics and the comparisons. 
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Table 3. MLE Estimates and KS Test Statistics 
   Estimates 

Data     p-values 

Classified Data 7 -147.0075 1.52 0.1599 0.0590 
Raw Data 6 -2696.6 2.56 0.0641 0 

 
p-values that are close to “1” indicates that the data follows a Power 

Law probability distribution. In the Table above, none of the p-values are 
close to 1. Results are exactly opposite that they are respectively zero and 
close to zero. Moreover, comparisons of KS test values with Goldstein and 
others (2004) KS table values give same results in the table below. 

 
Table 4. Comparisons of KS Test Values with Goldstein  

and other’s (2004) KS Table Values 
 n  0.95 0.99 0.999 

Classified Data 42 0.1599 >0.0979 (doesn’t fit) >0.1281 (doesn’t fit) 0.1719(fits) 
Raw Data 927 0.0641 >0.0216 (doesn’t fit) 0.0283 (doesn’t fit) 0.0358 (doesn’t fit) 

 
As a result, KS test results show that the data of lengths of stay in 

hospital don’t fit Power Law probability distribution.  
Second, a formal test called Anderson Darling (AD) test and a visual 

decision tool that gives upper and lower bounds called Probability Plot used 
to decide whether the data in Appendix 1 follow one of the commonly used 
distributions (Weibull, Gamma and Lognormal).  
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Figure 7. 
PP Plot of Length of Stay for the Weibull Distribution and AD Test Statistic 
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AD test statistics is found 0.977. When p-value of AD statistic is 
compared with significance level (p=0.013<α=0.05) null hypothesis rejected 
which means that the data doesn’t follow Weibull probability distribution.  
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Figure 8. 

PP Plot of Length of Stay for the Gamma Distribution and AD Test Statistic 
 
AD test statistics is found 1.606. When p-value of AD statistic is 

compared with significance level (p=0.005<α=0.05) null hypothesis rejected 
which means that the data doesn’t follow Gamma probability distribution. 
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Figure 9. 

PP Plot of Length of Stay for the Lognormal Distribution and  
AD Test Statistic 
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AD test statistics is found 0.588. When p-value of AD statistic is 
compared with significance level (p=0.118>α=0.05) null hypothesis didn’t 
reject which means that the data follow Lognormal probability distribution. 

5. CONCLUSION  
The LOS in hospital has great importance for hospital management. 

It is used for various purposes such as management of hospital care, quality 
control, appropriateness of hospital use, hospital planning, formation of 
payment policy, measure of hospital efficiency and etc. In the related 
literature, it is well known that the empirical distribution of LOS is 
positively skewed. Because of the empirical distribution of LOS is very 
asymmetrical with a broad tail, it makes many statistical estimates less 
robust. The determination of the distribution of LOS comes into prominence 
within this scope.  

Besides three commonly or widely used models for describing the 
distributions (Weibull, Gamma and Lognormal) of LOS indicated by 
Marazzi, Paccaud and Ruffieux (1998), Hellervik and Rodgers (2007) 
showed that the power law probability distribution model can also be used 
for describing the distribution of LOS. In this study, we examined Paccaud 
and Ruffieux’s (1998) and Hellervik and Rodgers’s (2007) mentioned 
models. Namely, we focused on the investigation of whether the distribution 
of the data follows Power Law, Weibull, Gamma and Lognormal or not. For 
this purpose, a sample of a Turkish Hospital data was used and tested. 
Results show that the data follows a Lognormal Probability Distribution for 
the Turkish Case. To conclude, the best way to model LOS for the sample 
used in this study is to use logarithmic transformation of the variable and use 
it with ordinary least square (OLS) regression and apply associated tests. 

The results of this research have some limitations. First, these results 
are valid for the Edirne Hospital. More studies for the other Turkish 
hospitals are needed to be performed. Second, the sample that was used in 
this study covers a specific period of time. Sample can be extended for more 
periods. Finally, the population of the data assumed to be homogeneous and 
the sample tested for a specific probability distribution. However, there 
exists a literature that states the population of the data can be heterogeneous 
which means that the data can be characterized more than one distribution. 
For the further studies the data should be tested whether it can be modeled 
with the mixture probability models.  
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Appendix 1. Data 
Lengths of Stay in Hospital (Days) Frequency 

0 158 
1 294 
2 451 
3 382 
4 299 
5 184 
6 153 
7 174 
8 86 
9 70 
10 46 
11 44 
12 57 
13 33 
14 37 
15 22 
16 5 
17 20 
18 24 
19 12 
20 19 
21 36 
22 7 
23 2 
24 10 
25 7 
26 8 
27 8 
28 11 
29 3 
30 2 
31 5 
32 1 
33 3 
36 2 
39 3 
42 2 
43 2 
45 3 
48 1 
62 1 

117 1 
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Appendix 2. Reduced Data (x ≥ 6) 
Lengths of Stay in Hospital (Days) Frequency 

6 153 
7 174 
8 86 
9 70 
10 46 
11 44 
12 57 
13 33 
14 37 
15 22 
16 5 
17 20 
18 24 
19 12 
20 19 
21 36 
22 7 
23 2 
24 10 
25 7 
26 8 
27 8 
28 11 
29 3 
30 2 
31 5 
32 1 
33 3 
36 2 
39 3 
42 2 
43 2 
45 3 
48 1 
62 1 
117 1 
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Appendix 3. 95 th Percentiles of 100 samples for n=1000 
37,000 41,552 32,874 38,380 34,380 32,849 35,040 38,420 33,030 39,400 
34.030 38,364 35,010 33,746 35,481 36,897 33,573 39,530 30,314 36,104 
36,530 39,571 35,028 36,231 34,480 35,090 37,265 31,929 32,590 35,409 
39,609 36,590 35,620 33,646 37,552 33,190 35,416 39,100 35,916 37,630 
40,304 34,330 37,223 32,936 36,599 36,733 36,218 38,021 37,573 37,908 
35,111 33,616 36,323 30,796 32,296 35,607 39,435 32,569 38,580 30,834 
38,940 34,578 35,424 32,410 34,546 37,689 38,475 39,501 38,581 41,980 
39,007 37,360 37,215 31,734 35,009 37,750 39,511 32,170 40,160 32,708 
36,754 34,907 34,663 42,173 36,522 39,106 37,873 37,743 42,483 40,454 
41,401 42,974 40,313 40,887 41,400 36,373 34,593 38,018 36,382 39,621 
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