COMMUTATOR SUBGROUPS OF THE EXTENDED HECKE GROUPS $\bar{H}\left(\lambda_{q}\right)$
 R. Sahin, Balikesir, O. Bizim and I. N. Cangul, Bursa

(Received July 9, 2001)

Abstract. Hecke groups $H\left(\lambda_{q}\right)$ are the discrete subgroups of $\operatorname{PSL}(2, \mathbb{R})$ generated by $S(z)=-\left(z+\lambda_{q}\right)^{-1}$ and $T(z)=-1 / z$. The commutator subgroup of $H\left(\lambda_{q}\right)$, denoted by $H^{\prime}\left(\lambda_{q}\right)$, is studied in [2]. It was shown that $H^{\prime}\left(\lambda_{q}\right)$ is a free group of rank $q-1$.

Here the extended Hecke groups $\bar{H}\left(\lambda_{q}\right)$, obtained by adjoining $R_{1}(z)=1 / \bar{z}$ to the generators of $H\left(\lambda_{q}\right)$, are considered. The commutator subgroup of $\bar{H}\left(\lambda_{q}\right)$ is shown to be a free product of two finite cyclic groups. Also it is interesting to note that while in the $H\left(\lambda_{q}\right)$ case, the index of $H^{\prime}\left(\lambda_{q}\right)$ is changed by q, in the case of $\bar{H}\left(\lambda_{q}\right)$, this number is either 4 for q odd or 8 for q even.

Keywords: Hecke group, extended Hecke group, commutator subgroup
MSC 2000: 11F06, 20H05, 20H10

1. Introduction

In [4], Erich Hecke introduced the groups $H(\lambda)$ generated by two linear fractional transformations

$$
T(z)=-\frac{1}{z} \quad \text { and } \quad U(z)=z+\lambda
$$

where λ is a fixed positive real number. T and U have matrix representations

$$
\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ll}
1 & \lambda \\
0 & 1
\end{array}\right)
$$

respectively. (In this work we identify each matrix A with $-A$, so that they each represent the same transformation). Let $S=T . U$, i.e.

$$
S(z)=-\frac{1}{z+\lambda}
$$

E. Hecke showed that $H(\lambda)$ is Fuchsian if and only if $\lambda=\lambda_{q}=2 \cos \frac{\pi}{q}$, where q is an integer $q \geqslant 3$ or $\lambda>2$ is real. In these two cases $H(\lambda)$ is called a Hecke group. We consider the former case. Then the Hecke group $H(\lambda)$ is the discrete subgroup of $\operatorname{PSL}(2, \mathbb{R})$ generated by S and U, where

$$
U(z)=z+\lambda_{q}
$$

and it has a presentation $H(\lambda)=\left\langle T, S \mid T^{2}=S^{q}=I\right\rangle$.
The most important and studied Hecke group is the modular group $H\left(\lambda_{3}\right)$. In this case $\lambda_{3}=2 \cos \frac{\pi}{3}=1$, i.e. all coefficients of the elements of $H\left(\lambda_{3}\right)$ are rational integers. In the literature, the symbols Γ and $\Gamma(1)$ are used to denote the modular group. In this paper we shall use $H\left(\lambda_{3}\right)$ for this purpose. The next two most important Hecke groups are those for $q=4$ and $q=6$, in which cases $\lambda_{q}=\sqrt{2}$ and $\sqrt{3}$, respectively.

The extended modular group $\bar{H}\left(\lambda_{3}\right)$ has a presentation

$$
\bar{H}\left(\lambda_{3}\right)=\left\langle R_{1}, R_{2}, R_{3} \mid R_{1}^{2}=R_{2}^{2}=R_{3}^{2}=\left(R_{1} R_{2}\right)^{3}=\left(R_{3} R_{1}\right)^{2}=I\right\rangle
$$

where

$$
R_{1}(z)=\frac{1}{\bar{z}}, \quad R_{2}(z)=\frac{-1}{\bar{z}+1}, \quad R_{3}(z)=-\bar{z} .
$$

The modular group is a subgroup of index 2 in $\bar{H}\left(\lambda_{3}\right)$ (see [3]). It has a presentation

$$
H\left(\lambda_{3}\right)=\left\langle T, S \mid T^{2}=S^{3}=I\right\rangle \cong C_{2} * C_{3},
$$

where

$$
T=R_{3} R_{1}=R_{1} R_{3}, \quad S=R_{1} R_{2} .
$$

Putting $R=R_{1}$, we have

$$
\bar{H}\left(\lambda_{3}\right)=\left\langle T, S, R \mid T^{2}=S^{3}=R^{2}=I, R T=T R, R S=S^{-1} R\right\rangle
$$

Similarly the extended Hecke group $\bar{H}\left(\lambda_{q}\right)$ has a presentation

$$
\bar{H}\left(\lambda_{q}\right)=\left\langle T, S, R \mid T^{2}=S^{q}=R^{2}=I, R T=T R, R S=S^{-1} R\right\rangle
$$

and Hecke group $H\left(\lambda_{q}\right)$ is a subgroup of index 2 in $\bar{H}\left(\lambda_{q}\right)$.
The commutator subgroup of G is denoted by G^{\prime} and defined by

$$
\langle[g, h] \mid g, h \in G\rangle
$$

where $[g, h]=g h g^{-1} h^{-1}$. Since G^{\prime} is a normal subgroup of G, we can form the factor-group G / G^{\prime} which is the largest abelian quotient group of G.

In this work we obtain some results concerning commutator subgroups of the extended Hecke group $\bar{H}\left(\lambda_{q}\right)$.
2. Commutator subgroups of the extended Hecke group $\bar{H}\left(\lambda_{q}\right)$

The commutator subgroup of the Hecke group $H\left(\lambda_{q}\right)$ is denoted by $H^{\prime}\left(\lambda_{q}\right)$. We have

$$
T^{2}=S^{q}=I, \quad T S=S T
$$

in $H\left(\lambda_{q}\right) / H^{\prime}\left(\lambda_{q}\right)$. So one can find

$$
H\left(\lambda_{q}\right) / H^{\prime}\left(\lambda_{q}\right) \cong C_{2} \times C_{q}
$$

and hence it is isomorphic to $C_{2 q}$ if q is odd. Therefore

$$
\left|H\left(\lambda_{q}\right): H^{\prime}\left(\lambda_{q}\right)\right|=2 q
$$

If q is even, $(T S)^{q}=1$ while if q is odd, $(T S)^{2 q}=1$. In particular, $H^{\prime}\left(\lambda_{q}\right)$ is a free group of rank $q-1$ (see [1]).

By [5], the Reidemeister-Schreier method gives the generators of $H^{\prime}\left(\lambda_{q}\right)$ as

$$
a_{1}=T S T S^{q-1}, a_{2}=T S^{2} T S^{q-2}, \ldots, a_{q-1}=T S^{q-1} T S
$$

Similarly for the extended Hecke group $\bar{H}\left(\lambda_{q}\right)$ we have

$$
T^{2}=S^{q}=R^{2}=I, \quad R T=T R, \quad R S=S^{-1} R, \quad R S=S R, \quad T S=S T
$$

in $\bar{H}\left(\lambda_{q}\right) / \bar{H}^{\prime}\left(\lambda_{q}\right)$.
Theorem 1. Let q be odd, then
(i) $\bar{H}\left(\lambda_{q}\right) / \bar{H}^{\prime}\left(\lambda_{q}\right) \cong V_{4} \cong C_{2} \times C_{2}$
(ii) $\bar{H}^{\prime}\left(\lambda_{q}\right)=\left\langle S, T S T \mid S^{q}=(T S T)^{q}=I\right\rangle \cong C_{q} * C_{q}$.

Proof. (i) Since the extended Hecke group $\bar{H}\left(\lambda_{q}\right)$ has a presentation

$$
\bar{H}\left(\lambda_{q}\right)=\left\langle T, S, R \mid T^{2}=S^{q}=R^{2}=I, R T=T R, R S=S^{-1} R\right\rangle
$$

and

$$
\begin{gathered}
\bar{H}\left(\lambda_{q}\right) / \bar{H}^{\prime}\left(\lambda_{q}\right)=\langle T, S, R| T^{2}=S^{q}=R^{2}=I, R T=T R, R S=S^{-1} R, \\
R S=S R, T S=S T\rangle
\end{gathered}
$$

one has $R S=S^{-1} R$ and $R S=S R$, and thus

$$
S^{q-2}=S^{q}=S^{2}=I
$$

This shows that $S=I$, as q is odd. Thus

$$
\bar{H}\left(\lambda_{q}\right) / \bar{H}^{\prime}\left(\lambda_{q}\right)=\left\langle T, R \mid T^{2}=R^{2}=(T R)^{2}=I\right\rangle
$$

and finally

$$
\bar{H}\left(\lambda_{q}\right) / \bar{H}^{\prime}\left(\lambda_{q}\right) \cong V_{4} \cong C_{2} \times C_{2}
$$

(ii) Now we determine the set of generators for $\bar{H}^{\prime}\left(\lambda_{q}\right)$. We choose a Schreier transversal for $\bar{H}^{\prime}\left(\lambda_{q}\right)$ as

$$
I, T, R, T R
$$

According to the Reidemeister-Schreier method, we can form all possible products
$I \cdot T \cdot(T)^{-1}=I$,
$I \cdot S \cdot(I)^{-1}=S$,
$I \cdot R \cdot(R)^{-1}=I$,
$T \cdot T \cdot(I)^{-1}=I$,
$T \cdot S \cdot(T)^{-1}=T S T$,
$T \cdot R \cdot(T R)^{-1}=I$,
$R \cdot T \cdot(T R)^{-1}=R T R T$,
$R \cdot S \cdot(R)^{-1}=R S R$,
$R \cdot R \cdot(I)^{-1}=I$,
$T R \cdot T \cdot(R)^{-1}=T R T R$,
$T R \cdot S \cdot(T R)^{-1}=T R S R T$,
$T R \cdot R \cdot(T)^{-1}=I$.

Since

$$
\begin{aligned}
R T R T & =I \\
T R T R & =I \\
R S R & =S^{-1} \\
T R S R T & =T S^{-1} T=(T S T)^{-1}
\end{aligned}
$$

the generators are S and $T S T$. Thus $\bar{H}^{\prime}\left(\lambda_{q}\right)$ has a presentation

$$
\bar{H}^{\prime}\left(\lambda_{q}\right)=\left\langle S, T S T \mid S^{q}=(T S T)^{q}=I\right\rangle \cong C_{q} * C_{q} .
$$

Theorem 2. Let q be even, then
(i) $\bar{H}\left(\lambda_{q}\right) / \bar{H}^{\prime}\left(\lambda_{q}\right) \cong C_{2} \times C_{2} \times C_{2}$
(ii) $\bar{H}^{\prime}\left(\lambda_{q}\right)=\left\langle S^{2}, T S^{2} T, T S T S^{q-1} \mid\left(S^{2}\right)^{q / 2}=\left(T S^{2} T\right)^{q / 2}=\left(T S T S^{q-1}\right)^{\infty}=I\right\rangle$.

Proof. (i) If the representations of $\bar{H}\left(\lambda_{q}\right)$ and $\bar{H}\left(\lambda_{q}\right) / \bar{H}^{\prime}\left(\lambda_{q}\right)$ are considered, we obtain $S^{2}=I$ as $R S=S^{-1} R$ and $R S=S R, S^{q-2}=S^{q}=S^{2}=I$ as q is odd. Therefore

$$
\bar{H}\left(\lambda_{q}\right) / \bar{H}^{\prime}\left(\lambda_{q}\right)=\left\langle T, S, R \mid T^{2}=S^{2}=R^{2}=(R T)^{2}=(R S)^{2}=(T S)^{2}=I\right\rangle
$$

and so

$$
\bar{H}\left(\lambda_{q}\right) / \bar{H}^{\prime}\left(\lambda_{q}\right) \cong C_{2} \times C_{2} \times C_{2}
$$

(ii) Again we choose a Schreier transversal for $\bar{H}^{\prime}\left(\lambda_{q}\right)$ as

$$
I, T, R, S, T R, S R, T S, T S R
$$

Hence, all possible products are

$$
\begin{aligned}
I \cdot T \cdot(T)^{-1} & =I, & T R \cdot T \cdot(R)^{-1} & =T R T R, \\
T \cdot T \cdot(I)^{-1} & =I, & S R \cdot T \cdot(T S R)^{-1} & =S R T R S^{-1} T, \\
R \cdot T \cdot(T R)^{-1} & =R T R T, & T S \cdot T \cdot(S)^{-1} & =T S T S^{-1}, \\
S \cdot T \cdot(T S)^{-1} & =S T S^{-1} T, & T S R \cdot T \cdot(S R)^{-1} & =T S R T R S^{-1}, \\
I \cdot S \cdot(S)^{-1} & =I, & T R \cdot S \cdot(T S R)^{-1} & =T R S R S^{-1} T, \\
T \cdot S \cdot(T S)^{-1} & =I, & S R \cdot S \cdot(R)^{-1} & =S R S R, \\
R \cdot S \cdot(S R)^{-1} & =R S R S^{-1}, & T S \cdot S \cdot(T)^{-1} & =T S^{2} T, \\
S \cdot S \cdot(I)^{-1} & =S^{2}, & T S R \cdot S \cdot(T R)^{-1} & =T S R S R T, \\
I \cdot R \cdot(R)^{-1} & =I, & T R \cdot R \cdot(T)^{-1} & =I, \\
T \cdot R \cdot(T R)^{-1} & =I, & S R \cdot R \cdot(S)^{-1} & =I, \\
R \cdot R \cdot(I)^{-1} & =I, & T S \cdot R \cdot(T S R)^{-1} & =I, \\
S \cdot R \cdot(S R)^{-1} & =I, & T S R \cdot R \cdot(T S)^{-1} & =I .
\end{aligned}
$$

Since $\left(S T S^{-1} T\right)^{-1}=T S T S^{-1},(T R T R)^{-1}=R T R T=I,\left(R S R S^{-1}\right)=\left(S^{2}\right)^{-1}$, $\left.S R S R=I, S R T R S^{-1} T\right)^{-1}=T S R T R S^{-1}=T S T S^{-1}, T R S R S^{-1} T=\left(T S^{2} T\right)^{-1}$, $T S R S R T=I$, the generators of $\bar{H}^{\prime}\left(\lambda_{q}\right)$ are $S^{2}, T S^{2} T, T S T S^{q-1}$. Thus $\bar{H}^{\prime}\left(\lambda_{q}\right)$ has a presentation

$$
\bar{H}^{\prime}\left(\lambda_{q}\right)=\left\langle S^{2}\right\rangle *\left\langle T S^{2} T\right\rangle *\left\langle T S T S^{q-1}\right\rangle .
$$

Example 1. Let $q=3$. Then $\bar{H}\left(\lambda_{3}\right)$ is the extended modular group. In this case

$$
\bar{H}\left(\lambda_{3}\right) / \bar{H}^{\prime}\left(\lambda_{3}\right)=\left\langle T, R \mid T^{2}=R^{2}=(T R)^{2}=I\right\rangle
$$

and a Schreier transversal is

$$
I, T, R, T R
$$

Hence,

$$
\begin{aligned}
& I \cdot T \cdot(T)^{-1}=I, \\
& I \cdot S \cdot(I)^{-1}=S, \\
& I \cdot R \cdot(R)^{-1}=I, \\
& T \cdot T \cdot(I)^{-1}=I, \\
& T \cdot S \cdot(T)^{-1}=T S T, \\
& T \cdot R \cdot(T R)^{-1}=I, \\
& R \cdot T \cdot(T R)^{-1}=R T R T, \\
& R \cdot S \cdot(R)^{-1}=R S R, \\
& R \cdot R \cdot(I)^{-1}=I, \\
& T R \cdot T \cdot(R)^{-1}=T R T R, \\
& T R \cdot S \cdot(T R)^{-1}=T R S R T, \\
& T R \cdot R \cdot(T)^{-1}=I
\end{aligned}
$$

and since $R T R T=I, T R T R=I, R S R=S^{-1}, T R S R T=T S^{-1} T=(T S T)^{-1}$, the generators of $\bar{H}\left(\lambda_{3}\right)$ are S and $T S T$. Thus $\bar{H}^{\prime}\left(\lambda_{3}\right)$ has a presentation

$$
\bar{H}^{\prime}\left(\lambda_{3}\right)=\left\langle S, T S T \mid S^{3}=(T S T)^{3}=I\right\rangle \cong C_{3} * C_{3} .
$$

Notice that this result coincides with the ones given in [5] for the extended modular group.

Example 2. Let $q=6$. Then $\bar{H}\left(\lambda_{6}\right)$ and $\bar{H}\left(\lambda_{6}\right) / \bar{H}^{\prime}\left(\lambda_{6}\right)$ have presentations

$$
\bar{H}\left(\lambda_{6}\right)=\left\langle T, S, R \mid T^{2}=S^{6}=R^{2}=I, T R=R T, R S=S^{-1} R\right\rangle
$$

and

$$
\begin{gathered}
\bar{H}\left(\lambda_{6}\right) / \bar{H}^{\prime}\left(\lambda_{6}\right)=\langle T, S, R| T^{2}=S^{6}=R^{2}=I, R T=T R, R S=S^{-1} R, \\
R S=S R, T S=S T\rangle
\end{gathered}
$$

Since $R S=S^{-1} R$ and $R S=S R, S^{-1}=S^{5}$ and so $S^{4}=S^{6}=I, S^{2}=I$. Hence

$$
\bar{H}\left(\lambda_{6}\right) / \bar{H}^{\prime}\left(\lambda_{6}\right)=\left\langle T, S, R \mid T^{2}=S^{2}=R^{2}=(R T)^{2}=(R S)^{2}=(T S)^{2}=I\right\rangle
$$

We can choose a Schreier transversal as

$$
I, T, R, S, T R, S R, T S, T S R
$$

In this case all the possibilities are

$$
\begin{array}{rlrl}
I \cdot T \cdot(T)^{-1} & =I, & T R \cdot T \cdot(R)^{-1} & =T R T R, \\
T \cdot T \cdot(I)^{-1} & =I, & S R \cdot T \cdot(T S R)^{-1} & =S R T R S^{5} T, \\
R \cdot T \cdot(T R)^{-1} & =R T R T, & T S \cdot T \cdot(S)^{-1}=T S T S^{5}, \\
S \cdot T \cdot(T S)^{-1} & =S T S^{5} T, & T S R \cdot T \cdot(S R)^{-1}=T S R T R S^{5}, \\
I \cdot S \cdot(S)^{-1} & =I, & T R \cdot S \cdot(T S R)^{-1}=T R S R S^{5} T, \\
T \cdot S \cdot(T S)^{-1} & =I, & S R \cdot S \cdot(R)^{-1}=S R S R, \\
R \cdot S \cdot(S R)^{-1} & =R S R S^{5}, & T S \cdot S \cdot(T)^{-1}=T S^{2} T, \\
S \cdot S \cdot(I)^{-1} & =S^{2}, & T S R \cdot S \cdot(T R)^{-1}=T S R S R T, \\
I \cdot R \cdot(R)^{-1} & =I, & T R \cdot R \cdot(T)^{-1}=I, \\
T \cdot R \cdot(T R)^{-1} & =I, & S R \cdot R \cdot(S)^{-1}=I, \\
R \cdot R \cdot(I)^{-1} & =I, & T S \cdot R \cdot(T S R)^{-1}=I, \\
S \cdot R \cdot(S R)^{-1} & =I, & T S R \cdot R \cdot(T S)^{-1}=I .
\end{array}
$$

Since $\left(S T S^{5} T\right)^{-1}=T S T S^{5},(T R T R)^{-1}=R T R T=I,\left(R S R S^{5}\right)=\left(S^{2}\right)^{-1}$, $S R S R=I,\left(S R T R S^{5} T\right)^{-1}=T S R T R S^{5}=T S T S^{5}, T R S R S^{5} T=\left(T S^{2} T\right)^{-1}$, $T S R S R T=I$, the generators of $\bar{H}^{\prime}\left(\lambda_{q}\right)$ are $S^{2}, T S^{2} T, T S T S^{5}$. Thus $\bar{H}^{\prime}\left(\lambda_{6}\right)$ has a presentation

$$
\bar{H}^{\prime}\left(\lambda_{6}\right)=\left\langle S^{2}\right\rangle *\left\langle T S^{2} T\right\rangle *\left\langle T S T S^{5}\right\rangle
$$

References

[1] R. B. J. T. Allenby: Rings, Fields and Groups. Second Edition. Edward Arnold, Lon-don-New York-Melbourne-Auckland, 1991.
[2] I. N. Cangül and D. Singerman: Normal subgroups of Hecke groups and regular maps. Math. Proc. Camb. Phil. Soc. 123 (1998), 59-74.
[3] H.S.M. Coxeter and W.O.J. Moser: Generators and Relations for Discrete Groups. Springer, Berlin, 1957.
[4] E. Hecke: Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichungen. Math. Ann. 112 (1936), 664-699.
[5] D. L. Johnson: Topics in the Theory of Group Presentations. L.M.S. Lecture Note Series 42. Cambridge Univ. Press, Cambridge, 1980.
[6] G. A. Jones and J.S. Thornton: Automorphisms and congruence subgroups of the extended modular group. J. London Math. Soc. 34 (1986), 26-40.

Authors' addresses: R. Sahin, Balikesir Universitesi Fen-Edebiyat Fakültesi Matematik Bölümü 10100, Balikesir, Turkey, e-mail: rsahin@balikesir.edu.tr; O. Bizim, I. N. Cangul, Uludag Universitesi Fen-Edebiyat Fakültesi Matematik Bölümü Görükle 16059, Bursa, Turkey, e-mails: obizim@uludag.edu.tr, cangul@uludag.edu.tr.

