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In this paper, we consider modified Korteweg–de Vries (mKdV) equation. By using the
nonlocal conservation theorem method and the partial Lagrangian approach, conservation
laws for the mKdV equation are presented. It is observed that only nonlocal conservation
theorem method lead to the nontrivial and infinite conservation laws. In addition, invariant
solution is obtained by utilizing the relationship between conservation laws and Lie-point
symmetries of the equation.
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1. Introduction

In all areas of physics, conservation laws are essential since they allow us to draw conclusions of a physical system
under study in an efficient way. The famous laws of conservation of energy, linear momentum, and angular momentum are
important tools for solving many problems arising in mathematical physics. Knowledge of conservation laws are important
for numerical integration of partial differential equations (PDEs). Investigation of conservation laws of Korteweg–de Vries
(KdV) equation became a starting point of discovery of new approaches to integration of PDEs (such as Miura transforma-
tions, Lax pairs, inverse scattering, bi-Hamiltonian structures, etc.). Existence of the sufficient number of conservation laws
of (systems of) PDEs is a reliable indicator of their possible integrability. A variety of powerful methods, such as Noether’s
method [1,2], the direct construction formula method [3,4], the characteristic method [5], the variational approach (multi-
plier approach) [6], symmetry conditions method on the conserved quantities [7], partial Lagrangian method [8], Poisson
brackets method [9], nonlocal conservation theorem method [10], have been used to investigate conservation laws of PDEs.

KdV equation

ut = uxxx + uux (1)

is a mathematical model of waves on shallow water surfaces. Even though water waves are unstable in general [11], they do
exhibit certain stability properties in approximate water wave models specific to certain regimes (such as KdV equation cf.
the discussion in [12]). KdV equation is particularly famous as the prototypical example of an exactly solvable model, that is,
a nonlinear partial differential equation whose solutions can be exactly and precisely specified. The solutions in turn include
prototypical examples of solitons. KdV can be solved by means of the inverse scattering transform. The mathematical theory
behind the KdV equation is rich and interesting, and, in the broad sense, is a topic of active mathematical research.

The modified KdV equation

ut = uxxx + u2ux (2)
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differs from the original KdV equation in the last nonlinear term only. This, however, causes several substantial differences;
the superficial similarity is rather inessential. On the other hand, these two equations are linked at a deeper level by the so
called “Miura transformation”. Modified KdV equation arises in the process of understanding the role of nonlinear dispersion
and in the formation of structures like liquid drops, and it exhibits compactons: solitons with compact support.

The main purpose of this paper is to find conservation laws of mKdV equation by using the nonlocal conservation
theorem method and the partial Lagrangian approach. In addition, invariant solution is obtained by utilizing the relationship
between conservation laws and Lie-point symmetries of the equation.

The outline of this paper is as follows: in Section 2, the fundamental relations are recalled. In Section 3, both approaches,
i.e. nonlocal conservation theorem method and partial Lagrangian approach, to construct conservation laws are discussed.
Section 4 describes double reductions from symmetries and conservation laws. In Section 5, conservation laws for mKdV
equation are constructed with the aid of the both approaches. Section 6 is devoted to invariant solution of mKdV equation
by utilizing the relationship between conservation laws and Lie-point symmetries. Finally, concluding remarks are given in
Section 7.

2. Preliminaries

We first present notation to be used and recall basic definitions and theorems which can be found cited in the liter-
ature [13]. The summation convention is adopted in which there is summation over repeated upper and lower indices.
Let xi , i = 1,2, . . . ,n, be independent variables and uα , α = 1,2, . . . , N , be N dependent variables. The derivatives of uα

with respect to xi are uα
i = Di(uα), uij = D j Di(uα), where

Di = ∂

∂xi
+ uα

i
∂

∂uα
+ uα

i j
∂

∂uα
j

+ · · · , i = 1,2, . . . ,n,

is the total derivative operator with respect to xi . The collection of rth-order derivatives, r � 1, is denoted by u(r) . As usual
A is the vector space of differential functions. The basic operators defined in A are stated below.

The Euler–Lagrange operator is defined by

δ

δuα
= ∂

∂uα
+

∑
s�1

(−1)s Di1 . . . Dis

∂

∂uα
i1...is

, α = 1,2, . . . , N,

and the Lie–Bäcklund operator is

X = ξ i ∂

∂xi
+ ηα ∂

∂uα
+

∑
s�1

ζα
i1...is

∂

∂uα
i1...is

, (3)

where ζα
i1...is

are defined by

ζα
i = Di

(
ηα

) − uα
j Di

(
ξ j),

ζ α
i1...is

= Dis

(
ζα

i1...is−1

) − u ji1...is−1 Dis

(
ξ j), s > 1. (4)

The Noether operators associated with a Lie–Bäcklund operator X are

Ni = ξ i + W α δ

δuα
i

+
∑
s�1

Di1 . . . Dis

∂

∂uα
i1...is

, i = 1,2, . . . ,n, (5)

where Lie characteristic functions are

W α = ηα − ξ juα
j , (6)

the Euler–Lagrange operator δ
δuα

i
is

δ

δuα
i

= ∂

∂uα
i

+
∑
s�1

(−1)s D j1 . . . D js

∂

∂uα
i j1... js

, i = 1,2, . . . ,n, α = 1,2, . . . , N, (7)

and similarly for the other Euler–Lagrange operators with respect to higher order derivatives.
Consider a kth-order system of differential equations of n independent and N dependent variables:

Eα(x, u, u(1) . . . , u(k)) = 0, α = 1,2, . . . , N. (8)

A conserved vector of (8) is an n-tuple T = (T 1, T 2, . . . , T n), T i ∈ A, i = 1,2, . . . ,n, such that:

Di T
i = 0 (9)

holds for all solutions of (8). Eq. (9) is called a local conservation law.
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3. Methods to derive conservation laws

3.1. Nonlocal conservation theorem method

The system of adjoint equations to the system of kth-order differential equations (8) are defined by [14]

E∗
α(x, u, v, . . . , u(k), v(k)) = 0, α = 1,2, . . . , N, (10)

where

E∗
α(x, u, v, . . . , u(k), v(k)) = δ(vβ Eβ)

δuα
, α = 1,2, . . . , N, v = v(x) (11)

and v = (v1, v2, . . . , v N ) are new dependent variables.
Suppose system (8) admits the generator:

X =ξ i ∂

∂xi
+ ηα ∂

∂uα
. (12)

Then the adjoint system (11) admits the operator [10]:

Y = ξ i ∂

∂xi
+ ηα ∂

∂uα
+ ηα∗

∂

∂vα
, ηα∗ = −(

λα
β + vα Di

(
ξ i)), (13)

which is an extension of (12) to the variable vα and λα
β are obtained from

X(Eα) = λα
β Eβ . (14)

Theorem 3.1. Every Lie point, Lie–Bäcklund and nonlocal symmetry of the system of kth-order differential equations (8) yields a con-
servation law for the system consisting of (8) and the adjoint equation (10). The conserved vector components are

T i = ξ i L + W α δL

δuα
i

+
∑
s�1

Di1 . . . Dis

∂

∂uα
i1...is

(15)

with Lagrangian given by

L = vα Eα(x, u, . . . , u(k)) (16)

and ξ i, ηα are the coefficient functions of the generator (12). The conserved vectors obtained from (15) involves the arbitrary solutions
v of the adjoint equation (10) and hence one obtains an infinite number of conservation laws for (8) by specifying v [10].

3.2. Partial Noether approach

If the standard Lagrangian does not exist or is difficult to find, then we write its partial Lagrangian and derive the
conservation laws by the partial Noether approach introduced by Kara and Mahomed [8].

Suppose that the kth-order differential system (8) can be written as

Eα = E0
α + E1

α = 0. (17)

A function L = L(x, u, u(1), u(2), . . . , u(l)), l � k is called a partial Lagrangian of system (8) if system (8) can be expressed as
δL
δuα = f β

α E1
β provided E1

β �= 0 for some β .
The operator X defined in (3) satisfying

X(L) + LDi
(
ξ i) = Di

(
Bi) + (

ηα − ξ juα
j

) δL

δuα
, i = 1,2, . . . , N, (18)

is a partial Noether operator corresponding to the partial Lagrangian L.

The conserved vector of system (8) associated with a partial Noether operator X corresponding to the partial Lagrangian
L is determined from

T i = Bi − Ni L = Bi − ξ i L − W α δL

δuα
i

−
∑
s�1

Di1...is

(
W α

) ∂

∂uα
i1...is

. (19)

Here also W α are the characteristics of the conservation law.
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4. Double reduction method of PDEs from the association of symmetries with conservation laws

If X and T satisfy

X
(
T i) + T i D j

(
ξ j) − T j D j

(
ξ i) = 0, i = 1,2, (20)

then X is associated with T .
We define a nonlocal variable w by T t = wx , T x = −wt . In the similarity variables T r = ws , T s = −wr, so that the

conservation law is rewritten as

Dr T r + Ds T s = 0

with

T s = T t Dt(s) + T x Dx(s)

Dt(r)Dx(s) − Dx(r)Dt(s)
(21)

and

T r = T t Dt(r) + T x Dx(r)

Dt(r)Dx(s) − Dx(r)Dt(s)
. (22)

The components T x, T t depend upon (x, t, u, u(1), u(2), . . . , u(q−1)) which means that T s, T r depend upon (s, r, θ, θr, θrr,

. . . , θrq−1 ) for solutions invariant under X. Therefore Dr T r + Ds T s = 0 become ∂T s

∂s + Dr T r = 0 or

T r =
∫

∂T s

∂s
dr + f (s).

For T associated with X we have XT r = 0 and XT s = 0. Thus T r and T s are invariant under X. This means

∂

∂s
T r = 0 and

∂

∂s
T s = 0.

The conservation law in canonical coordinates becomes

Dr T r = 0.

A PDE E = 0 of order q with two independent variables, which admits a symmetry X that is associated with a conserved
vector T , is reduced to an ODE of order q −1, namely T r = k, where T r is given by (22) for solutions invariant under X [15].

5. Conservation laws of the mKdV equation

Consider now the nonlocal conservation theorem method given by Ibragimov [10]. MKdV equation admits the following
Lie-point symmetry generators:

X1 = ∂

∂x
, X2 = ∂

∂t
, X3 = −x

∂

∂x
− 3t

∂

∂t
+ u

∂

∂u
. (23)

Eq. (2) has not the usual Lagrangian. The adjoint equation for (2) is

E∗(t, x, u, v, . . . , vxxx) = δ

δu

[(
ut − uxxx − u2ux

)
v
] = 0, v = v(t, x) (24)

which yields

E∗ = vt − u2 vx − vxxx = 0 (25)

where v is the adjoint variable. If one substitutes u instead of v in Eq. (25), Eq. (2) is obtained. Consequently, Eq. (2) is
self-adjoint. Now, consider Eq. (2) and the adjoint equation (25) as a system. The Lagrangian for the system is, from (16),

L = (
ut − uxxx − u2ux

)
v (26)

that is,

δL

δv
= ut − uxxx − u2ux,

δL

δu
= vt − v2 vx − vxxx. (27)

In addition, Eq. (25) admits Lie-point symmetry generators (23). Let us illustrate this fact for X3.
If one verify symmetry invariance condition for E∗ on X3, it is seen that,

X̃3(E∗)
∣∣

E∗=0 = 3
(−vt + u2 vx + vxxx

)
with X̃3 = −x ∂ − 3t ∂ + u ∂ + 3vt

∂ + vx
∂ + 2vxx

∂ + 3vxxx
∂ , where X̃3 is the prolonged vector of X3.
∂x ∂t ∂u ∂vt ∂vx ∂vxx ∂vxxx
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Eq. (2) also satisfies invariance test

X(L) + LDi
(
ξ i) = 0 (28)

for each Lie-point symmetry in (23). Let us try to show for X1 = ∂
∂x . Here ξ = 1, τ = 0 and therefore Dt(τ ) + Dx(ξ) is zero.

X(L) is also zero for the Lagrangian (26). If we substitute these values into Eq. (28), invariance condition is clearly satisfied.
The conserved vectors of the system Eqs. (2) and (25), associated with a symmetry, can be obtained from (15) as follows:

T 1 = τ L + W
∂L

∂ut
, (29)

T 2 = ξ L + W

[
∂L

∂ux
+ D2

x

(
∂L

∂uxxx

)]
− Dx(W )

[
Dx

(
∂L

∂uxxx

)]
+ D2

x(W )
∂L

∂uxxx
(30)

where

W = η − τut − ξux. (31)

Let us construct conservation laws corresponding to symmetries.
Case 1. First, we consider X1 = ∂

∂x . Eq. (13) reveals that Y1 coincides with X1. The infinitesimals are ξ = 1, τ = 0, η = 0
and the Lie characteristic function is W = −ux and conserved vectors from (29) and (30) are

T 1 = −vux,

T 2 = vut + ux vxx − vxuxx.

If we take v = u in the above, because of self-adjointness of Eq. (2), conserved vectors are as follows:

T 1 = −uux = −Dx

(
u2

2

)
,

T 2 = uut = Dt

(
u2

2

)
. (32)

It is obvious that, if we use conserved quantities (32) in (9), trivial conservation laws are obtained.
Case 2. Second, we consider X2 = ∂

∂t . The infinitesimals are ξ = 0, τ = 1, η = 0 and the Lie characteristic function is
W = −ut and conserved vectors from (29) and (30) are

T 1 = −uuxxx,

T 2 = ut uxx − uxuxt + uutxx. (33)

We note that −uuxxx = Dx(
1
2 u2

x − uuxx) and ut uxx − uxuxt + uutxx = Dt(uuxx − 1
2 u2

x). Then it is readily seen that if we use
conserved quantities (33) in (9), again trivial conservation laws are obtained.

Case 3. Third, we consider X3 = −x ∂
∂x − 3t ∂

∂t + u ∂
∂u . The infinitesimals are ξ = −x, τ = −3t , η = u and the Lie character-

istic function is W = u + xux + 3tut and nontrivial conserved vectors from (29) and (30) are

T 1 = 3tuuxxx + 3tu3ux + u2 + xuux,

T 2 = −4uuxx − xuut − 3tu3ut − 3tut uxx + 2u2
x + 3tuxuxt − 3tuuxxt − u4. (34)

We point out that, Ibragimov’s approach is not, only verified for Lie-point type symmetry but also is valid for Lie–
Bäcklund type and nonlocal type symmetries.

Let us consider the following Lie–Bäcklund operators are [16]

X = f (i)(t, x, u, u1, u2, . . .)
∂

∂u
+ · · · , ui = Di

xu, (35)

where R = D2
x + 2

3 u2 + 2
3 ux D−1

x . u is the recursion operator. (The last summand is the operator that takes a differential

function, multiplies it by u, then takes D−1
x (if possible) and finally multiplies the result by 2

3 ux .) For i = 5

f (5) =
[

u5 + 5

3
u2u3 + 20

3
uu1u2 + 5

3
u3

1 + 5

6
u4u1

]
and conserved density is

T 1 = u f (5). (36)

Notice that, we can obtain infinite number conservation laws which base on the Lie–Bäcklund symmetry (35). In the Ibragi-
mov’s method every symmetry of the given equation provides a conservation law, it might be trivial (zero components), but
always a conservation law exists.
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Consider now the partial Lagrangian approach given by Kara and Mahomed [8]. The mKdV equation has no partial
Lagrangian unless one (as is done for standard Lagrangians) lets u = vx in which case

vtx = vxxxx + v2
x vxx. (37)

A partial Lagrangian for the latter equation is L = vt vx
2 + v2

xx
2 and the Euler–Lagrange-type equation is δL

δv + vxt − vxxxx = 0
so that Eq. (37) can be written as δL

δv = −v2
x vxx .

The partial Noether symmetry determining equation is, by (18),

X[2]L + (Dtτ + Dxξ)L = Dt B1 + Dx B2 + (η − τ vt − ξ vx)
δL

δv
(38)

Eq. (38) for L = vt vx
2 + v2

xx
2 gives:

vx

2

[
ηt + vtηv − vxξt − vx vtξv − vtτt − v2

t τv
]

+ vt

2

[
ηx + vxηv − vxξx − vx vtτv − vtτx − v2

xξv
]

+ vxx
(
ηxx + 2vxηxv + vxxηv + v2

xηv v − 2vxxξx − vxξxx

− 2v2
xξxv − 3vx vxxξv − v3

xξv v − 2vxtτx

− vtτxx − 2vx vtτxv − vt vxxτv − 2vx vxtτv − v2
x vtτv v

)
+

(
vt vx

2
+ v2

xx

2

)
[ξx + vxξv + τt + vtτv ]

= −ηv2
x vxx + v3

x vxxξ + v2
x vt vxxτ + B1

t + vt B1
v + B2

x + vx B2
v (39)

where B1 = B1(t, x, v) and B2 = B2(t, x, v) are the gauge terms. Separating Eq. (39) with respect to derivatives of v yield
the following overdetermined linear system

vx : ηt

2
− B2

v = 0,

vx vt : ηv + ξx

2
= 0,

v2
x : ξt = 0,

v2
x vt : ξv = 0,

vx v2
t : τv = 0,

vt : ηx

2
− B1

v = 0,

v2
t : τx = 0,

vxx : ηxx = 0,

vx vxx : 2ηxv − ξxx = 0,

v2
xx : ηv − 3

ξx

2
+ τt

2
= 0,

v2
x vxx : ηv v − 2ξxv + η = 0,

v3
x vxx : ξv v + ξ = 0,

vxt vxx : τx = 0,

vt vxx : τxx = 0,

vx vt vxx : τxv = 0,

v2
x vt vxx : τv v + τ = 0,

1 : B1
t + B2

x = 0. (40)

The calculations reveal that ξ(x, t, v) = τ (x, t, v) = η(x, t, v) = 0. If one choose partial Lagrangian as L = v2
xx
2 − 1

12 v4
x ,

and δL
δv = vtx the calculations again show that ξ(x, t, v) = τ (x, t, v) = η(x, t, v) = 0. The partial Lagrangian approach is an

extension of the Noether approach and as seen in this situation it may lead to no infinitesimals as in the Noether case. So
it is dependent very much on the choice of a partial Lagrangian.
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6. Invariant solution of the mKdV equation

Eq. (2), admits the symmetry generators X1 = ∂
∂x , X2 = ∂

∂t associated with the conservation law Dt(u)+ Dx(−uxx − u3

3 ) =
0 in the sense of (20).

Let X = X1 + cX2. Canonical coordinates of X (such that X = ∂
∂s ) are

s = x, r = cx − t, u. (41)

The above mentioned conservation law is written as Ds T + Dr T r = 0 with

T r = uDt(x) + (−uxx − u3

3 )Dx(x)

Dt(cx − t)Dx(x) − Dx(cx − t)Dt(x)
= uxx + u3

3
= c2urr + u3

3
. (42)

Since T = (T r, T s) is associated with X,

T r = k1 ⇒ c2urr + u3

3
= k1. (43)

The reduced equation is

c2urr + u3

3
= k1. (44)

We write urr as dur
du ur so that the above equation becomes

urdur = k1 − u3

3

c2
du (45)

and therefore

ur =
(

2k1

c2
u − u4

6c2
+ c1

) 1
2

. (46)

A second integration to r leads to∫ (
2k1

c2
u − u4

6c2
+ c1

)− 1
2

du = r + c2 (47)

is a 4 parameter family of solutions of Eq. (2) invariant under X = X1 + cX2.

7. Conclusions

In this paper, we considered modified Korteweg–de Vries (mKdV) equation. By using the nonlocal conservation theorem
method and the partial Lagrangian approach, conservation laws for the mKdV equation are discussed. It is observed that only
nonlocal conservation theorem method lead to the nontrivial conservation law (34) for Lie point symmetries and infinite
conservation densities (one of them is Eq. (36)) for Lie–Bäcklund symmetry. In addition, invariant solution (47) is obtained
by utilizing the relationship between conservation laws and Lie-point symmetries of the equation.
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