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VEHICLE 

 

Ömer BİNGÜL 

 

Bursa Uludağ Üniversitesi 

Fen Bilimleri Enstitüsü 

Otomotiv Mühendisliği Anabilim Dalı 

 

Danışman: Dr. Öğr. Üyesi Ahmet YILDIZ 
 

Bu tezde, 4x4 tekerlek içi motorlu bir elektrikli aracın doğrusal olmayan aktif 

süspansiyon sisteminin bulanık mantık tabanlı çok amaçlı optimizasyonu, süspansiyon 

sistemlerinin yuvarlanma açısı ve yük transferi gibi gerçek çalışma koşulları dikkate 

alınarak incelenmiştir. Bu bağlamda, on bir serbestlik derecesine sahip ikinci dereceden 

lastik ve kübik süspansiyon katılığına sahip doğrusal olmayan bir tam elektrikli araç 

modeli ve beş serbestlik dereceli bir koltuk-sürücü modeli oluşturulmuştur. Sürüş ve 

sağlık kriterlerini değerlendirmek için ISO 2731-1’de tanımlanan gereklilikler esas 

alınmıştır. Seçilen amaç fonksiyonları, weighted root mean square baş ivmesi, root mean 

square koltuk ivmesi, crest factor, titreşim doz değeri, root mean square baş ivmesinin 

root mean square koltuk ivmesine oranı, root mean square üst gövde ivmesinin root mean 

square koltuk ivmesine oranı, ve root mean square üst gövde ivmesidir. Bunlara ek olarak, 

nadiren incelenen rollover etkisi araştırılmıştır. Root mean square süpansiyon 

deplasmanı, root mean square tekerlek deplasmanı, root mean square tekerlek içi motor 

deplasmanı ve yuvarlanma açısı kısıtlar olarak seçilmiştir. Optimizasyon NSGA-II 

algoritması ile gerçekleştirilmiştir. Pasif sistem için tasarım değişkenleri; süspansiyon, 

tekerlek içi motor ve koltuğun yay katılıkları ve amortisör sönüm katsayılarıdır. 

Ardından, en iyi sürüş konforu ve sağlık kriterini sağlamak için proportional derivative 

kontrolcü ile birleştirilmiş bir bulanık mantık kontrolcü optimize edilmiştir. Sunulan 

optimizasyon sonuçlarının bulanık mantık kontrolcünün pasif sisteme karşılık olarak 

önemli bir gelişme gösterdiği ve yük transfer indeksinde devrilme koşuluyla ilgili 

olumsuz bir değişiklik göstermediği görülmektedir. 
 

Anahtar Kelimeler: elektrikli araç, tekerlek içi motor, çok amaçlı optimizasyon, genetik 

algoritma, yuvarlanma etkisi 

2021, xiv + 88 sayfa. 
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In this thesis, fuzzy logic based multi-objective optimization of a nonlinear active 

suspension system of 4x4 in-wheel motor-driven electrical vehicle is studied by 

considering real working conditions such as roll angle and load transfer of the suspension 

systems. In this regard, a nonlinear full electrical vehicle model with quadratic tire 

stiffness and cubic suspension stiffness with eleven degrees of freedom and a seat-driver 

model with five degrees of freedom implemented and optimized by the guidelines 

introduced in ISO 2731-1 to assess ride and health criteria. Selected objective functions 

are comprised of weighted root mean square head acceleration, root mean square seat 

acceleration, crest factor, vibration dose value, the amplitude of head root mean square 

acceleration to seat root mean square acceleration, the amplitude of upper torso root mean 

square acceleration to seat root mean square acceleration, and root mean square upper 

torso acceleration. In addition to these, rarely considered rollover effect was investigated. 

Root mean square suspension displacement, root mean square tire displacement, root 

mean square in-wheel motor displacement, and roll angle were selected as constraints. 

Optimization was carried out with NSGA-II algorithm. Design variables for the passive 

system are; stiffnesses and dampers of suspension, in-wheel motor, and seat. Then, a 

fuzzy logic controller coupled with a proportional derivative controller optimized for best 

ride comfort and health criterion. Presented optimization results demonstrated a 

significant improvement over the passive system with fuzzy logic controller, and the load 

transfer index showed no adverse change between models concerning the rollover 

condition. 
 

Key words: electric vehicle, in-wheel motor, multi-objective optimization, genetic 

algorithm, rollover effect 

2021, xiv + 88 pages. 
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1. INTRODUCTION

Electic Vehicles (EVs) attracted more research interest in recent years as the next gen­

eration transportation vehicles as fossil fuel­powered vehicles wreak havoc on the envi­

ronment by causing global warming. U.S Environmental Protection Agency states that

EVs provide a massive improvement against Internal Combustion Engines (ICEs) from

12­30% to 77% in terms of energy efficiency (DOE and EPA, 2021). More importantly,

tens of millions of people suffer, and millions of people lose their lives due to air pollu­

tion every year. Air pollution increases respiratory morbidity and mortality, which caused

3.7 million people to lost their lives just in 2012 due to poor air quality (Jiang, Mei, &

Feng, 2016). ICEs, as one of the major reasons for poor air quality in cities, presents a big

environmental impact with high emissions and fine particulate matter pollution.

As the impact of ICEs on the environment and public health has become more clear, more

effort than ever before is being made to accelerate the development of EVs. As stated by a

report made by Edison Electric Institute, while the US housed 1 million EVs in 2018, 18.7

million EVs expected to be on US roads with annual sales exceeding 3.5 million, more

than 20% of annual automobile sales, by 2030. While there is so much inclining to EVs in

the world, Turkey showed their interest by the foundation of Turkey’s Automobile Joint

Venture Group Inc., also known as TOGG. As the construction of Turkey’s EV production

factory in Gemlik/Bursa continuing and the first production car is expected to hit the roads

in 2022, production capacity is expected to reach one hundred thousand by 2027 (Türkiye

Elektrikli ve Hibrid Araçlar Derneği, 2020). Moreover, as stated in March 2021, the New

Generation Commercial Vehicle and Battery Production facility in Kocaeli, a venture of

Ford Otosan, was announced and expected to reach a production capacity of two hundred

ten thousand commercial EVs and hundred thirty thousand EV battery by 2027 as Turkey’s

second EV production facility (Anadolu Ajansı, 2021). EVs has numerous benefits com­

pared to ICEs such as higher efficiency, enhanced comfort, lower cost of ownership, and

zero greenhouse gas emissions. All these advantages of EVs and environmental effects of

ICEs drive the industry to EVs.
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While there is somuch attention to EVs and their main differences to ICEs are their electric

motor and battery system, their suspension system requires as much research concentra­

tion. A vehicle’s handling capabilities are significantly affected by the suspension sys­

tem’s dynamic behavior, meaning that performance improvements of suspension systems

positively affect the comfort, forestall fatigue, health risks, and decrease traffic accidents

(D. Cao, Song, & Ahmadian, 2011).

It is possible to identify suspensions as passive, semi­active, and active (Hrovat, 1997).

Passive suspensions comprise spring and dampener elements. Passive systems comprise

the superiority of being an unsophisticated design, easy application, no energy consump­

tion, and high­reliability (W. Sun, Gao, & Shi, 2020). However, they are insufficient in

promoting comfort and handling due to the inability of variable spring and shock absorber

characteristics to handle different road conditions and conflicting performance expecta­

tions (Naudé & Snyman, 2003).

Semi­active suspensions have shock absorbers that have changeable characteristics. This

means that damping coefficients or spring stiffness can be adjusted at a specific range, and

due to their low energy consumption and high reliability, they are available in numerous

vehicles (Paulides, Encica, Lomonova, & Vandenput, 2006). Nonetheless, the resulting

damping or spring forces have the constraints of a passive suspension system and can

only provide limited improvement in comfort, although they accommodate significant

improvement over passive suspension systems (W. Sun et al., 2020).

Active suspensions consist of the same damper and spring elements as passive systems.

In addition to these, an actuator is present in these types of suspensions, which separates

these systems from the other two. Active suspensions systems have high energy consump­

tion and can produce forces independent of relative suspension displacement or velocity.

Although due to their cost, size, and implementation difficulties, active suspensions are

not popular (Li, Liu, Gao, & Shi, 2012).

Suspension system design is also essential in EVs in precisely the same way they are

in ICEs. EVs also comprise passive, semi­active and active suspensions, and moreover,

they provide advantages over traditional ICE vehicles in terms of efficiency, lightweight
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designability, and environmentally by zeroing greenhouse gas output. Electric motors,

compared to ICEs, contain a much fewer number of parts which in turn gives them the

advantage of being easier to design andmanufacture, more prolonged lifespanmakes them

economically desirable, much less noise and vibration creation during operation enhance

comfort, instantaneous speed control provides more performance output.

For EVs two approaches are possible for the positioning the electric motor, just like the

ICEs, the electric motor can be positioned on the sprung mass, vehicle body, and also

due to not having strict size restrictions of ICEs, electric motors can be positioned on the

unsprungmass, inside wheels. In­wheelMotor (IWM) EV design allows the vehicles to be

more compact (Nagaya, Wakao, & Abe, 2003). Nevertheless, this design also increases

the unsprung mass’s weight, drastically affecting comfort, handling, and health criteria

(Nagaya et al., 2003).

Many studies have been carried out on the optimization of EVs and IWM configurations

(TOKSOY & YILDIZ, 2020; Yildiz & Özel, 2021). Compared to IWMs, EVs with cen­

tralized propulsion have the advantage of longer motor lifespan due to lower motor vi­

bration, higher comfort, and better road handling due to lower unsprung mass (Liu, Gu,

& Zhang, 2017). Although centralized propulsion systems have these advantages, IWM

propulsion systems have been extensively researched owing to their native advantages

such as simplicity, efficiency, swift and accurate torque generation without adverse ef­

fects on drive­shaft, ease of X­by­wire implementation, enhancing of Electronic Stabil­

ity Control (ESC) system, Traction Control System (TCS), and Anti­lock Brake Systems

(ABS) performance (Murata, 2012a). While IWMs have many upsides, some significant

disadvantages prevent them from being used in production cars, such as an increase in the

wheels’ mass leads to decreased comfort and road­holding abilities. Nagaya et al. (2003)

developed an IWM system which is defined as Advanced Dynamic Damper Mechanism

(ADM) to reduce these adverse effects. The motor acted as a dynamic vibration absorber

isolated from the unsprung mass by attaching the motor to the wheel via a passive suspen­

sion mechanism. It was found that this system reduced fluctuations in dynamic tire loads,

vibrations in the motor, wheel, and vehicle body.
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While EVs and IWMs provide many improvements, the design phase of any suspension

system contains compromises because comfort, reliability, and safety requirements are

most of the cases trade­off objectives, and determination of suspension characteristics is

a choice that needs to be made in suspension design (H. Chen & Guo, 2005). Due to

suspension systems compromising nature, multi­objective optimization would benefit the

suspension systems development phase in acquiring optimal suspension.

W. Sun et al. (2020) defines the successful development of active suspension systems in

two stages. W. Sun et al. states that foremostly creating a dynamic model of the vehicle,

and secondly designing and optimizing the active system’s control strategy has a crucial

impact on comfort, health, and safety. W. Sun, Li, Huang, and Zhang (2017) states that

three external sources that cause dynamic vehicle responses are the road excitation, inertia

accelerations caused by acceleration/deceleration and turning.

W. Sun et al. mentions that comfort and stability are connected with different Degrees

Of Freedom (DOF) movements; for instance, the vehicle body movement can be perilous

when the sprung mass roll causes disproportionate load distribution on tires, resulting in

side­slip or rollover of the vehicle. Considering that active suspension improves stability

on top of the ride comfort, the frequently incorporated quarter or half car models are not

sufficient for active suspension analysis.

This thesis further studies the multi­objective parameter optimization of an EVs active

suspension to address the above issues. In addition to the aforementioned studies, with

facts stated byW. Sun et al. (2017), a nonlinear full electrical vehicle model with quadratic

tire stiffness and cubic suspension stiffness with eleven DOF and a seat­driver model with

five DOF is established. Also, in addition to more traditional comfort and safety objec­

tives widely used in literature, rarely considered real working conditions of the suspen­

sion systems such as roll angle and load transfer are investigated. Then, multi­objective

optimization of a Proportional Derivative (PD) Fuzzy Logic Controller (FLC) is carried

out with a fast and elitist Non­dominated Sort Genetic Algorithm II (NSGA­II). Subse­

quently, responses of optimized passive and FLC controlled systems are matched against

each other. Key findings are presented in the conclusion.
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2. LITERATURE REVIEW

2.1. Introduction

EVs compared to conventional ICEs provides many benefits such as high driving perfor­

mance, efficiency, and environmental friendliness. IWM configuration with numerous ad­

vantages is attracting more research interests. Regardless of its benefits, IWM technology

has its drawbacks, such as incrementing wheels mass causes critical deterioration in com­

fort and road­holding capabilities. Such compromises in suspension systems, as shown

in Fig. 2.1, affect not only conventional ICE vehicles with their more than a century­long

existence but also EVs regardless of their suspension type.

Extensive research of conventional vehicle suspension systems has been carried out con­

cerning control strategies, structural design, and dynamic performance (D. Cao et al.,

2011). Based on the studies related to IWM EVs, active suspension control is impera­

tive for IWM configuration.

Low Damp�ng H�gh Damp�ng 

R�de
Comfort

Veh�cle
Stab�l�ty

Figure 2.1. Trade­off nature of suspension systems (Simon & Ahmadian, 1998)
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2.2. Vehicle Suspension Systems

Vehicle suspension systems are comprised of springs, shock absorbers, and mechanical

linking parts that connect the vehicle’s body to wheels. Suspension systems provide the

wheel­road contact, also preventing the body from rolling motion in cornering conditions

in addition to its primary purpose of isolating road­induced vibration (Gillespie, 1992).

From the system control perspective, categorization of suspensions is possible in three

distinctive classes: passive, semi­active, and active suspensions.

2.2.1. Passive suspension

Passive suspensions have well­known spring and damper elements that their character­

istics cannot be changed from their designed values. These systems provide numerous

advantages over semi­active and active suspensions, such as unsophisticated design, low

cost, and high reliability. A passive suspension schematic is shown in Fig. 2.2.

mb

ma

ks

kt

cs

Road
Input

Figure 2.2. Passive suspension (Ahmadian, 2001)

Under the specifications of ISO 8608 (2016), vehicle ride comfort is usually assessed with

a random road profile or bump profile. For the prevention of mechanical suspension sys­

tem failures and ride comfort deterioration, suspension deflection constraint is utilized.

Dynamic tire forces are directly linked to road­holding abilities, and tire deflection values
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are generally constrained and optimized for a good­performing suspension system. For

the improvement of vehicle vibration, passive suspension parameter optimization can be

carried out with a Genetic Algorithm (GA) (Mitra et al., 2016). Factors affecting dynamic

vehicle responses are irregularities in roadways, vehicle speed, and passive systems char­

acteristics.

Regarding cornering conditions, anti­roll torsional bars are implemented to improve ve­

hicle stability, such as roll angle. While torsional anti­roll bars improve roll stiffness

and provide a better cornering dynamic characteristic with a connection between the left

and right wheels, deterioration in road holding ability and ride comfort are undesired side

effects of such systems. Compared to a suspension system with spring elements, an anti­

roll bar comprised suspension system demonstrates improved performance, and indepen­

dent suspension systems outperform rigid axle suspension systems (Cole, 2000). D. Cao,

Rakheja, and Su (2010) stated that conflicting parameters such as comfort and handling

performances could be improved with passive interconnected suspension systems.

Interconnected suspension systems can generate forces in all other wheels through me­

chanical or hydraulic links between wheels with the displacement of one wheel. These

systems can potentially overcome the compromising nature of comfort and handling per­

formance (W. A. Smith & Zhang, 2010). N. Zhang, Smith, and Jeyakumaran (2010) re­

searched hydro­pneumatic suspension systems comprehensively. On a different approach

to interconnected suspension systems, Hydraulically Interconnected Suspensions (HISs)

attracted many researchers’ attention. W. A. Smith and Zhang (2010) proposed a HIS

system that replaces the typical shock absorbers. In Figs. 2.3 and 2.4 an anti­roll HIS is

presented. It is seen that four cylinders placed at each wheel are interconnected by hy­

draulic lines, accumulators, damper valves, flexible hoses, and pipelines. W. A. Smith,

Zhang, and Hu (2011); Wang, Zhang, and Du (2012) presented a simulation and experi­

mental study of an SUV comprising HIS system subjected to various steering maneuvers,

and the results indicated that roll performance improvements and prevention of vehicle

rollover are achievable through implementation of these systems.
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Figure 2.3. Schematic of an anti­roll HIS (W. A. Smith et al., 2011)

Figure 2.4. The assembled anti­roll HIS system (Wang et al., 2012)
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2.2.2. Semi­active suspension

By comparison to passive suspensions, optimal suspension can be achieved with con­

trolled suspensions, improving comfort and handling. The first semi­active suspension

concept was presented by Karnopp and Crosby (1974) presenting the skyhook algorithm

to enhance vehicle suspension systems. A skyhook quarter car schematic is shown in

Fig. 2.5. Generally, in semi­active suspension systems, shock absorber constitutes a vari­

able characteristic over passive systems fixed­rate shock absorber or active suspension

systems actuator. Force generated by damper can either be regulated by changing area of

the orifice, which in turn changing fluid flow resistance, or by another variation such as

changing the fluid viscosity such as in Electrorheological (ER) and Magnetorheological

(MR) shock absorbers (Gopala Rao & Narayanan, 2009). A comparison of passive and

semi­active suspensions is shown in Fig. 2.6. As a competitor to active suspension sys­

tems, semi­active systems provide advantages, including cost savings by simple design

and energy efficiency.

Figure 2.5. Schematic of a quarter­car suspension with skyhook control (Nguyen et al.,
2009)
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Choi and Han (2007) states semi­active ER suspension systems are capable methods of

promoting comfort and road­handling, and with low latency to electric field stimulation,

ER fluids offer almost instantaneous control times. In their study, they proposed a con­

tinuously variable ER damper controlled by a skyhook controller. To demonstrate perfor­

mance of their suspension, Choi and Han experimented with four independent skyhook

controllers. ER shock absorber proposed in K. G. Sung, Han, Lim, and Choi (2007) is

shown in Figs. 2.7 and 2.8. Choi, Choi, and Park (1998) proposed an Sliding Mode Con­

trol (SMC) for an ER suspension. K. G. Sung, Han, Cho, and Choi (2008) proposed and

experimentally tested a fuzzy moving SMC controlled ER suspension on a quarter car

model. As these studies indicate, ER suspension systems coupled with an efficient con­

troller improve the comfort criteria of vehicles.

a b
Figure 2.6. Suspension system model: (a) passive, (b) semi­active (Mihai & Andronic,
2014)

With higher viscosity, MR fluids yields better strength than ER fluids. Choi, Lee, and Park

(2002) presented a cylindrical MR shock absorber based on Bingham model of MR fluid

from several MR fluid models such as polynomial model, LuGre friction model, algebraic

model, Bouc­Wen hysteresis model, and neural network model.
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Figs. 2.9 and 2.10 shows Choi et al. model’s schematics.

Figure 2.7. ER damper schematic configuration (K. G. Sung et al., 2007)

Figure 2.8. Photograph of ER damper (K. G. Sung et al., 2007)

Yıldız, Sivrioğlu, Zergeroğlu, and Çetin (2015) proposed a nonlinear adaptive control of

a semi­active MR damper system with modified dynamic LuGre frictional model, con­

ducted experiments to improve the MR damper, and analyzed the performance of the MR

shock absorber suspension. Balamurugan, Jancirani, and Eltantawie (2014) presented a
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modified algebraic model and analyzed the performance of the MR damper, and thus a

controller with low computational complexity is realized through their studies. Du, Yim

Sze, and Lam (2005) proposed a polynomial model to characterize the dynamical behav­

ior of an MR shock absorber, and with comfort, handling, and suspension displacement

objectives.

Figure 2.9. Schematic of an MR shock absorber (Choi et al., 2002)

Numerous control methods are deployed as semi­active MR shock absorber suspension

such as nonlinear adaptive control, sky­hook control, model­following SMC, H∞ and

fuzzy Proportional Integral Derivative (PID), etc. Xu, Ahmadian, and Sun (2014) pre­

sented an MR damper capable of variable spring and damping characteristics. Xu et al.

proposed two independent Fuzzy Logic (FL) and an on/off controller to control yaw mo­

ment and stiffness­damping characteristics, respectively. Maciejewski, Glowinski, and

Krzyzynski (2014) presented an adaptive PID capable of self­tuning for semi­active MR

shock absorber with four different controlling schemes for example PID, Proportional (P),
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Figure 2.10. Photo of an MR shock absorber (Choi et al., 2002)

Proportional Integral (PI) and PD. Yokoyama, Hedrick, and Toyama (2001) presented a

semi­active SMC, where measurement of damper force isn’t required, and sliding mode

is achieved at the same time with high robustness against system and road disturbance

uncertainties. Since MR shock absorbers contain fluid, this fluids are represented with

mathematical models such as presented in Fig. 2.11.

Figure 2.11. Bouc–wen model for MR shock absorber (El Majdoub et al., 2014)
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2.2.3. Active suspension

Active suspensions offer state­of­the­art control through sensory input and adequate re­

sponse to vehicle motion and road­induced vibrations. An active suspension schematic is

presented in Fig. 2.12. Differentiating part of these systems from semi­active suspensions

are their actuators. For the isolation of the road­induced vibrations and vehicle dynamic

stabilization, Electro­Hydrostatic Actuator (EHA) systems are typically selected as the

active suspension system actuators. Though, superior control algorithm construction for

such systems present difficulties due to highly nonlinear EHA behavior. Fig. 2.13 demon­

strates an EHA schematics. Du and Zhang (2009) proposed an FLC for EHA system com­

prising nonlinear actuator characteristics and variations in sprungmass under control input

constraints. W. Sun, Gao, and Yao (2013) presented a study with a full vehicle model EHA

suspension system controlled by an adaptive robust control design based H∞ controller to

enhance comfort and handling performance. Bello, Shafie, and Khan (2015) proposed a

two control loop approach for half vehicle nonlinear EHA system in which an inner loop

PID controller for EHA force control and an outer loop PID for suspension parameters.

W. Sun, Pan, and Gao (2016) presented a study with a half­car EHA suspension system

with a constrained adaptive back­stepping strategy to improve vertical and pitch motions

in a system in which parameter uncertainties and actuator nonlinearities existed.

Figure 2.12. Active suspension (Elattar et al., 2016)

14



Figure 2.13. An electrohydraulic actuator schematic (W. Sun et al., 2013)

Another approach to an EHA system would be to employ control on a HIS systems pres­

sure and fluid flow, for example, with electronic valves and pressure control unit. Fig. 2.14

shows a pressure control unit that can generate anti­roll moments by roll angle estimations.

It is known that vehicle bodymotions caused by road­induced excitation are bounce, pitch,

roll, and warp. In theory HIS systems could be used to decouple different vehicle vibra­

tion modes (M. C. Smith & Walker, 2005). Shao, Zhang, Du, and Wang (2013) proposed

switching HIS with a fuzzy controller, and as a result, effective reduction of pitch and roll

motion was achieved. Lam, Wang, and Zhang (2013) experimentally studied the proposed

fuzzy controlled HIS system. N. Zhang, Wang, and Du (2014) presented a study in which

vehicle motion decoupling has been carried out by the motion­mode energy method. Du,

Zhang, and Wang (2014) proposed actively switching the interconnection configuration

of the suspension system with a switched control of HIS system in order to decouple and

eliminate vehicle body motion modes.

Isa, Mahadi, Ramli, and Abidin (2011) conducted a review of literature on Electromag­

netic Suspension (EMS) systems for conventional vehicles. Application area of EMS sys­

tems has a broad scope such as from conventional ICE vehicles to EVs, from regenerative

suspension systems to maglev trains, and many more. Yoshimura, Kume, Kurimoto, and

Hino (2001) presented an SMC for an EMS that is outperforming Linear Quadratic (LQ)
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Figure 2.14. Photo of the pressure control unit (Zhu et al., 2013)

controlled EMS systems. Sinha and Pechev (2004), for magnetically levitated vehicles

comprising EMSs, proposed nonlinear state and output feedback controllers. H. K. Sung,

Lee, and Bien (2005) proposed a fault­tolerant controller for EMSs that demonstrate dy­

namic characteristics of maglev systems. Martins, Esteves, Marques, and da Silva (2006)

experimentally revealed that linear Permanent­Magnet Actuator (PMA) actuators incorpo­

rated in vehicle active suspension systems are indeed very suitable for vehicle suspension

system usage. Gysen, Paulides, Janssen, and Lomonova (2010) proposed an EMS system

comprised of brushless tubular PMA and a spring as shown in Fig. 2.15 (b). Van Der

Sande et al. (2013) presented a study in which the computer simulations and experimental

results validated effectiveness of presented robust H∞ controller for a PMA EMS system

and apart from the promising performance improvements some disadvantages such as

high cost, complex assembly, and maintenance problems pointed out for PMA systems.

As a substitute for EMS systems, Linear Switched Reluctance Actuator (LSRA) offers

promising benefits such as high performance, simple structure, and low cost. J. Lin et al.

(2013) presented a study in which an EMS based LSRA system demonstrated promising

results, and from two controllers compared, nonlinear PD controller outperformed lin­

ear PD controller. The double­sided LSRA used in study of J. Lin et al. is presented in

Fig. 2.16. J. Lin, Cheng, Xue, Cheung, and Zhang (2014) proposed a tracking differenti­

ating method for inductance derivative estimation of LSRA system. J. Lin, Cheng, Zhang,
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Cheung, and Xue (2015) proposed an EMS system with an LSRA due to LSRA systems

high­force linear application potential and an adaptive SMC algorithm being able to com­

pensate nonlinear nature of suspension systems, and through simulations, he proposed the

system on a nonlinear quarter vehicle model.

Figure 2.15. (a) Passive suspension system (b) electromagnetic suspension system (Gysen
et al., 2010)

2.3. Electric Vehicle Suspension Systems

Suspension system design of land vehicles presents challenges regardless of vehicle type,

while so, EVs present a not seen before rigorous design challenges against ICEs with their

IWM propulsion systems. Consideration of many systems and requirements is needed to

be made in the design phase of IWM EVs. While centralized propulsion systems may

benefit from a more versatile and traditional suspension design, IWM propulsion systems

require a more advanced suspension system to overcome the unwanted effects of increased

unsprung mass. Regardless of its’ design challenges, IWM systems are considered to be

the future of EVs. Needless to say, centralized propulsion systems currently occupy the

majority of the contemporary EV market.
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Figure 2.16. (a) Schematic configuration of double­sided LSRA module. (b) 3D model
of LSRA (J. Lin et al., 2013)

2.3.1. Centralized propulsion suspension system

Centralized propulsion in EVs offer many advantages such as motor durability, less chal­

lenging suspension design and cost. Compared to central propulsion system EVs, IWM

technology is still thin on the ground. Two EVs with centralized propulsion systems is

shown in Figs. 2.17 and 2.18.

Figure 2.17. TOGG centralized propulsion electrical vehicle (TOGG, 2020)
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Figure 2.18. Tesla model s 85d centralized propulsion electrical vehicle

J.­T. Cao, Liu, Li, Brown, and Dimirovski (2007) presented an enhanced half­vehicle

model for active control of suspension by the introduction of a state vector of vehicle

pitch angle, which allowing the exploration of the effects of vehicle acceleration. By ad­

dition of correlation of acceleration and pitch angles into LQ controller as an additional

parameter, J.­T. Cao et al. constructed an improved LQ controller. Hsu, Coker, and Huang

(2011) investigated dynamic analysis of an EV creating the vehicle suspension system via

a multi­body dynamics software, Altair MotionView / MotionSolve. Hsu et al., through

simulation of dynamical properties and kinematic performance of both an ICE and an EV,

optimized the front and rear suspension of the EV by improving the dynamic properties.

Peng, He, and Feng (2013) proposed a collaborative control system for an EV with a con­

troller comprised of centralized and hierarchical architecture. In the study of Peng et al.,

while the suspension and steering system was controlled by the centralized controller to

enhance handling in addition to comfort, braking was controlled by the hierarchical con­

troller to improve the proportional distribution of braking force and regenerative braking

to improve braking performance. Kaldas, Çalişkan, Henze, and Küçükay (2013) proposed

a FL control concept for a semi­active suspension. In the study of Kaldas et al., with an

eleven DOF full vehicle model, improvement of vehicle ride and performance is targeted

by optimizing the Membership Functions (MFs) and control rules of the FLC via a GA

and significant improvements observed in terms of comfort and handling. Abu Bakar et

al. (2014) found that the SAS­Skyhook algorithm provided the most significant improve­

ment in ride comfort. Bakar and Aziz (2014) evaluated ride comfort of an ICE vehicle
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converted to an EV. Bakar and Aziz employed a seven DOF vehicle model subjected to

random road input in order to improve the ride comfort of the converted vehicle, and it was

found that conversion of an ICE vehicle to EV does not affect ride comfort significantly,

but to enhance comfort further, an active suspension has been integrated, and in overall

65% improvement has been observed. J. Zhang, Yang, Hu, Fu, and Zhai (2021) proposed

a model predictive control strategy to improve EV ride comfort by incorporating a four

DOF half vehicle model with braking accelerations taken into consideration, and results

indicated improvements in vertical body velocities, pitch angle, and pitch angle velocities

more than 70%.

2.3.2. In­wheel motor suspension system

EV propulsion systems can be configured to be either central motor or IWM driven layout

based on vehicle design. Although central motor propulsion systems occupy EV mar­

ket currently, IWM driven propulsion configuration has a rising research interest for their

advantages (Murata, 2012b). IWM driven layout can improve vehicle dynamics in con­

ditions of vehicles various acceleration scenarios. As a case in point, IWM enhances

performance of TCS, ABS, and ESC (Murata, 2012b). Even though IWM configuration

has numerous upsides, unwanted side effects of such systems exist mostly related to inad­

vertent increases in wheel mass. Due to deterioration in comfort, handling performance,

and reliability of incorporating IWM systems, actively control of suspension is fundamen­

tal for implementation of IWM systems into EVs. An IWM EV platform and a vehicle

employing IWM is shown in Figs. 2.19 and 2.20.

Figure 2.19. REE board electrical vehicle chassis incorporating in­wheel motors
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Figure 2.20. Hiriko fold — a vehicle employing in­wheel motors

IWM layout can improve performance in the circumstances, for example, driving, turning,

acceleration and braking conditions. To improve comfort, IWM can be positioned to play

the role of a high­frequency dynamic absorber, also called ADM, and provide control over

vehicles pitch performance (Murata, 2012b). Although, improvements in vehicle pitch

performance are not solely a consequence of IWM layout. Furthermore, any vehicle with

independent front and rear axle torque control can demonstrate improved pitch motion of

the vehicle body. Fig. 2.21 shows changes in the sprung mass acceleration, suspension

displacement, and tire displacement on a quarter vehicle model caused by an increase in

sprung mass due to implementation of IWM. Increases in the unsprung mass cause neg­

ligible changes in the natural frequency of the sprung mass. That being said, negative

effects such as comfort and road handling performance deterioration can be observed due

to a rise in response frequency range as a consequence of unsprung mass increase. As pre­

sented in Fig. 2.22, vehicle body acceleration and tire dynamic forces is smaller in ADM

EV compared to conventional IWM EV configurations. Kulkarni, Ranjha, and Kapoor

(2018) presented a study on a quarter vehicle model with an IWM Switched Reluctance

Motor (SRM) EV. Kulkarni et al. simulated his vehicle model and compared the results

with an ICE conventional vehicle. Vos, Besselink, and Nijmeijer (2010) proposed pos­
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sible improvements for IWM EVs such as ride performance and safety criteria with an

investigation on the effects of IWM implementation on comfort and road handling char­

acteristics by experiments and found the main disadvantage is an increase in dynamic

wheel loads.

Figure 2.21. Frequency response of sprung mass acceleration and tire deflection (Shao,
2018)

Figure 2.22. Random response of sprung mass acceleration and tire dynamic force (Shao,
2018)

The design phase carried out by experience does not ensure optimal dynamic behavior

or system control. Hence, an optimization algorithm based IWM EV suspension design

would benefit and improve vehicles’ comfort and ride handling. Optimal vehicle comfort

and ride handling of active suspensions can be achieved through incorporating parameters

of vehicle suspension, IWM and controller to optimization phase. Due to the existence of

conflicting control objectives in suspension design, multi­objective parameter optimiza­

tion would not only benefit but is also required. Liu et al. (2017) proposed ADM to be

incorporated for IWM EV with various control strategies. Liu et al. incorporated a fuzzy

PID and a Linear Quadratic Regulator (LQR) control method for IWM and suspension
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damper, respectively. Meng, Qian, and Liu (2018) proposed considering the active sus­

pension system of an EV as a dual­rate sampled­data state­feedback control problem and

implemented a linear hybrid stabilizer to achieve asymptotic stabilization. Quynh, Cuong,

Liem, Long, and Dung (2019), in order to analyze effects of IWM system on EVs, pre­

sented a study in which a quarter car model induced by road excitation simulated and ver­

tical vehicle body acceleration objective was observed. In study of Quynh et al., quarter

model including an ADM IWM and a fixed IWMmodel compared. Quynh et al. revealed

that increased unsprungmass without an ADM IWMsystem increased vertical body accel­

eration by 8.6% and any increase to IWMmass also increased vertical body accelerations,

thus reducing comfort and ride handling. Nevertheless, to researches being done, pre­

dominant attention of the active suspension control studies focuses on conventional ICE

vehicles, leaving IWM EVs relatively a new area that needs attention.

2.4. Control Methods

In the history of active suspension control applications, many approaches have been stud­

ied by researchers to improve comfort and ride handling (Ding, Wang, Meng, & Chen,

2020). As a result of the conflicting nature of performance requirements such as comfort,

handling, and suspension displacement, a variety of control strategies such as LQR, Adap­

tive sliding control, H∞ and robust H∞ control, SMC, FL, preview control, PI control,

optimal control, and neural network methods have been studied to deal with the trade­off

performance criteria for active suspension system control. Nonetheless, by their nature,

some of these methods are resource­intensive and may underperform in unfamiliar condi­

tions.

2.4.1. Proportional integral derivative control

In a system that needs to be controlled in various situations, the PID controller has been

the most simple and successful solution in many cases. PID controllers can provide the

desired control signal for specific process requirements by tuning the three weighting pa­

rameters. However, it should be noted that the use of PID controllers does not guaran­

tee optimal system control. Kirli (2015) investigated a novel active suspension with six

DOF half vehicle model, compared the proposed controller with a PID controller, and
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designed an active suspension system that required only the measurement of front­wheel

displacement to achieve full­body control. C. Lin, Liu, and Ren (2015) proposed a neu­

ral network­based PID control of a semi­active suspension comprising an MR damper

for a commercial vehicle to improve comfort and stability. Tan, Lu, and Zhang (2016)

proposed a dual­loop PID controller for a fourteen DOF rear IWM EV and controller op­

timized by Particle SwarmOptimization (PSO), the proposed controller improved comfort

comparing to a passive suspension system. Jin, Yu, and Fu (2016) simulated and experi­

mentally validated the effects of increase of unsprung mass in IWM EVs and proposed a

PID controlled semi­active air­suspension system to enhance comfort. Ahmed and Özkan

(2017) presented a fuzzy PID controller responsible for vehicle stability control targeting

handling and stability of the vehicle. Djellal and Lakel (2018) proposed a PID controlled

active suspension system to achieve a long life span via preventing brutal controller actions

by simulating a passive and active suspension with constant and adapted reference for a

quarter car model subjected to different road inputs. Daniyan, Mpofu, and Osadare (2018)

presented a PID controlled active suspension system design for a railcar suspension by tun­

ing the controller via Ziegler–Nichols method and achieved reducing noise, vibration, and

miscellaneous disturbances. Haemers et al. (2018) proposed a Multiple­Input­Multiple­

Output (MIMO) PI control for a full­car electromechanical active suspension exposed to

random road excitation. Haemers et al. optimized the controller using a GA considering

actuator constraints. Termous, Moreau, Francis, and Shraim (2018) compared PID and

fractional first­generation CRONE controller controlling an anti­roll moment system to

enhance comfort of EVs. Pillai, Pon Selvan, and Madara (2019) presented a PID tuning

study where PID constants optimized via neural network for an EV to enhance efficiency

of the suspension. Tian and Nguyen (2020) using an eight DOF vehicle model evaluated

the control performance of a PID controller, shown in Fig. 2.23, for road vehicles with

obvious improvement in objectives such as Root Mean Square (RMS) seat acceleration,

pitch and roll motions of sprung mass compared to passive suspension.

2.4.2. Fuzzy logic control

Every control system aims to produce desired control signals for a given input signal. In

the simplest case, a controller takes its cues from a look­up table, which dictates what
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Figure 2.23. Simulink model of a pid control system (Tian & Nguyen, 2020)

output to produce for every input set. The usual alternative to look­up tables is to have

the controller execute a mathematical formula. While this method work in simple sys­

tems, their implementation and real­time application may be infeasible. FL overcomes the

disadvantages of table­based and formula­based control. Furthermore, FLC offer higher

accuracy and smoother control even for complex and highly nonlinear control problems.

Hence, FLCs finds themselves an area of use in many engineering applications, particu­

larly in cases of existing non­linearity. Due to their nature, FLC offer highly customizable

controlling solutions for many fields.

Chiou and Liu (2009) optimized MFs and rule table of an FLC by a GA for an active

vehicle suspension to achieve optimal balance between comfort and vehicle stability. He,

Wang, Zhang, Yang, and Xu (2010) proposed an FLC for a semi­active skyhook con­

troller and co­simulated the vehicle model on ADAMS and Simulink to demonstrate the

efficiency of the established controller, concluding that integrated chassis control systems

can greatly improve vehicle comfort and handling. Yang and Zhao (2012) designed a

fuzzy controller to enhance comfort and stability criteria such as body acceleration and

suspension distortion of a two DOF quarter car model with a semi­active suspension us­

ing Matlab fuzzy toolbox. Y. Q. Sun, Zhao, and Xiang (2013) suggested an FL controller
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for an active suspension system to enhance comfort and vehicle handling. Y. Q. Sun

et al. by using a quarter­car active suspension and incorporating vertical acceleration,

suspension stroke, and tire deflection objectives, demonstrated the effectiveness of FLC

controllers under varying suspension component characteristics. Marzbanrad, Soleimani,

Mahmoodi­k, and Rabiee (2015) presented a paper in which an FLC controller is opti­

mized to achieve vehicle path following, roll, and handling performances. Shao, Naghdy,

and Du (2017) through modeling a quarter­car model with ADM IWM demonstrated ad­

vantages of their fuzzy H∞ controller. Harun, Ab Rahim, Abdul Halim, and Abdullah

(2019) compared performance of passive suspension against LQR and FL controlled sys­

tems of a two DOF car model and concluded FL controller outperformed LQR. X. Q. Sun,

Cai, Yuan, Wang, and Chen (2018) experimentally validated a fuzzy SMC to control an

electronic air suspension system for vehicle height and leveling adjustments to achieve

improved roll and pitch angles for a bus. Sosthene, Josee, and Hui (2018) proposed an

FLC for active force tracking of a semi­active quarter­car suspension comprising an MR

shock absorber, and results indicated improvements by 10% in ride comfort and 30% in

vehicle stability. Senthil Kumar, Sivakumar, Kanagarajan, and Kuberan (2018) proposed

a hybrid intelligent controller based on a combination of a neural network and FL, and a

half car model with a sinusoidal road profile used for the design of Adaptive Network­

based Fuzzy Inference System (ANFIS), which is able to handle better actuator dynamics

and parameter­wise uncertainties of the hydraulic actuator. Mahmoodabadi and Nejadk­

ourki (2020) presented active control for a quarter car model via an optimal fuzzy adaptive

robust PID controller, as shown in Fig. 2.24, with two objectives for PSO algorithm. His

fuzzy system comprised a singleton fuzzifier, center average defuzzifier, and for regula­

tion of control parameters, a product inference engine.

Ren, Chen, and Zhou (2020) proposed an interval type­2 fuzzy state­feedback controller

considering yaw moment control problem for EV systems under uncertain states such

as sensor failures and actuator saturation. Ren et al. defined the parameter uncertainties

through lower and upper bounds of MFs. Yatak and Şahin (2021) presented a hybrid fuzzy

controller to improve comfort and road handling characteristics of a full vehicle model,

which are trade­off objectives. Yatak and Şahin implemented two­interval type­2 FL con­
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Figure 2.24. A fuzzy pid controller schematic (Mahmoodabadi & Nejadkourki, 2020)

trollers for each tire, with wheels subjected to random excitation defined by ISO 8608

(2016), and with objectives such as RMS acceleration, Crest Factor (CF) and road hold­

ing. Taghavifar (2021) proposed an Extented Kalman Filter (EKF) based PID type­2 fuzzy

Neural Network Control (NNC) for an IWM EV exposed to class E off­road type random

road excitation to improve comfort and handling criteria, which are a challenging task due

to increased unsprung mass. The proposed controller by Taghavifar, shown in Fig. 2.25,

optimized using Back Propagation (BP) and gradient descent methods and demonstrated

an improvement in road holding and ride comfort criteria. Through conducted studies, the

effectiveness of fuzzy methods is seen, and as stated by Ivanov (2015), interest in fuzzy

methods increasingly accelerates in vehicle control systems.

2.5. Optimization Methods

Traditional optimization methods such as expert directed tuning fail to achieve optimal

control for FLCs and implementation of Evolutionary Algorithms (EAs) solves this prob­

lem by their source of inspiration from nature. Patil and Palanichamy (1985) presented

a study showing that compared to seat response, body parts such as head, torso, and

pelvis are affected greatly from road­induced vibrations. Ergo, vehicle suspension sys­
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Figure 2.25. (a) Schematic of the controller and (b) the general architecture of the con­
troller (Taghavifar et al., 2020)
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tems should be optimized to reduce the effects of vibrations affecting the body parts,

as mentioned above. Patil and Palanichamy presented multi­objective optimization of

a quarter car model comprising nonlinearities and a four DOF human model. Patil and

Palanichamy defined non­linearities as modeling the quarter car model with cubic sus­

pension and quadratic tire stiffness. Objective functions of Patil and Palanichamy were

frequency weighted RMS head acceleration, Vibration Dose Value (VDV), CF, the ampli­

tude ratio of head RMS acceleration to seat RMS acceleration, the amplitude ratio of upper

torso RMS acceleration to seat RMS acceleration, suspension deflection, and dynamic tire

deflection. In addition to this optimization, Patil and Palanichamy compared the perfor­

mance of two multi­objective optimization algorithms by conducting the same optimiza­

tion in these two optimizationmethods, NSGA­II andMulti­Objective Particle SwarmOp­

timization with Crowding Distance (MOPSO­CD). Baumal, McPhee, and Calamai (1998)

presented an optimization of passenger seat acceleration objective with constraints, for ex­

ample handling and suspension deflection with a GA­based algorithm. Verros, Natsiavas,

and Papadimitriou (2005) demonstrated a comparison between passive linear and dual­rate

suspension shock absorbers and semi­active skyhook suspension on a quarter car model

with random road input in their suspension stiffness and damper optimization study. Pa­

pageorgiou (2006) conducted a meta­heuristic optimization of RMS vertical body acceler­

ation and road handling objectives on a quarter car model using Multi­Objective Genetic

Algorithm (MOGA) and bilinear matrix inequalities techniques. Gündoǧdu (2007) pre­

sented an optimization of a two DOF quarter car model with a two DOF driver model. In

study of Gündoǧdu, a single­objective GA optimization conducted with each objective has

equal importance through a non­dimensional expression derived from head acceleration,

crest factor, suspension deflection, and tire deflection. Gomes (2009) presented optimiza­

tion of dynamic vehicle load and suspension deflection objectives of a two DOF quarter

car model using PSO. Kuznetsov, Mammadov, Sultan, and Hajilarov (2011) presented op­

timization of comfort criteria defined in ISO 2631­1 (1997) of a three DOF driver model

consists of a twoDOF quarter car model and a one DOF driver model with an algorithm for

global optimization problems. Özcan, Sönmez, and Güvenç (2013) performed optimiza­

tion of a lightweight commercial vehicle. RMS body acceleration, tire forces, and body

roll objectives were optimized using half and quarter car models. Mashadi, Mahmoudi­
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Kaleybar, Ahmadizadeh, and Oveisi (2013) proposed a PID controller for a vehicle path

tracking problem, and through optimization of the controller gains by GA, an effective

patch following controller has been developed. Nagarkar, Vikhe Patil, and Zaware Patil

(2016) presented an optimization of seat acceleration, head acceleration, and suspension

deflection objectives of a quarter car model by converting the multi­objective nature of

the optimization problem into uni­objective optimization by weighting the parameters as

mentioned earlier. Nagarkar et al. used GA optimization method for this human­car sus­

pension system optimization. Yildiz (2021) proposed using EAs such as PSO, GA, and the

Differential Evolution (DE) for the optimization of trunk lid mechanisms. Yildiz observed

that EAs perform variably in criteria such as optimization duration and performance of the

optimized system. Through his observations Yildiz concluded best average error value is

performed by GA. Yildiz (2019b) presented a study in which a nonlinear suspension op­

timization for a half vehicle model was carried out by PSO technique. A five DOF model

is built by Yildiz to analyze ride comfort, and optimization was realized by PSO. Yildiz

(2019a) comparatively conducted an optimization of an EV suspension system with PSO,

GA, and DE. Study of Yildiz presented a half­vehicle model consisting of seat and sus­

pension with cubic non­linearities in springs.
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3. MATERIAL AND METHOD

3.1. Full Vehicle and Human Models

Full­car models with seven degrees of freedom offer higher accuracy in the design phase

compared to half and quarter car models, which disregards pitch and or roll motions of

the sprung mass. The full­car model consists of a sprung mass, which is the body of

the vehicle, and four unsprung masses connected to it at each corner, which are wheels.

Sprung mass is free for heave, pitch, and roll motions. In contrast, unsprung masses are

only unrestricted for vertical movement. Unsprung masses are connected to sprung mass

with spring and damper elements, and their connection to the road is only with spring

elements, without a damper.

Figure 3.1. Full car model of 4x4 in­wheel motor driven electrical vehicle

In Fig. 3.1, M , Ix, and Iy stand for the mass of the sprung mass, and moment of inertia

for roll and pitch motions, respectively. mwi, ksi, csi, fsi, madmi, kadmi, cadmi, kwi rep­

resents mass of the unsprung masses, spring, damper and actuator elements connecting
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unsprung masses to sprung mass, mass of IWMs, spring and damper elements connecting

IWM’s to unsprung masses, and spring elements connecting unsprung masses to road, re­

spectively. Z, Θ, and Φ represent heave, pitch, and roll motions of the sprung mass. zwi

and zadmi represents the vertical displacements of the unsprung masses and IWMs. a, b, c,

and d represent the distances between the center of gravity of sprung mass and unsprung

masses. e and f represent the distance of the seat to the center of gravity of the sprung

mass. Motions of the equation for the full vehicle model are obtained under the assump­

tion that pitch and roll angles are small, and thus lateral displacement due to pitch and roll

motions is neglected. Spring elements used in many parts of automobiles exhibit nonlin­

ear behavior and must be modeled accordingly (Fidanciogullari & Yildiz, 2021). Thus,

quadratic nonlinearity in the tire and cubic nonlinearity in suspension stiffness is defined.

kwinl and ksinl represents nonlinear spring elements of wheel and suspension, respectively.

Subscript i = r1, r2, l1, l2 represents right front, right rear, left front and left rear corners

of the vehicle.

Equations of the full vehicle model are defined as following. Eqs. (3.1) to (3.4) shows the

forces acting on suspension system.

fsr1 = ksr1(Z −Θ · c− Φ · a− Zwr1)

+ csr1(Ż − Θ̇ · c− Φ̇ · a− Żwr1)

+ ksr1nl(Z −Θ · c− Φ · a− Zwr1)
3 (3.1)

fsl1 = ksl1(Z −Θ · c+ Φ · b− Zwl1)

+ csl1(Ż − Θ̇ · c+ Φ̇ · b− Żwl1)

+ ksl1nl(Z −Θ · c+ Φ · b− Zwl1)
3 (3.2)
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fsr2 = ksr2(Z +Θ · d− Φ · a− Zwr2)

+ csr2(Ż + Θ̇ · d− Φ̇ · a− Żwr2)

+ ksr2nl(Z +Θ · d− Φ · a− Zwr2)
3 (3.3)

fsl2 = ksl2(Z +Θ · d+ Φ · b− Zwl2)

+ csl2(Ż + Θ̇ · d+ Φ̇ · b− Żwl2)

+ ksl2nl(Z +Θ · d+ Φ · b− Zwl2)
3 (3.4)

Eqs. (3.5) to (3.8) as seen below, denotes forces acting between wheel and road.

fwr1 = kwr1(Zwr1 − Zrr1)

+ kwr1nl(Zwr1 − Zrr1)
2 (3.5)

fwl1 = kwl1(Zwl1 − Zrl1)

+ kwl1nl(Zwl1 − Zrl1)
2 (3.6)

fwr2 = kwr2(Zwr2 − Zrr2)

+ kwr2nl(Zwr2 − Zrr2)
2 (3.7)

fwl2 = kwl2(Zwl2 − Zrl2)

+ kwl2nl(Zwl2 − Zrl2)
2 (3.8)
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Eqs. (3.9) to (3.12) denotes forces acting betweenwheel and IWMalso called ADM.

fadmr1 = kadmr1(Zadmr1 − Zwr1)

+ cadmr1(Żadmr1 − Żwr1) (3.9)

fadml1 = kadml1(Zadml1 − Zwl1)

+ cadml1(Żadml1 − Żwl1) (3.10)

fadmr2 = kadmr2(Zadmr2 − Zwr2)

+ cadmr2(Żadmr2 − Żwr2) (3.11)

fadml2 = kadml2(Zadml2 − Zwl2)

+ cadml2(Żadml2 − Żwl2) (3.12)

Eqs. (3.13) to (3.15) are the Equations of Motion for the sprung mass with three DOF,

which are heave, pitch, and roll motions.

MZ̈ = −fsr1 − fsl1 − fsr2 − fsl2

− far1 − fal1 − far2 − fal2 + fseat (3.13)

IyΘ̈ = +fsr1 · c+ fsl1 · c− fsr2 · d− fsl2 · d

+ far1 · c+ fal1 · c− far2 · d− fal2 · d− fseat · f (3.14)

IxΦ̈ = +fsr1 · a+ fsr2 · a− fsl1 · b− fsl2 · b

+ far1 · a+ far2 · a− fal1 · b− fal2 · b+ fseat · e (3.15)
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Eqs. (3.16) to (3.19) are the Equations of Motion for wheels.

Mwr1Z̈wr1 = fsr1 − fwr1 + fadmr1 + far1 (3.16)

Mwl1Z̈wl1 = fsl1 − fwl1 + fadml1 + fal1 (3.17)

Mwr2Z̈wr2 = fsr2 − fwr2 + fadmr2 + far2 (3.18)

Mwl2Z̈wl2 = fsl2 − fwl2 + fadml2 + fal2 (3.19)

Eqs. (3.20) to (3.23) are the Equations of Motion of ADM.

Madmr1Z̈admr1 = −fadmr1 (3.20)

Madml1Z̈adml1 = −fadml1 (3.21)

Madmr2Z̈admr2 = −fadmr2 (3.22)

Madml2Z̈adml2 = −fadml2 (3.23)
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Eqs. (3.24) and (3.25) denotes forces acting on seat and Equations ofMotion for Seat.

fseat = kseat(Zseat − Z0seat)

+ cseat(Żseat − Ż0seat) (3.24)

MseatZ̈seat = −fseat + fp (3.25)

For the human model to be used in this study, the Wan and Schimmels (1995) four DOF

human model was selected for its high­performing characteristic. Biomechanical param­

eters of the Wan and Schimmels model acquired from Abbas (2010). With 92% goodness

of fitness, this model gives a good approximation of a human body response. The human

model is presented in Fig. 3.2

Figure 3.2. Wan and schimmels human model
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Eqs. (3.26) to (3.30) are the forces acting on the human models masses.

fp = k5(Zp − Zseat) + c5(Żp − Żseat) (3.26)

fltp = k4(Zlt − Zp) + c4(Żlt − Żp) (3.27)

futp = k3(Zut − Zp) + c3(Żut − Żp) (3.28)

futlt = k2(Zut − Zlt) + c2(Żut − Żlt) (3.29)

fh = k1(Zh − Zut) + c1(Żh − Żut) (3.30)

Eqs. (3.31) to (3.34) denotes the Equations of Motion for the human model.

MpZ̈p = −fp + fltp + futp (3.31)

MltZ̈lt = −fltp + futlt (3.32)

MutZ̈ut = −futp − fltp + fh (3.33)

MhZ̈h = −fh (3.34)
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Roll angle χ is shown in Fig. 3.3 and defined as following in Eq. (3.35).

χ =
FMh′

Cf + Cr −Wh′ (3.35)

kadmsr�
kadmsr�

madmsr�
madmsr�ksr�

ksr�

kwr�
kwr�
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mwr�
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Figure 3.3. Wheel load difference and roll angle

Here Fm is the centripetal force acting on vehicles center of gravity and formulated as

FM = mv2/R. In this formula, m, v, and R are the mass of sprung mass, the vehicle

speed, and the vehicle’s cornering radius, respectively. Cf , Cr, h′, and W are front and

38



rear axle stiffnesses, the distance between the roll axis and center of gravity of sprung

mass, and the weight of the sprung mass. Calculation of front and rear axle stiffness is

made by equation Cf,r = (t2 ·Kf,r)/2, where t is lateral distance between two wheels and

Kf,r is spring stiffness for front and rear wheels.

Lateral load distribution affects the vehicle cornering characteristic. Load Transfer Ratio

(LTR) is considered as the most reliable rollover indicator regardless of vehicle configu­

ration and operating conditions (Lee, Yakub, Kasahara, & Mori, 2013). Equation of LTR

is shown in Eq. (3.38). For the calculation of LTR, the following equations are utilized.

Eqs. (3.36) and (3.37) defines the difference of normal loads acting on the front and rear

tires during cornering conditions.

∆FZf =
mv2

R

{
lr
l

pf
sf

+
mf

m

hf

sf
+

Cfh
′

(Cf + Cr −Wh′)sf

}
(3.36)

∆FZr =
mv2

R

{
lf
l

pr
sr

+
mr

m

hr

sr
+

Crh
′

(Cf + Cr −Wh′)sr

}
(3.37)

Here ∆FZf and ∆FZr are the difference of normal loads between right and left tires for

the front and rear wheels. m, mf,r, v, R, lf,r and l are vehicle mass, front and rear axle

mass, vehicle speed, cornering radius, the distance between the front and rear wheels to

CG of the vehicle, and distance between the front and rear wheels. pf,r, sf,r and hf,r are

front and rear roll axis height, the distance between right and left wheels, and front and

rear CG height of the sprung mass, respectively.

LTR =
Fr − Fl

Fr + Fl

(3.38)

Here Fr and Fl are defined as the vertical tire forces affect the left and right side wheels.

The Two­Wheel Lift­Off (TWLO) happens if LTR reaches 1 or ­1. LTR is calculated
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to detect the change between passive and FL controlled suspensions considering rollover

condition.

Eq. (3.39) is the differential equation of the road model. Table 3.1 shows the road rough­

ness values classified by ISO 8608 (2016) and road condition to be used in this study is

selected as Class C road with a degree of road roughness of 256 × 10−6m2/(cycle/m).

Seleceted vehicle velocity for the simulations and optimizations is 90 kmph. Fig. 3.4

represents the class C road model used in this study.

żr(t) + 2πn0vzr(t) =
√

Sq(n0)vw(t) (3.39)

Table 3.1. Road roughness values classified by ISO 8608 (2016) (degree of roughness
S(Ω)× 10−6)

Road class Range Geometric mean
A (very good) <32 16
B (good) 32–128 64
C (average) 128–512 256
D (poor) 512–2048 1024
E (very poor) 2048­8192 4096
F 8192­32768 16384
G 32768­131072 65536
H 131072< 262144

3.2. Active Suspension

3.2.1. PID controller

PID controllers find themselves a wide area of use in industrial applications through im­

plementation ease and high­performance gains. A PID controller adjusts the control signal

to minimize the error value. The controller attempts to achieve this objective through a

feedback loop based on three constant gains. These three gains are P as present error,

Integral (I) as the accumulation of past errors, and Derivative (D) as a future prediction of

error through error change rate. The controller adjusts a suspension system continuously

by accumulating these weighted error values by changing a damper element’s damping

rate via adjusting a valve position or power input to an actuator.
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Figure 3.4. Class c road input (velocity 90 kmph)

In some applications, only one or two parameters may be enough for the desired system

control. Such controllers as PI, PD, or Pmay be preferred in some situations. The equation

and diagram of the PD part of the controller used in this study can be seen in Eq. (3.40)

and Fig. 3.5.

PID controllers can be used in any process in which the system can be mathematically

represented. There are lots of methods for tuning PID controllers, such as the trial and

error method, which is time­consuming for processes with long run times and hard to

find optimal values, Ziegler­Nichols method, which may result in a system with over­

shoot and instability, gradient method, hill climbing, etc (P. C. Chen & Huang, 2005).

All these methods, although useful in some systems, do not guarantee optimal control.

Optimization of PID controllers by using Artificial Neural Networks (ANNs) got popular

with development of intelligent control theory (Jianhua, 2008). However, this technique’s

implementation and performance limits its widespread application due to the necessity

of massive collected data, time­consuming training process, and being prone to catching

local optimums, etc (Niu, 2014).

u(t) = Kpe(t) +Kd
de(t)

dt
(3.40)
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Figure 3.5. A controlled system diagram

In contrast, EAs offer feasible optimization solutions for PID controller parameters. In­

spired by the biological and natural evolution process, EAs offer advantages such as global

optimization, parallel processing, randomized search space, and fast convergence. Among

EAs such as Genetic Programming (GP), Ant Colony Optimization (ACO), Artificial

Bee Colony (ABC), Cuckoo Search (CS), PSO, DE, Biogeography­Based Optimization

(BBO), etc., GAs offer a very high probability of finding the best solution.

3.2.2. Fuzzy logic controller

FL, unlike classical control strategies working with crisp numbers, instead deal with fuzzy

inference. Being similar to human language and feelings in terms of their uncertainty, FL

controller fuzzificates inputs and outputs via predetermined MFs. Based on the value of

the crisp input, MFs create a different output. As a result, it can be considered as the

response of the system is dependent to MFs of the FL controller, which can be considered

as a range of inputs.

Human language, with its ambiguous structure, presents a somewhat FL without the real­

ization of its existence in our lives. While human beings deal with uncertainty on a daily

basis, machines typically do not operate in such a sense. For instance, a human can de­

fine a variable as too big or small with no specific numerical value. On the other hand,

machines can only understand binary which can also be called crisp data. Nevertheless,

computers can process ambiguous data with FL techniques, and to understand these tech­

niques, Fuzzy Inference System (FIS) knowledge is required.

Implementation of FL techniques to standard computers requires three operation steps.

These steps are fuzzification, fuzzy inference, and defuzzification. Fuzzification is the
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first step to FL in which conversion of crisp data to fuzzy data through MFs is carried out.

Secondly, in order to procure fuzzy output of the system, the fuzzy inference process step

combines MFs with the control rules. Lastly, in the defuzzification process, each fuzzified

input data are converted to corresponding crisp data from the lookup table.

As referred before, computers can process crisp data such as binary, and to achieve pro­

cessing of ambiguous data, such as cold, very cold, or mildly cold, conversion of crisp

data to linguistic values are critical. This conversion process converts crisp data to fuzzy

data and is named fuzzification. A required number of fuzzy languages can be created

to achieve desired control accuracy, such as positive big, positive small, zero, negative

small, and negative big for a five fuzzy language system.

Following the fuzzification, the fuzzy inference step is crucial, and processing of the MFs

is required to do so with various methods and control rules. The control rules that make

up the lookup table are the core determiner of a fuzzy inference process, and making or

breaking the system is directly associated with the human decision­making process and

intuition. For example, for a vehicle speed controlling scheme, the control rules can be

such as if the vehicle speed is low and the distance to the destination is high. Hence

the vehicle speed should be set to high, which is how human beings’ decision­making

process works. As MFs are processed according to the lookup table, each output is then

aggregated into a single output for the final defuzzification process with various methods

such as weighted means, medians, max, sum, t­norms, t­conorms, etc.

As the last step, aggregated value is defuzzified, and to accomplish this task, various meth­

ods such as bisector of area, center of area, center of gravity, etc, are utilized, and a crisp

value is outputted as a control signal.

In brief, FIS converts the crisp values into fuzzy values for the fuzzy inference process and

outputs crisp values. Input and output values are required to be crisp values, but the fuzzy

inference process in­betweenmust work on fuzzy values. The reason for this lies in human

intuition and language, which lacks crisp definitions for quantities for qualities.
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Figure 3.6. Flc controller

The FLC model optimized in this study is Mamdani fuzzy inference system. Mamdani

method uses a set of linguistic rules to solve a control problem, and its structure is demon­

strated in Fig. 3.6. Traditionally, for this controller type, controller design starts with a rule

base created by an expert. After, optimization of membership functions is being carried

out for achieving optimal control. However, many studies showed that rule bases created

by an expert while performs satisfactory results, further optimization of this controller’s

rule base resulted in better­performing controllers. Hence, in this study, rule bases are also

optimized for achieving the best results. For the optimization of the rule base, a 15 rule

structure is defined.

FL deals with degrees of membership for any input and output for any controlling deci­

sion. Therefore membership function type choice is an important decision to make for any

control problem.

The Gaussian membership function is defined in Eq. (3.41). In this equation, the param­

eters α and σ defines the features of fuzzy sets. For optimizing the FLC, α and σ will be

designated as design parameters.

µ(x) = exp

(
−(x− α)2

2σ2

)
(3.41)

FLC has two inputs and one output. The first input e is the error signal, which is the vertical

displacement of the independent suspension system, the second input de is derivative of

the error signal, which is the vertical velocity of the independent suspension system. The
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output control signal of the FLC is the gain terms for independent PD system. By this

configuration, system control outside of FLC control parameters is insured.

Constructed FLC is as follows; Fig. 3.7 shows that for error input 5 Gaussian member­

ship functions, Fig. 3.8 shows that for derivative of error input 3 Gaussian membership

functions and as seen in Fig. 3.9 for output 7 Gaussian membership functions exist. Input

range of error is [−2 + 2], input range of derivative of error is [−1 + 1] and output range

is [0 + 6]. While these are the ranges controller operates, actual input and output ranges

are wider.
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3.3. Multi­Objective Optimization

Optimization problems with multi­objective nature require a set of optimal solutions,

known as Pareto­optimal. This phenomenon differentiates multi­objective problems from
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Figure 3.9. Gaussian type membership functions of output

single­objective problems. Pareto­optimal solutions cannot be said to be better than each

other without further information. Consequently, it is desired to find as many Pareto­

optimal solutions as possible. Classical optimization methods solve the multi­objective

optimization problems by converting the multi­objective optimization problem to a uni­

objective or by solving the problem one objective at a time. Application of classical meth­

ods requires multiple simulation runs, with no guarantee of finding the optimal solution.

Also, uni­objective optimization methods eliminate control over the optimization space by

their single­dimensional solution space nature. Multi­Objective Evolutionary Algorithms

(MOEAs) offer to find multiple Pareto­optimal solutions in a single optimization run. By

working with a large number of population, EAs present a diverse set of Pareto­optimal

solutions.

During the advancement of EAs, numerous different methods were suggested. Srinivas

and Deb (1994)’s Non­dominated Sort Genetic Algorithm (NSGA) , Fonseca and Fleming

(1993)’sMOGA , and Abido (2003)’s Niched Pareto Genetic Algorithm (NPGA) attracted

much attention by converting simple EAs to MOEAs through additional operators. These

operators’ conventional features were to assign a fitness value to population members

through non­dominated sorting and preservation of diversity in non­dominated fronts. Al­

though theseMOEAs showed promising results in multi­objective optimization problems,

requirements for their improvement introduced elitism to MOEAs. Elitism is a character­

istic that the best generation members will be kept in population for the next generation.
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Implementation of this approach improved convergence times as shown in (Zitzler, Deb,

& Thiele, 2000).

FAST NON­DOMINATED SORTING

for each p ∈ P

Sp = ∅

np = 0

for each q ∈ P

if (p ≺ q) then If p dominates q

Sp = Sp ∪ {q} Add q to the set of solutions dominated by p

else if (q ≺ p) then

np = np + 1 Increment the domination counter of p

if np = 0 then p belongs to the first front

prank = 1

F1 = F1 ∪ {p}

i = 1 Initialize the front counter

while Fi ̸= ∅

Q = ∅ Used to store the members of the next front

for each q ∈ Sp

nq = nq − 1

if nq = 0 then q belongs to the next front

qrank = i+ 1

Q = Q ∪ {q}

i = i+ 1

Fi = Q
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In a straightforward approach to fast non­dominated sorting, for identifying the non­

dominated front with a population size of N , each solution can be compared with other

solutions to find if it is non­dominated. This process requires O(MN) comparison for

each solution, whileM is the number of objectives. With a total complexity ofO(MN2),

all solutions’ sorting process for the first front is accomplished. This process at this far

founds first non­dominated front. Before finding the next front, the first front solutions are

discarded, and the procedure so far is repeated until there is no front assigned individual is

left. Because there is a maximum number ofN front is possible forN population size, the

computational complexity of this operation at worst conditions is overallO(MN3).

While this process is sufficient for Pareto­fronts’ discovery, Deb, Pratap, Agarwal, and

Meyarivan (2002) presented a more efficient way of non­dominated sorting in their paper.

To accomplish this, for each solution, two calculations need to bemade. Domination count

np, which is the number of solutions that dominate the solution p, and Sp which is a set of

solutions dominated by solution p. This process overall has a computational complexity

of O(MN2). The flow chart and algorithm of this method are shown in Fig. 3.10 and

above.

This process in detail works like this. All solutions in the first front, which is non­

dominated, will have their domination counts as zero. For each non­dominated solution

p, which np = 0 for p, each member of Sp is visited and their domination numbers (np)

reduced by one. By doing this, if any member of the Sp reaches a domination count of

zero, these solutions will be put into a separate list Q. This list becomes the second front.

By repeating the same procedure, the third front will be identified. This process will be

repeated until all fronts are identified.

For solutions that are not the member of the first front, domination count (np) can be at

most N − 1. For this reason, before the domination count of any solution p becomes

zero, each solution p will be visited at mostN − 1 times. After the domination count (np)

becomes zero for any solution p, a non­domination level (front) will be assigned to each

solution and will never be revisited. On account ofN−1 solutions such as this exists, total

complexity isO(N2) for one objective, therefore total complexity will beO(MN2).
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Start

Define Objective Functions

Input ­ Population size
and other parameters

Initialize Random Population
(First Generation)

Combine Parent and offspring population

Evaluate Objective Function, Assign Fitness
Indentify, sort all nondominated fronts

Until parent population is filled:
­ Calculate CD,

­Include ith nondominated
front in parent population,
­ Check next front inclusion,
­ Sort in descending order

Create new population us­
ing, crossover and mutation

Terminate ?

Pareto Front

Solution

Stop

yes

no

Figure 3.10. Flow chart of the multi­objective optimization algorithm based on fast and
elitist non­dominated sorting genetic algorithm
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3.3.1. Diversity preservation

EAs offer convergence to the Pareto optimal set, but it is also required to preserve a good

diversity among the solution set. NSGA­II accomplishes this task via a CrowdingDistance

(CD) operator. To achieve preservation of diversity among the population, NSGA­II does

not require any predefined value. The CD of a member is the average distance between

2M members on either side of this member,M being the objective number. Calculation of

CD firstly requires sorting the population in ascending order for each objective. Following

this, boundary solutions of each objective are assigned an infinite distance value. The rest

of the population are assigned an absolute distance value equal to the difference between

two adjacent solutions. After completing the first objective, this process is repeated for

all other objectives. The Sum of each individual’s objectives distance values is the total

CD for that solution. Before calculating CD, normalization is applied to each objective

function, dividing the two adjacent neighbors’ difference value for each objective to that

objectives’ solution space range. The algorithm to compute CD is shown here.

CROWDING DISTANCE ASSIGNMENT

l = |I| number of solutions in I

for each i, set I[i]distance = 0 initialize distance

for each objectivem

I = sort(I,m) sort using each objective value

I[1]distance = I[l]distance = ∞ so that boundary points are always selected

for i = 2 to (l − 1) for all other points

I[i]distance = I[i]distance

+
(I[i+ 1].m− I[i− 1].m)

(fmax
m − fmix

m )

In this algorithm,m notation refers tomth objective and i notation is ith individual in the

set I. fmax
m and fmix

m are the max and min values of themth objective. This sorting algo­
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rithm has a computational complexity of O(MNlogN), for M independent sortings and

N population size. After the assignment of CD for all population members, comparison

step is carried out by their proximity to other solutions. A smaller CD would mean that a

solution is, in a sense, more crowded by other solutions. Crowded comparison operator

compares this value.

The crowded comparison operator accomplishes to acquire a uniformly distributed Pareto

optimal front by guiding the selection process at various stages of the algorithm. This

operator carries out the selection process by comparing non­domination rank and CD for

every population member. Selection process prefers the solution with lower rank (front)

in case two solution has different ranks. When solutions have the same rank, solutions in

the less crowded region will be preferred instead. The crowded comparison operator is

shown below.

CROWDED COMPARISON OPERATOR

i ≺n j if (irank < jrank

or ((irank = jrank)

and (idistance > jdistance))

NSGA­II algorithm starts the optimization process by creating a random population. After

a non­domination­based sorting of the population, each solution is assigned a rank, also

named front, equal to its non­domination count. The following steps are binary tournament

selection, recombination, and mutation, to create an offspring population Q0 of size N .

With elitism, by comparing the current population with previously found non­dominated

solutions, the process differs between the initial generation and others.

After the first generation, the process is conducted as follows. First step is to combine

current (Pt) and previous (Qt) generation to create a new population (Rt), which has a

population size of 2N . The second step is to sort the population Rt according to non­

domination. Elitism is warranted by including previous and current generation population
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inRt. At this stage, solutions in the first front (F1) are the best solutions and have priority

over any other solution. If the size of F1 is smaller than N, all members of F1 is guaranteed

to be chosen for the next population (Pt+1). If that is not the case, untilN number of mem­

bers is chosen for Pt+1, the following non­dominated front members will be chosen next

and so on. Generally, the sum of all members from first to the last rank would be greater

than N , and sorting would be needed for the last chosen rank (Fl). To choose exactly N

members in total for Pt+1, for the last non­dominated chosen rank, solutions are sorted us­

ing crowded comparison operator and members chosen in descending order, starting from

best, until N member Pt+1 population is reached. To create the new population Qt+1 by

selection, crossover and mutation, this N size Pt+1 population is now used. Although se­

lection criteria are based on a crowded comparison operator, binary tournament selection

operator is still used for crossover selection and constraint handling. The main algorithm

loop is shown below.

MAIN LOOP

Rt = Pt ∪Qt combine parent and offspring population

F = fast­non­dominated­sort(Rt) F = (F1,F2, . . .), all nondominated fronts of Rt

Pt+1 = ∅ and i = 1

until |Pt+1|+ |Fi| ≤ N until the parent population is filled

crowding­distance­assignment(Fi) calculate crowding distance in Fi

Pt+1 = Pt+1 ∪ Fi include ith nondomination front in the parent pop

i = i+ 1 check the next front for inclusion

Sort(Fi,≺n) sort in descending order using ≺n

Pt+1 = Pt+1 ∪ Fi[1 : (N − |Pt+1|)] choose the first (N − |Pt+1|) elements of Fi

Qt+1 = make­new­pop(Pt+1) use selection, crossover and mutation

to create a new population

t = t+ 1 increment the generation counter
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3.3.2. Objective functions

Optimization problems, while requiring many aspects for a successful optimization, ob­

jective functions are one of the critical factors. The human body parts’ response to road­

induced vibration is different from a seat response. Hence, the following comfort and

health criterions selected for this study. RMS weighted head acceleration, VDV at the

head, RMS seat acceleration, RMS upper torso acceleration, the amplitude ratio of head

RMS acceleration to seat RMS acceleration, the amplitude ratio of upper torso RMS accel­

eration to seat RMS acceleration, and Crest Factor selected as comfort and health criteria.

Moreover, for the ride handling, reliability and safety criteria, RMS suspension travel,

RMS tire travel, and RMS IWM travel are included.

RMSweighted head acceleration (Awh) is given by ISO 2631­1 (1997) as in Eq. (3.42).

Awh =

{
1

T

∫ T

0

[awh(t)]
2dt

} 1
2

(3.42)

Alongside RMS head acceleration, RMS upper torse acceleration (Aut) is another impor­

tant objective to consider when optimizing a suspension system. The effect of vibration

on different body parts might differ in some situations. Hence,Aut is defined as the shown

in Eq. (3.43).

Aut =

{
1

T

∫ T

0

[aut(t)]
2dt

} 1
2

(3.43)

While the effect of vibration on the seat and body parts may be matching objectives, in

some cases, conflicting behavior may be observed. RMS seat acceleration (As) is defined

as presented in Eq. (3.44).

53



As =

{
1

T

∫ T

0

[as(t)]
2dt

} 1
2

(3.44)

The major portion of vibration humans exposed in vehicles enter the body through the seat

(Van Niekerk, Pielemeier, & Greenberg, 2003). Studies have shown that seated Whole

Body Vibration (WBV) exposure affects the spine by mechanical overload and exces­

sive muscular fatigue (Bovenzi, 2005). The time of exposure to vibrations determines the

health risks. As a result of these reasons, the measurement of WBV is important. As ISO

2631­1 (1997) states, VDV is a measure for assessing vibration dose effect. VDV is given

by ISO 8608 (2016) as shown in Eq. (3.45).

V DVh =

{∫ T

0

[awh(t)]
4dt

} 1
4

(3.45)

Alongside the RMS value of acceleration value, another essential factor to consider is

maximum exposed acceleration. Hence, CF is our following objective function. CF is

defined as the ratio of maximum head acceleration to the RMS head acceleration and

given by ISO 2631­1 (1997) as shown in Eq. (3.46).

CF = max(ah)

/{
1

T

∫ T

0

[as(t)]
2dt]

} 1
2

(3.46)

The transmissibility ratio is another factor to be considered as an objective. The ampli­

tude ratios of head RMS acceleration and upper torso RMS acceleration to seat RMS

acceleration is ARh and ARut, respectively. These values are defined in Eqs. (3.47)

and (3.48).
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ARh =

{
1

T

∫ T

0

[ah(t)]
2dt]

} 1
2
/{

1

T

∫ T

0

[as(t)]
2dt]

} 1
2

(3.47)

ARut =

{
1

T

∫ T

0

[aut(t)]
2dt]

} 1
2
/{

1

T

∫ T

0

[as(t)]
2dt]

} 1
2

(3.48)

Suspension system travel is defined as relative displacement between sprung mass and

unsprung mass. Minimization of this value is vital for a more stable suspension system

characteristic. Also, optimization of this value would improve the lifespan of the sus­

pension system. RMS suspension travel (RMSst) is calculated independently for each

suspension system, and the summation is defined as a single optimization objective and

defined in Eq. (3.49).

RMSst =

{
1

T

∫ T

0

[Z(t)−Θ(t) · c− Φ(t) · a− Zwr1(t)]
2dt

} 1
2

+

{
1

T

∫ T

0

[Z(t)−Θ(t) · c+ Φ(t) · b− Zwl1(t)]
2dt

} 1
2

+

{
1

T

∫ T

0

[Z(t) + Θ(t) · d− Φ(t) · a− Zwr2(t)]
2dt

} 1
2

+

{
1

T

∫ T

0

[Z(t) + Θ(t) · d+ Φ(t) · b− Zwl2(t)]
2dt

} 1
2

(3.49)

For EVs equipped with an IWM system, RMS of ADMs travel (RMSadm) is a notable

criterion when optimizing suspension system. RMSadm is calculated independently for

each motor, and the summation is defined as a single optimization objective and defined

in Eq. (3.50).
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RMSadm =

{
1

T

∫ T

0

[Zadmr1(t)− Zwr1(t)]
2dt

} 1
2

+

{
1

T

∫ T

0

[Zadml1(t)− Zwl1(t)]
2dt

} 1
2

+

{
1

T

∫ T

0

[Zadmr2(t)− Zwr2(t)]
2dt

} 1
2

+

{
1

T

∫ T

0

[Zadml2(t)− Zwl2(t)]
2dt

} 1
2

(3.50)

Dynamic tire forces are related to tire deflections. Tire deflection is defined as relative dis­

placement between wheel and road. For reliable road handling characteristics, optimiza­

tion of this value is essential. RMS value of tire deflection objective (RMStire) calculated

as accumulation of each wheel’s RMS values and defined in Eq. (3.51).

RMStire =

{
1

T

∫ T

0

[Zwr1(t)− Zrr1(t)]
2dt

} 1
2

+

{
1

T

∫ T

0

[Zwl1(t)− Zrl1(t)]
2dt

} 1
2

+

{
1

T

∫ T

0

[Zwr2(t)− Zrr2(t)]
2dt

} 1
2

+

{
1

T

∫ T

0

[Zwl2(t)− Zrl2(t)]
2dt

} 1
2

(3.51)

To reduce dimension of objective space, sum of ARut, ARh, V DVh and Aut is taken

as a uni­objective. As a result, seven objective functions are defined for optimization.

Objectives are defined as following:
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f1 = Awh

f2 = Aws

f3 = CF

f4 = ARut + ARh + V DVh + Aut

f5 = RMSst

f6 = RMStire

f7 = RMSadm (3.52)

For optimization of vehicle suspension systems, in addition to comfort and health criteria,

ride safety is another key factor. Hence, the following parameters are defined as con­

straints. Baumal et al. (1998) defined required maximum suspension travel as 125mm to

avoid hitting suspension stop, and maximum seat acceleration as 4.5m/s2. For the mini­

mization of dynamic tire forces, maximum tire deflection should not exceed 58mm. For

the vehicle’s cornering characteristic, the roll angle should not exceed 5◦ for a 25­meter

cornering radius at 25m/s vehicle speed. These parameters are determined as constraints

in the optimization of the suspension system. Values concerning the full vehicle model

and human model are tabulated in Table 3.2.

Constraints defined for optimization problem are max(aseat) ≤ 4.5m/s2 for maximum

seat acceleration, max(Susp.Disp.) ≤ 0.125m for maximum suspension travel,

max(TireDisp.) ≤ 0.058m for maximum tire deflection and χ ≤ 5◦ for maximum

roll angle.

Design parameters for the optimization are spring stiffnesses and damping coefficients of

shock absorbers for vehicle suspension, IWM, and seat. These parameters are the pas­

sive parts of the suspension system. For optimizing the FLC, α and σ parameters of the

Gaussian membership functions and rule list are selected.
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Table 3.2. Constants of full vehicle and human model

Parameter Value Unit Parameter Value Unit
M 1200 kg e 0.7 m
Ix 4000 kgm2 f 0.5 m
Iy 950 kgm2 v 25 m/s

Mwr1 40 kg R 25 m
Mwl1 40 kg h′ 0.2 m
Mwr2 40 kg M1 4.17 kg
Mwl2 40 kg M2 15 kg
Madmr1 30 kg M3 5.5 kg
Madml1 30 kg M4 36 kg
Madmr2 30 kg k1 166990 N/m
Madml2 30 kg k2 10000 N/m
Mseat 20 kg k3 144000 N/m
kwr1 180000 N/m k4 20000 N/m
kwl1 180000 N/m k5 49340 N/m
kwr2 180000 N/m c1 310 N/(m/s)
kwl2 180000 N/m c2 200 N/(m/s)
a 1.4 m c3 909.1 N/(m/s)
b 1.6 m c4 330 N/(m/s)
c 1 m c5 2475 N/(m/s)
d 1 m hr 0.5 m
pf 0.2 m pr 0.2 m
mf 50 kg mr 50 kg
hf 0.5 m
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3.3.3. Population size and stoppage criterion

Rosenthal and Borschbach (2014) concluded that seventy to 100 population size is best

for their study. Hernández­Díaz et al. (2008) experimentally determined the minimum

population size as 52 for NSGA­II. Reeves and Rowe (2002) conducted their study on the

principle that, at the very least, every point in search space should be reachable from the

initial population. This requirement can only be satisfied if there is at least one instance of

every allele at each locus in the whole population of strings. As a result, they calculated

that population size seventeen is adequate for a string length of fifty to demonstrate the

probability of 99.9% to satisfy the aforementioned principle. This calculation carried out

according to Eq. (3.53).

N ≈ [1 + log(− ls
lnP ∗

2

)/ log 2] (3.53)

Here P ∗
2 is defined as P ∗

2 = (1− (1/2)N−1)ls and using an exponential function approx­

imation P ∗
2 ≈ exp(−ls/2

N−1) equation is established as in Eq. (3.53). In Eqs. (3.53)

and (3.54), N and ls stands for population size and GA string length, respectively.

Alander (1992) through a set of experiments, concluded an optimum population size for

problems with varying complexity for GA as shown in Eq. (3.54).

ls ≤ N ≤ 2ls (3.54)

According to Eq. (3.54), optimum population size has a connection to chromosome length.

As an example, the range of design variable ksr1 is (30, 000− 10, 000) = 20, 000. Thus,

via this example 214 = 16, 384 < 20, 000 < 215 = 32, 768 , requirement of ksr1 is 15 bits

for storation of its value in chromosome.
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Bit requirements for other design variables and design variable ranges are shown in Ta­

bles 3.3 to 3.5. Hence, the chromosome length for passive suspension elements is 127 bits,

and for FLC of kp and kd, the chromosome length is 273 bits each. Therefore according

to Eq. (3.54), the total length of chromosome for passive suspension optimization is as

stated, and the population size is 250 selected. For the optimization of FLC, total length

of the chromosome is 673 bits, and population size is selected as 1300 for optimization.

Criteria for the optimization stoppage is the generation number and is equal to 250.

Table 3.3. Design variable range for passive suspension elements

Design
Variables

ksr1
ksl1

ksr2
ksl2

csr1
csl1

csr2
csl2

kadmr1

kadml1

upper bound 30000 30000 1800 1800 60000
lower bound 10000 10000 600 600 20000
search space 20000 20000 1200 1200 40000
bit value 15 15 11 11 16

Design
Variables

kadmr2

kadml2

cadmr1

cadml1

cadmr2

cadml2
kseat cseat

upper bound 60000 1500 1500 3750 2250
lower bound 20000 500 500 1250 750
search space 40000 1000 1000 2500 1500
bit value 16 10 10 12 11

Table 3.4. Design variable range of fuzzy logic controlled proportional and derivative
gains

Design Variables kp kd

upper bound 60000 6000
lower bound 0 0

Table 3.5. Design variable range for fuzzy logic controller

Design Variables E delE output rule1−15σ1−5 α1−5 σ1−3 α1−3 σ1−7 α1−7

upper bound 0.24 2 0.24 1 1 6 6
lower bound 0.04 −2 0.04 −1 0.1 0 0
search space 20 400 20 200 90 600 6
total bit value 25 45 15 24 49 70 45

60



4. RESULTS AND DISCUSSION

After the optimization process, further action is the determination of the best members

step, and since Pareto­optimal solutions cannot be said to be better than each other with­

out further information, a straightforward approach is not possible. To select a set of

population members, an additional examination of results is required. In these cases, 250

and 1300 sets of design variables are available for passive and FLC optimizations. Hence,

the minimum value for each objective is tabulated in Table 4.1 for all optimizations and

change in these values for all generations is shown in Fig. 4.2. To represent the findings,

design variables with best RMS Awh or approximations with gains in other objectives se­

lected. Objective values and comparison of the systems tabulated and showed in Table 4.6

and Fig. 4.1.

1 2 3 4 5 6 7
Object�ve Number

Pass�ve FLC

0

1

2

3

4

5

V
al

ue

6

7

Figure 4.1. Objective values of selected members (1 and 2 scale x10 ­ 5 to 7 scale x100)

Table 4.1. Minimum objective values

f1 f2 f3 f4 f5 f6 f7
Passive 0, 5660 0, 6217 3, 7182 4, 4382 0, 0444 0, 0223 0, 0189
FLC 0, 2260 0, 2499 2, 6375 3, 1754 0, 0328 0, 0223 0, 0192
FLC vs Passive 60% 60% 29% 28% 26% 0% −1%

Passive design variables of selected population members for passive and FLC suspension

systems are shown in Table 4.2. For FLC, σ and α design variables of MFs for kp and
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Figure 4.2. Minimum objective values of populations in all generations
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kd are shown in Table 4.3. MF names for E, delE and output are A to E, A to C, and 0

to 6, respectively. These namings are only for referencing purposes and hold no actual

value concerning the operation of FL controller. In Tables 4.4 and 4.5, corresponding MF

names and rule structures can be seen. Rule1 for example can be written for kp controller

as IF E is A and delE is A, THEN OUTPUT is 4. Difference of FL from boolean logic is,

instead of a binary response of boolean logic, a fuzzy response controls the system. For

instance, concerning the Rule1, degree of membership for E to be A and delE to be A

is very important. Based on a successful optimization of rule structure and MFs, a high

performing FLC is achieved.

Table 4.2. Selected passive design variables for passive and fuzzy logic controlled systems

Design
Variables

ksr1
ksl1

ksr2
ksl2

csr1
csl1

csr2
csl2

kadmr1

kadml1

kadmr2

kadml2

cadmr1

cadml1

cadmr2

cadml2
kseat cseat

Passive 19039 18082 1714 1363 38946 50224 867 1061 1250 750
FLC 13163 25448 855 1059 26107 25808 611 500 1340 750

MFs by characterization of fuzziness, quantify certainty of the input spaces, therefore

determining the response of the system. MFs of the optimized FL controller are shown in

Figs. 4.3 and 4.4. After determining the MFs and the rules, fuzzy surfaces can be created

to visualize the responses of the FLC. kp and kd surfaces of the optimized FL controller

are shown in Fig. 4.5. It is seen from the comparison of kp and kd surfaces, while kd

surface operates between 5200 and 5800, a rather small interval, kp surface ranges from

5000 to 35000, quite a big interval in comparison. By this difference, it can be deduced

that the effect of kp on the system performance compared to kd is far superior. While a

relatively constant value is required for kd gain for system control. Significant effect of

proportional gain can be said to pointing the requirement of fast system response is much

greater than the prediction of future errors. Furthermore, the interval with low proportional

gains would prevent oscillations and system instability.

Table 4.6 shows that RMS head and seat accelerations are the most improved objectives

compared to the passive suspension system. It is also seen that these values are not trade­

off values. CF due to its definition is understandable to relatively stay unchanged in FLC

compared to passive suspension. The reason for this is CF is ratio of RMS acceleration to

63



Table 4.3. Selected membership function design variables of fuzzy logic controller

Number Kp Kd MF names

E

σ

1 0,11 0,24 A
2 0,1 0,11 B
3 0,24 0,24 C
4 0,09 0,17 D
5 0,13 0,12 E

α

1 0,36 0,9 A
2 ­0,53 1,23 B
3 1,33 ­0,07 C
4 0,53 0,03 D
5 ­1,16 0,22 E

delE

σ
1 0,22 0,11 A
2 0,14 0,14 B
3 0,19 0,14 C

α
1 ­0,49 0,51 A
2 0,95 ­0,83 B
3 0,75 ­0,23 C

OUTPUT

σ

1 0,74 0,38 0
2 0,95 0,72 1
3 0,96 0,36 2
4 0,12 0,18 3
5 0,35 0,48 4
6 0,38 0,3 5
7 0,24 0,71 6

α

1 1,96 5,09 0
2 3,51 2,49 1
3 2,64 5,63 2
4 5,62 5,87 3
5 0 2,45 4
6 1,6 5,64 5
7 3,66 1,21 6

Table 4.4. Fuzzy logic controller kp rules of selected population member

delE
E A B C D E

A 4 4 4 4 5
B 1 4 0 3 2
C 1 5 2 4 4

Table 4.5. Fuzzy logic controller kd rules of selected population member

delE
E A B C D E

A 3 5 3 2 2
B 5 3 3 2 5
C 3 3 3 3 5
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Figure 4.3. kp fuzzy logic controller (a) E, (b) delE, and (c) output membership functions
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peak acceleration. Since improvements in both RMS and peak values are seen, their ratio

is relatively unchanged. Also, RMS head and upper torso acceleration graphs are shown

in Fig. 4.6. It is clearly seen that FLC controller improves these values over the passive

system, and improved comfort and health performance is expected.

Table 4.6. Comparison of selected members

f1 f2 f3 f4 f5 f6 f7
Passive 0.5856 0.6217 4.2816 4.5460 0.0479 0.0248 0.0275
FLC 0.2260 0.2499 4.4092 3.1754 0.0418 0.0249 0.0424
FLC vs Passive 61% 60% −3% 30% 13% 0% −54%

Comparison ofARh, ARut, V DVh, Aut in Fig. 4.7 clearly displays that there is no change

in valuesARh andARut with 1,225 and 1,2 for passive, and 1,209 and 1,173 for FLC sys­

tems. These values correspond to the transmissibility of the vibration in the human body

and have no relation between the type of suspension system. Unless the resonance state

occurs, these values would approximately be the same for all driving conditions. How­

ever, V DVh and Aut changed drastically with 1,425 and 0,696 for passive, and 0,528 and

0,266 for FLC systems, promoting better comfort and health expectations. Improvements

in V DVh are especially significant considering it is a metric of WBVs. While WBVs

practiced as a medical treatment, for instance, in order to treat back pain, even a short

period of exposure can actually cause immediate adverse effects such as fatigue, nausea,

and lightheadedness.

Vertical wheel forces and LTR rollover index for passive and FLC can be seen in Ta­

ble 4.7. LTR index calculations made under conditions of 25 m/s vehicle speed and 50

m cornering radius. Comparing passive suspension system against FLC, FLC exhibited

negligible changes, which is 0.06% increase in the LTR index. Since LTR is considered to

be most reliable rollover indicator regardless of vehicle configuration and operating con­

ditions, FL controller displayed no adverse effect against passive suspension in cornering

condition.

As mentioned by W. Sun et al., comfort and stability are connected with different DOF

movements; for instance, the vehicle body movement can be perilous when the sprung

mass roll causes disproportionate load distribution on tires, resulting in side­slip or rollover
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Figure 4.6. Time response of human model

Table 4.7. Vertical wheel forces and load transfer index

R1 L1 R2 L2 LTR
Passive 1388, 4 4890 1136 4357, 6 0, 57112244
FLC 1655, 5 4622, 9 870, 83 4622, 8 0, 57079023
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Figure 4.7. Comparison of ARh, ARut, V DVh, Aut

of the vehicle. Hence, examination of vehicle body movement in different DOF is also an

important step. Displacement graphs for vehicle body are shown in Fig. 4.8, and signifi­

cant improvements in vertical displacement and phi angle and some improvement in theta

angle are observed with FL controlled suspension compared to the passive system.

Suspension deflection values are significant concerning especially comfort and health cri­

teria. Lower magnitude suspension deflection also contributes to reliability. Fig. 4.9

shows suspension deflections graph. RMS suspension displacement improved 14% for

FLC system over passive suspension. As seen in Fig. 4.10, RMS tire displacement showed

no significant change because it is somewhat affected by tire stiffness instead of suspen­

sion characteristic. While all objectives we discussed until now demonstrated significant

improvement or negligible changes, the RMS displacement value of the IWM objective

is proven to be a trade­off objective. FLC suspension RMS IWM displacement value in­

creased 54% comparing to passive suspension. Advanced dynamic damper type IWM

configuration while improving comfort and health criteria, acting of IWM as a dynamic

damper increased IWM deflection. In order to overcome this, implementation of a con­

troller for IWM could be considered. Fig. 4.11 shows the control forces of FLC.
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Figure 4.9. Suspension deflections
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Figure 4.10. Tire deflections
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While the investigation of acceleration values gives an idea about expectable health and

comfort criteria, further examination is required to ensure the effects of vibration meet the

necessary standards. Such as the effects of various durations to exposing such vibration.

ISO 2631­1 (1997) defines vibration exposure limits by Health Guidance Caution Zone

(HGCZ) as shown in Fig. 4.12. In this figure, dashed lines numbered as one is exposure

period and vibration magnitude as RMS weighted head acceleration, straight lines num­

bered as two are based on V DVh. Here the criterion used to define exposure limit is RMS

weighted head acceleration­based. This criterion has three categories for assessing vibra­

tion exposure, No Health Risk (NHR), Potential Health Risk (PHR), and Likely Health

Risk (LHR). In Fig. 4.12 Awh values for passive and FLC systems are presented.

Vibration exposure limits for Awh is tabulated in Table 4.8. Passive system durations are

4,2 hours, 4,2 to 17,2 hours, and 17,2 to 24 hours for NHR, PHR, and LHR. FLC system

exceeds the time limits and no health risk is expected over 24 hours.

Table 4.8. Time limits for vibration exposure

Awh(m/s2)
Vibration exposure limits (h)
NHR PHR LHR

Passive 0, 5856 4, 2 4, 2− 17, 2 17, 2− 24
FLC 0, 2260 − − −
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Figure 4.12. Awh graph (health guidance caution zone)
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5. CONCLUSION

This thesis presents the multi­objective optimization of an IWM EV. Implemented EV

model is a nonlinear full car model with an active suspension system. A sixteen DOF

model consists of eleven DOF nonlinear vehicle models with quadratic nonlinearities in

tires and cubic nonlinearities in the suspension system, five DOF driver­seat model, and

an FL controlled PD controller developed and optimized.

Optimization objectives concerning health, comfort, ride handling, and safety were se­

lected. These objectives are Awh, V DVh, As, Aut, Crest Factor, ARh, ARut, and suspen­

sion, tire, and IWM deflections. Optimization of FL controlled active suspension system

successfully implemented using NSGA­II algorithm with constrictions concerning ride

and cornering safety such as maximum suspension deflection to prevent hitting suspen­

sion stop, dynamic tire loads concerning road holding ability by limiting tire deflection,

maximum seat acceleration for comfort, and max roll angle concerning cornering charac­

teristic. Moreover to these traditional objectives, the rarely considered rollover effect is

investigated.

Presented optimization results demonstrated a significant improvement over the passive

system with the FL controller. Optimized FL controller improves ride comfort and health

criterion over the passive system. In addition to these, the LTR index showed no ad­

verse change between models concerning the rollover situation. However, apart from the

improvements observed, implementing a controller to reduce IWM deflection is recom­

mended as the following study subject.
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