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1 A p-ADIC LOOK AT THE DIOPHANTINE

EQUATION x2 + 112k = yn

Ismail Naci Cangul, Gokhan Soydan, Yilmaz Simsek

Abstract

We find all solutions of Diophantine equation x2+112k = yn, x ≥ 1,
y ≥ 1, k ∈ N, n ≥ 3. We give p-adic interpretation of this equation.
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1 Introduction

In this paper, we consider the equation

x2 + 112k = yn, x ≥ 1, y ≥ 1, k ≥ 1, n ≥ 3. (1.1)

Our main result is the following.

Theorem 1 Equation (1.1) has only one solution

n = 3 and (x, y, k) = (2 · 113λ, 5 · 112λ, 1 + 3λ)

where λ ≥ 0 is any integer.

2 Reduction to Primitive Solution

Note that it sufficies to study (1.1) when gcd(x, y) = 1. Such solutions
are called primitive. Let (x, y, k, n) be a non primitive solution. Let x =
11a · x1, y = 11b · y1 with a ≥ 1, b ≥ 1 and 11 ∤ x1y1. (1.1) becomes

112ax21 + 112k = 11nbyn1 . (2.1)

We have either 2k = nb ≤ 2a or 2a = nb < 2k. First case leads to X2 +1 =
Y n, X = 11a−kx1 and Y = y1, which has no solution by Lebesgue’s result,
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and second leads to X2 + 112k1 = Y n,X = x1, Y = y1 and 2k1 = 2k −
2a = 2k − nb. (X,Y, k1, n) is a solution of (1.1) and a primitive solution is
(2, 5, 1, 3). If (x1, y1, k1, n) = (2, 5, 1, 3), then 2k = 2+2a = 2+3b and hence
a = 3λ and b = 2λ for λ ∈ N. Now (x, y, k, n) = (2 · 113λ, 5 · 112λ, 1 + 3λ, 3).
It remains to prove that the only primitive solution is indeed (2, 5, 1, 3).

3 The Case When n=3

Lemma 2 The only primitive solution of (1.1) with n = 3 is (2, 5, 1).

Proof. As x and y are coprime and 112k ≡ 1 (mod 4), we get x is even in

(x+ i11k)(x− i11k) = y3. (3.1)

Hence x+ i11k and x− i11k are coprime in Z[i] which is a UFD. As the only
units of Z[i] are ±1,±i, we get

x+ i11k = (u+ iv)3; x− i11k = (u− iv)3. (3.2)

Eliminating x, we get 2i11k = (u + iv)3 − (u − iv)3 or 11k = v(3u2 − v2).
Note that u and v are coprime since otherwise any prime factor of u and v
will also divide both x and y. Therefore v = ±1 or v = ±11k, which lead to

3u2 = 1± 11k, 3u2 = ±1 + 112k, (3.3)

respectively. First equation is impossible as if the sign is −, then right hand
side is negative, while if the sign is + and k is even, then right hand side
is congruent to 2 modulo 3 while left hand side is divisible by 3. Finally if
the sign is + and k is odd, this equation has only one solution. Let’s write
m = (k−1)/2, X = 3u, Y = 11m.Then the equation becomes a Pell equation
with an additional condition, namely X2 − 33Y 2 = 3, with Y = 11m. Then
X +

√
33Y = (6 +

√
33)(23 + 4

√
33)r. So Y = ±yr, where (yr) is given by

y
−1 = −1, y0 = 1, yr+1 = 46yr − yr−1. This sequence is symmetric about
r = −1, 2. As we are interested in yr = ±11m, we look at the sequence in
modulo 11: −1, 1, 3, 5,−4,−2, 0, 2, 4,−5,−3,−1, 1..., with a period of length
11. Thus 11|yr if and only if r ≡ 5 (mod 11). But any other prime that
divides y5 = 210044879 will also divide any yr with r ≡ 5 (mod 11). As y5 =
210044879 = 11.373.51193, we find that r ≡ 5 (mod 11) implies 373|yr and
51193|yr . Thus m = 0 is the only possibility for yr = ±11m. From here, u =
±2, v = 1, k = 1 and so (x, y, k) = (2, 5, 1). For the second equation, the sign
must be −1. Thus (11k)2 − 3u2 = 1. X2 − 3Y 2 = 1 has a smallest solution
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(X1, Y1) = (2, 1). Furthermore (X2, Y2) = (7, 4) and (X3, Y3) = (26, 15).
(Xm) is a Lucas sequence of second type. By Primitive Divisor Theorem,
[2], if m > 12, then Xm has a prime factor p ≡ 1 (mod m). In particular,
Xm can not be a power of 11 if m > 12. One can check that m ≤ 12 such
that Xm can not be a power of 11.

4 The Case When n=4

Lemma 3 Equation (1.1) has no solution for n = 4.

Proof. Now we rewrite equation (1.1) as 112k = (y2 + x)(y2 − x). Since x
is even and y is odd, we have that y2 + x and y2 − x are coprime. Thus

y2 − x = 1; y2 + x = 112k, (4.1)

which leads to (11k)2−2y2 = −1. Equation (4.1) gives a solution (X,Y ) to
Pell equation X2 − 2Y 2 = ±1 with X = 11k and Y = y. The first solution
of equation (4.1) is (X1, Y1) = (1, 1). Further X2 = 3, X3 = 7 and X4 = 17.
By checking Xm for all ≤ 12 and invoking the Prime Divisor Theorem for
m > 12, we get that Xm can not be a power of 11.

5 The Remaining Cases

If (x, y, k, n) is a primitive solution to (1.1) and d > 2 divides n, then
(x, yn/d, k, d) is also a primitive solution of (1.1). Since n ≥ 3 is coprime to
3 and not a multiple of 4, there is a prime p ≥ 5 dividing n. Replace n by
this prime. Look again at (x+ i11k)(x− i11k) = yp. Since x is even and y is
odd, we get that x+11ki and x− 11ki are coprime in Z[i]. Then there exist
u and v so that if α = u+ iv, then x+ i11k = αp and x− i11k = αp. Hence

11k

v
=

αp − αp

α− α
∈ Z. (5.1)

un = (αn − αn)/(α − α) for all n ≥ 0 is a Lucas sequence. A prime factor
q of un is called primitive if q ∤ un for any 0 < k < n and q ∤ (α − α)2 =
−4v2. If such a q exists, then q ≡ ±1 (mod n), where the sign coincides
with the Legendre symbol (−1 | q). By [1], we know that if n ≥ 5 is
prime, then un always has a prime factor except for finitely many exceptional
triples (α,α, n), and all of them appear in the Table 1 in [1].

Let un be without a primitive divisor. Table 1 reveals that there is no
defective Lucas number un with roots α,α in Z[i].
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Since n ≥ 5 is prime, it follows that 11 is primitive for un. Thus 11 ≡ +1
(mod 5). But since (−1 | q) = −1, then 11 can’t be a primitive divisor.
Thus, there are no more primitive solutions to our equation.

6 Further Remarks and Observations

The Dirichlet L-functions relate certain Euler products to various objects
such as Diophantine equations, representations of Galois group, Modular
forms etc. These functions play a crucial role not only in complex analysis
but also in number theory. The p-adic L-function agrees with the Dirichlet
L-functions at negative integers. p-adic L-function can be used to prove con-
gruences for generalized Bernoulli numbers. It is well-known that following
Diophantine equation is related to Bernoulli polynomials Bn(x)

aBn(x) = bBm(x) + C(y), a, b ∈ Q \ {0} (6.1)

with n ≥ m > deg(C) + 2 and for a rational polynomial C(y).
Following are some open problems: How can we generalize such a Dio-

phantine equation to twisted Bernoulli, Euler and generalized Bernoulli
polynomials attached to Dirichlet character? What is the relation between
(6.1), p-adic L-function and Kummer congruences for Bernoulli numbers?
How can one determine cyclotomic units of (1.1) and Lemma 2? Are there
relations between Lucas, Lehmer, Bernoulli and Euler numbers, and (6.1).
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