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a b s t r a c t

We generate conservation laws for the one dimensional nonconservative Fokker–Planck
(FP) equation, also known as the Kolmogorov forward equation, which describes the time
evolution of the probability density function of position and velocity of a particle, and
associate these, where possible, with Lie symmetry group generators. We determine the
conserved vectors by a composite variational principle and then check if the condition for
which symmetries associate with the conservation law is satisfied. As the Fokker–Planck
equation is evolution type, no recourse to a Lagrangian formulation is made. Moreover, we
obtain invariant solutions for the FP equation via potential symmetries.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In all areas of physics, conservation laws are essential since they allow us to draw conclusions of a physical system under
study in an efficient way. A variety of powerful methods [1–12], have been used to investigate conservation laws of partial
differential equations (PDEs).
Recently, Ibragimov proposed a general method [13] to find conservation laws for partial differential equations (PDEs).

This new approach does not require the existence of a Lagrangian and is based on the concept of an adjoint equation for
non-linear PDEs [14]. In [13], it is proved that the adjoint equation inherits all the symmetries of the given PDEs.
The FP equationmodels a wide variety of phenomena arising in diverse fields: probability theory (describing theMarkov

process, an FP equation appears as the master equation), laser physics (the statistics of light may very well be treated by a
FP equation), electronics (supersonic conductors, Josephson tunnelling junction, relaxation of dipoles, second-order phase-
locked loops, an optimal portfolio problem) [15,16].
In the case of one space variable, to which we restrict ourselves here just for the sake of simplicity, the FP equation is

included in the parabolic equation

ut = a(t, x)uxx + b(t, x)ux + c(t, x)u (1)

where u is the probability density function, t and x are the time and space coordinates, respectively, and a, b and c are smooth
functions of t and x, assumed to be given.
In this work, we consider the nonconservative form of Eq. (1), namely a(t, x) = 1, b(t, x) = x and c(t, x) = 0. We give

the complete Lie-point symmetries, conservation laws and invariant solutions corresponding to potential symmetries for
the nonconservative FP equation of the form

uxx + xux − ut = 0. (2)
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In [17], Mahomed studies invariant characterization for Eq. (1). He provides the condition for which Eq. (2) is reducible to
one of four canonical forms and thus the point symmetries are readily available.
It iswell known that if one knows the conservation laws of a given equation and those conservation laws can be associated

with symmetries (Lie-point or Lie-Bäcklund) of the given equation then new conservation laws can be obtained.Using
this fact, we also yield new conservation laws. In addition, we put Eq. (2) into the conservative form by using one of the
conservation laws and thenwederive potential (nonlocal) symmetries.Utilizing one of these potential symmetrieswe obtain
an invariant solution by considering the algorithm of Pucci and Saccomandi [18] (see for other alternative methods [19,20]).
The outline of this work is as follows. In the next section we present the necessary preliminaries. In Section 3, we discuss

the Fokker–Planck equation and its Lie-point symmetries. Section 4 is devoted to calculation of the conservation laws. Then
in Section 5, we obtain the potential symmetries and an invariant solution corresponding to one potential symmetry. Some
conclusions are given in Section 6.

2. Necessary preliminaries

We first state some notations and theorems. The summation convention over repeated indices, one upper and one lower,
will be used.
Let

x = (x1, . . . , xn) (3)

be the independent variable with coordinates xi, and

u = (u1, . . . , um) (4)

be the dependent variable with the coordinates uα . The derivatives of uwith respect to x are

uαi = Di(u
α), uαij = DjDi(u

α), . . . (5)

where

Di =
∂

∂xi
+ uαi

∂

∂uα
+ uαij

∂

∂uαj
+ · · · , i = 1, . . . , n (6)

is the operator of total differentation. The collection of all first derivatives uαi is denoted by u(1). Similarly, the collections of
all higher-order derivatives are denoted by u(2), u(3), . . .. The variables uα are also called differential variables. A function
f (x, u, u(1), . . .) of a finite number of a variables x, u, u(1), u(2), . . . is called a differential function if it is locally analytic. The
set of all differential functions of all finite orders is denoted by A.
We denote a rth order (r ≥ 1) system ofm PDEs of n independent variables x = (x1, . . . , xn)with components xi andm

dependent variables u = (u1, . . . , um)with components uα by

Fβ(x, u, u(1) . . . , u(r)) = 0, β = 1, . . . ,m. (7)

The system (7) admits a Lie point symmetry with generator

X = ξ i(x, u)
∂

∂xi
+ ηα(x, u)

∂

∂uα
(8)

if pr X rFβ = 0 on the solution space of Eq. (7), where pr X r is the rth prolongation of X vector field.
The vector

C = (C1(x, u, u(1), . . . , u(r−1)), . . . , Cn(x, u, u(1), . . . , u(r−1))) (9)

is a conserved vector of Eq. (7) if

Di(C i) = 0 (10)

on the solution space of (7). The expression (10) is a conservation law of Eq. (7). Here Di is the total derivative with respect
to xi and in what follows we will employ in the case of independent variables (x0, x1) = (t, x) and (u1, u2) = (u, v) as
dependent variables.
Let an operator (8) be a symmetry of a system of rth order partial differential equations [13]

Fα(x, u, u(1), . . . , u(r)) = 0, α = 1, . . . ,m. (11)

Then the quantities (Noether identity)

C i = Lξ i + (ηα − ξ juαj )

[
∂L
∂uαi
− Dj

(
∂L
∂uαij

)
+ DjDk

(
∂L
∂uαijk

)
− · · ·

]

+Dj(ηα − ξ juαj )

[
∂L
∂uαij
− Dk

(
∂L
∂uαijk

)
+ · · ·

]
+ DjDk(ηα − ξ juαj )

[
∂L
∂uαijk
− · · ·

]
+ · · · (12)
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furnish a conserved vector C = (C1, . . . , Cn) for the Eq. (11) considered together with the adjoint system

F∗α (x, u, v, u(1), v(1), . . . , u(r), v(r)) ≡
δL
δuα
= 0, α = 1, . . . ,m (13)

where

L = vβFβ(x, u, u(1), . . . , u(r)), (14)
Wα
= ηα − ξjuαj ,

are a formal Lagrangian and a Lie characteristic function, respectively and v = (v1, . . . , vm) are adjoint dependent variables,
i.e. v = v(x) and

δ

δuα
=

∂

∂uα
+

∑
(−1)rDi1 ...Dir

∂

∂uαi1...ir
, α = 1, . . . ,m. (15)

In the case of a second order Lagrangian, the Noether identity, (12), is replaced by

C i = ξ iL+
[
∂L
∂uαi
− Dk

(
∂L
∂uαik

)]
Wα
+ Dk(Wα)

∂L
∂uαik

. (16)

Suppose that X is a Lie-point symmetry of Eq. (7), such that the conserved form of Eq. (7), given by (10), is invariant under
X . Then

X(T i)+ T iDj(ξ j)− T jDj(ξ i) = 0. (17)

A Lie point symmetry X is said to be associated with a conserved vector T of the system (7) if X and T satisfy (17) [21].
Bluman et al. [22] have introduced the concept of potential symmetry for any differential equation that can be written

as a conservation law. In the case of considered here, this means that the definition of the conservation laws (10) can be
written as

DxG(x, u, u(1))− DtH(x, u, u(1)) = 0 (18)

where Dx and Dt are the total derivative operators. Introducing an auxiliary potential variable w = w(x, t), it is possible to
form the potential system, S = 0,

wt = G, wx = H (19)

which is obviously equivalent to (18).
To compute the classical point symmetries of (18), we introduce the infinitesimal generator

X = ξ(x, t, u, w)
∂

∂x
+ τ(x, t, u, w)

∂

∂t
+ η(x, t, u, w)

∂

∂u
+ ϕ(x, t, u, w)

∂

∂w
(20)

and its first-order prolongation

pr X1 = X + ηx
∂

∂ux
+ ηt

∂

∂ut
+ ϕx

∂

∂wx
+ ϕt

∂

∂wt
(21)

where

ηx = Dxη − uxDxξ − utDxτ , ηt = Dtη − uxDtξ − utDtτ , (22)

ϕx = Dxϕ − wxDxξ − wtDxτ , ϕt = Dtϕ − wxDtξ − wtDtτ . (23)

Considering relation

pr X1S = 0 (24)

we obtain the defining equations of the classical point symmetries admitted by Eq. (19). Any admitted symmetry with
infinitesimal generator X where ξ, τ or η depend onw is called a potential symmetry of Eq. (19); potential symmetries are
non-local symmetries.
Now, we give the following theorems [18]:

Theorem 2.1. The necessary conditions for Eq. (19), of order m > 2, to admit potential symmetries are that

∂G
∂u0,m−1

= 0 and H = H(x, t, u, ux, ut). (25)

Since, for m = 2, F = F(x, t, u, ux, ut) and G = G(x, t, u, ux, ut), we have shown that potential symmetries can exist
only if the density or the flow depends at most on the first derivatives of u.



3206 E. Yaşar, T. Özer / Computers and Mathematics with Applications 59 (2010) 3203–3210

Theorem 2.2. Eq. (19) admits potential symmetries only if (19) assumes one of the following forms:

wx = K1(x, t, u)ut + K2(x, t, u)ux + K3(x, t, u), (26)

where K1 6= 0; otherwise

wx = K(x, t, u, ux) (27)

and in this case it is τ = τ(t).

Now, let R be a PDE, which can be written in a conserved form with a choice of H and G, which satisfies the necessary
conditions of the last theorems. We suppose to have determined a potential symmetry of R. It is interesting to clarify how
it is possible to use these symmetries to find exact solutions by reduction methods.
Given a point symmetry for S, the invariant surface conditions are:

ξ(x, t, u, w)ux + τ(x, t, u, w)ut − η(x, t, u, w) = 0, (28)
ξ(x, t, u, w)wx + τ(x, t, u, w)wt − φ(x, t, u, w) = 0.

The solutions of the associated characteristic system are given by three independent integrals:

s1(x, t, u, w) = c0, s2(x, t, u, w) = c1, s3(x, t, u, w) = c2 (29)

with ∂(s1,s2,s3)
∂(u,w) of rank 2.

The solutions of Eq. (28) are defined as one-parameter families of characteristic curves Eq. (29), we obtain

u = U(x, t, z, h1(z), h2(z)),
w = V (x, t, z, h1(z), h2(z)),
G(x, t, z, h1(z), h2(z)) = 0. (30)

Eq. (30)3, defines implicitly the similarity variable z as a function of x; t . We point out that Eq. (30)1 is a family of solutions
of the second-order equation:

η∗(x, t, u, u1, u2) = 0 (31)

that is obtained by eliminatingw between the two equations of (28).
The invariant solutions of S are given by Eq. (30), where hi(z); i = 1; 2 are the solutions of the ordinary system ϕ, which

is obtained by substitution in S. R being a differential consequence of S. The solutions of S give those solutions FE of Rwhich
verify the differential relation:

η̃(x, t, u, u1, u2, . . . , um−1) = 0 (32)

that is obtained by eliminatingw between Eq. (28)1, and

ξH + τG− φ = 0. (33)

We can determine a family F∗E of R solutions by direct substitution of Eq. (30)1 and (30)3 into R.We obtain, in this way, a
relation involving z; h1; h2, the derivative up to order m, and one parameter given by x or t . By imposing that the relation
is identically zero for any value of the parameter; this will result in an ordinary system ϕ on the hi(z). F∗E is given by
Eq. (30)1, where hi(z) are solutions of ϕ; then F∗E is a family of solutions for Eq. (31). On the other hand, FE , besides
Eq. (31), verifies also Eq. (29), then FE is enclosed in F∗E .

3. Lie group analysis of FP equation

The one dimensional, nonconservative FP equation is in the form of

uxx + xux − ut = 0. (34)

We consider a one-parameter Lie group of infinitesimal transformations in (x, t, u) given by

x∗ = x∗(x, t, u, ε), t∗ = t∗(x, t, u, ε), u∗ = u∗(x, t, u, ε), (35)

where ε is the group parameter. The infinitesimal generator of the group (35) can be expressed in the following vector form:

X = ξ
∂

∂x
+ τ

∂

∂t
+ η

∂

∂u
(36)

in which ξ, τ , η are infinitesimal functions of group variables (independent and dependent variables). Then the
corresponding one-parameter Lie group of transformations becomes

x∗ = x+ εξ(x, t, u)+ O(ε2), t∗ = t + ετ(x, t, u)+ O(ε2), (37)
u∗ = u+ εη(x, t, u)+ O(ε2).



E. Yaşar, T. Özer / Computers and Mathematics with Applications 59 (2010) 3203–3210 3207

Applying the classical method to (34) yields a system of determining equations. Thus the Lie algebra of infinitesimal
symmetries of the FP equation is spanned by the six vector fields

X1 =
∂

∂t
, X2 = u

∂

∂u
, X3 = e−t

∂

∂x
, X4 = et

∂

∂x
− etux

∂

∂u
, (38)

X5 = −
1
2
e2tx

∂

∂x
−
1
2
e2t

∂

∂t
+

(
1
2
u+

1
2
ux2
)
e2t

∂

∂u
, X6 =

1
2
e−2tx

∂

∂x
−
1
2
e−2t

∂

∂t
,

and the infinite-dimensional subalgebra

X∞ = f (t, x)
∂

∂u
, (39)

where f (t, x) is an arbitrary solution of
fxx + xfx − ft = 0.

4. Calculation of conservation laws

The formal Lagrangian (14) of Eq. (34) is
L = (uxx + xux − ut)v. (40)

Substituting (40) to (13) we yield the following adjoint equation

F∗ = vt + vxx − xvx − v = 0. (41)
Let us investigate, the self-adjointness of Eq. (34). If we substitute u = v in Eq. (41), uxx − xux − u+ ut = 0 is obtained, i.e.
F 6= F∗. Therefore, (34) is not self-adjoint.
Eq. (41) admits

X =
∂

∂t
(42)

time translation symmetry. It is clear that, v = e
x2
2 is invariant solution of (41) by using time translation symmetry.

Adjoint equation (13) admits the symmetries of Eq. (7). Indeed, adjoint equation admits the operator X extended to the
variables v by the formula

Y = X + η∗
∂

∂v
, η∗ = −[λ+ Di(ξ i)]v (43)

where
X(F) = λF . (44)

Let us illustrate this fact. We consider X4 from (38) and its prolongation, respectively,

X4 = et
∂

∂x
− etux

∂

∂u
, (45)

pr X4 = et
∂

∂x
− etux

∂

∂u
− et(xu+ xut + ux)

∂

∂ut
− et(u+ xux)

∂

∂ux
− et(2ux + xuxx)

∂

∂uxx
. (46)

We obtained λ as−xet by employing the invariance condition. Therefore, η∗ is xetv.
Consequently, the extension of the operator X4 to v has the form

Y = et
∂

∂x
− etux

∂

∂u
+ xetv

∂

∂v
. (47)

At this stage, we find the conservation laws. For instance, we consider the symmetry X2 in (38). Applying the formula (16)
to the symmetry X2 = u ∂∂u , where ξ

0
= 0, ξ 1 = 0, η = u, and to the formal Lagrangian (40), we derive the following

conserved vectors of the conservation law (10)

C02 = u
∂L
∂ut
= −vu, (48)

C12 = [xv − Dx(v)]u+ vDx(u) = xuv − uvx + vux. (49)

Remark. It is noticed that each symmetry and formal Lagrangian satisfies a X(L)+ LDi(ξ i) = 0 invariance condition [13].

If one uses v = e
x2
2 (solution of the adjoint equation (41)) in (48) the conserved vectors are the following:

C02 = −e
x2
2 u, C12 = e

x2
2 ux. (50)
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After lengthy calculations, we obtain the following conservation laws corresponding to each symmetry of (38)–(39):

C01 = vuxx + xvux, C11 = −xvut + vxut − vuxt
C02 = −vu, C12 = xuv − uvx + vux,

C03 = ve
−tux, C13 = e

−t(uxvx − vut),

C04 = ve
t(ux + xu), C14 = −e

t(v(ut + x2u+ xux + u)− vx(xu+ ux))

C05 = −
e2t

2
v(ut + xux + u+ ux2),

C15 =
e2tv
2

(
(x2 + 2)ux + 2xut + xu(3+ x2)+ utx

)
−
e2tvx
2

(
u(1+ x2)+ xux + ut

)
,

C06 = −
e−2t

2
v(ut − xux),

C16 =
e−2t

2
v(utx − ux)+

e−2t

2
vx(xux − ut),

C0
∞
= −vf , C1

∞
= (xv − vx)f + vfx.

(51)

We note that the conservation laws of the FP equation can also easily be treated using the partial Noether approach [10].
In [10], it is shown how one can construct the conservation laws of Euler–Lagrange-type equations via Noether-type
symmetry operators associated with partial Lagrangians. This is even in the case when a system does not directly have
a usual Lagrangian, e.g. scalar evolution equations.
Let us generate another new conservation law from (51). Eq. (34) has conserved components, (C02 and C

1
2 )

C0 = −e
x2
2 u, C1 = e

x2
2 ux (52)

with associated symmetry X1 = ∂
∂x in the sense of (17). Clearly Eq. (34) admits X2 = u

∂
∂u . The action of X2 on (52) yields

C0
∗
= X(C0)+ C0Dx(ξ 1)− C1Dx(ξ 0) = −e

x2
2 u = C0 (53)

and

C1
∗
= e

x2
2 u = C1 (54)

and therefore X2 does not produce a new conservation law. In additional, the canonical Lie–Bäcklund operator does not give
new conserved quantities, due to the following results:

X2 = u
∂

∂u
, X2(C0) = −e

x2
2 u = C0

∗
, (55)

X2(C1) = C1∗ . (56)
But, for instance from X3, we can yield new conservation laws using (17). The action of X3 on (52) yields

C0
∗
= −xe−t+

x2
2 u, (57)

C1
∗
= (xux − u)e−t+

x2
2 . (58)

Again, if a canonical approach is used, we obtain (57),

X3C0 = C0∗ , X3C1 = C1∗ . (59)
Let us determine the point symmetries associated with the conserved components

C0 = −e
x2
2 u, C1 = e

x2
2 ux (60)

of the FP equation. The symmetry conditions on (60) are

X(C0)+ C0Dx(ξ x)− C1Dx(ξ t) = 0, X(C1)+ C1Dt(ξ t)− C0Dt(ξ x) = 0 (61)
where X is the operator

X = τ
∂

∂t
+ ξ

∂

∂x
+ η

∂

∂u
+ ζt

∂

∂ut
+ ζx

∂

∂ux
+ ζxx

∂

∂uxx
. (62)

The expansion of the determining equations (61) and separation by monomials of the first derivatives give X1, X4 and X5.
Hence there are three symmetries associatedwith C0 and C1. We note that {X1, X4, X5} forms a subalgebra of the Lie-Algebra
of point symmetry generators of the Eq. (34).
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5. Potential symmetries and invariant solution

In order to find the potential symmetries of Eq. (34), we set it in the following conservative form (for instance, we employ
C02 and C

1
2 corresponding to X2)

Dt(−e
x2
2 u)− Dx(−e

x2
2 ux) = 0. (63)

By considering a potentialw(x; t) as an auxiliary unknown function, the following system S can be associated with Eq. (63)

wt = −uxe
x2
2 , wx = −e

x2
2 u. (64)

Since R is a linear PDE and S is a linear system of PDEs, then, ξ and τ are independent of u and w and are linear in u and w
[22]. Also, system S is a particular case of Eq. (27) which is a particular case ofwx = K(x, t, u, ux).
Using the classical algorithm, we find the following point symmetry generators of Eq. (64):

X1 =
∂

∂t
, X2 = etux

∂

∂u
− et

∂

∂x
,

X3 = e2tu(x2 + 1)
∂

∂u
− e2tx

∂

∂x
− e2t

∂

∂t
,

X4 = −e−t
∂

∂x
+ we−t−

x2
2
∂

∂u
− wxe−t

∂

∂w

X5 = −xe−2t
∂

∂x
+ e−4t

∂

∂t
+ 2e−2t(u+ wxe−x

2
)
∂

∂u
+ we−2t(−x2 + 1)

∂

∂w
.

In all the symmetries above, only X4 and X5 are potential symmetries for Eq. (34). For the potential symmetry X4, a potential
system with

wx = −e
x2
2 u, wt = −e

x2
2 ux (65)

the characteristic system related to invariant surface conditions:

−e−tux − we−t−
x2
2 = 0, (66)

−e−twx + wxe−t = 0 (67)

or

ux + we−
x2
2 = 0, (68)

−wx + xw = 0, (69)

admits the following three integrals

c0 = t, c1 = we−
x2
2 , c2 = u+ wxe−

x2
2 . (70)

If we assume c0 = z as a parameter, c1 = h1(z), and c2 = h2(z) in Eq. (70), we obtain

u = h2(z)− xh1(z), (71)

w = h1(z)e
x2
2 ,

z = t.

We point out that Eq. (71)1 is a family of solutions of the second-order equation:

η∗ ≡ uxx = 0, (72)

which is obtained by eliminatingw between Eqs. (68) and (69). Now, to find the solutions F∗E , we introduce the (71)1 in (34)
obtaining:

h
′

2 − xh
′

1 + xh1 = 0. (73)

From Eq. (73), we have the system ϕ as

h
′

2 = 0, (74)

h1 − h
′

1 = 0
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which on solving yields

h1(z) = c3ez, (75)
h2(z) = c4,

where c3, c4 is a constant. Then, the family F∗E is therefore

u = c4 − xc3et . (76)

Also, Eq. (71) is a family of solutions of the first-order equation

η̃ = xux − u = 0 (77)

that is obtained by eliminatingw between Eqs. (71) and (33).
To find the solutions FE , we introduce Eq. (71) into Eq. (65) obtaining the system ϕ:

h2(z) = 0, (78)

h
′

1(z)− h1(z) = 0

which on solving yields

h1(z) = c5et , (79)
h2(z) = 0,

where c5 is a constant. Then, the family FE is therefore

u = −c5xet . (80)

It is clear that FE is enclosed in F∗E .

6. Conclusions

In this work, we considered the one-dimensional nonconservative FP equation.This equation belongs to the family of
evolution type equations and it does not have the usual Lagrangian. In view of this fact, we applied the composite variational
principle, inspired by [13]. First we obtained complete Lie-point symmetries of Eq. (34). Next, we constructed an adjoint
equation by applying the formal Lagrangian to the variational derivative. It is seen that adjoint equation (41) admits all the
symmetries of Eq. (34). Therefore Eqs. (34) and (41) together are a member of family of Euler–Lagrange type equations. As a
result, non-local conservation laws are obtained.Moreover, we derived local conservation laws using one particular solution
of Eq. (41). Computing the conservation laws of the studied equation provides many possibilities. For instance, using one
conserved quantity of Eq. (34), we put it into a conservative form and yielded potential symmetries. Finally, the invariant
solution of Eq. (34) is derived by employing one potential symmetry.
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