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ON SLANT SUBMANIFOLDS OF NEUTRAL KAEHLER MANIFOLDS

K. Arslan, A. Carriazo, B.-Y. Chen and C. Murathan

Abstract. An indefinite Riemannian manifold is called neutral it its index

is equal to one half of its dimension and an indefinite Kaehler manifold is

called neutral Kaehler if its complex index is equal to the half of its complex

dimension. In the first part of this article, we extend the notion of slant sur-

faces in Lorentzian Kaehler surfaces to slant submanifolds in neutral Kaehler

manifolds; moreover, we characterize slant submanifolds with parallel canoni-

cal structures. By applying the results obtained in the first part we completely

classify slant surfaces with parallel mean curvature vector and minimal slant

surfaces in the Lorentzian complex plane in the second part of this article.

1. INTRODUCTION

Let M̃m
i be a complexm-dimensional indefinite Kaehler manifold with complex

index i. Thus, M̃m
i is endowed with an almost complex structure J and with an

indefinite Riemannian metric g̃, which is J-Hermitian, i.e., for all p ∈ M̃m
i , we

have

g̃(JX, JY ) = g̃(X, Y ), ∀X, Y ∈ TpM̃
m
i ,(1.1)

∇̃J = 0,(1.2)

where ∇̃ is the Levi-Civita connection of g̃. It follows that J is integrable.
The complex index of M̃m

i is defined as the complex dimension of the largest

complex negative definite subspace of the tangent space. When m = 2n and the
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complex index is n, the indefinite Kaehler manifold M̃2n
n is called a neutral Kaehler

manifold. A neutral Kaehler surface is nothing but a Lorentzian Kaehler surface.

The simplest examples of neutral Kaehler manifolds are the neutral complex

space forms defined as follows: Let C2n denote the complex 2n-plane with complex
coordinates z1, . . . , z2n. Then the C

2n endowed with gn,2n, i.e., the real part of the

Hermitian form

bn,2n(z, w) = −
n∑

k=1

z̄kwk +
2n∑

j=n+1

z̄jwj , z, w ∈ C2n,

defines a flat indefinite complex space form with complex index n. We simply
denote this flat neutral Kaehler manifold (C2n, gn,2n) by C2n

n .

Consider S4n+1
2n = {z ∈ C2n+1

n ; bn,2n+1(z, z) = 1}, which is an indefinite real
space form of constant sectional curvature one. The Hopf fibration

π : S4n+1
2n → CP 2n

n : z 7→ z · C∗

is a submersion and there is a unique neutral metric of complex index n on CP 2n
n

such that π is a Riemannian submersion. The pseudo-Riemannian manifold CP 2n
n

is a neutral complex space form of positive holomorphic sectional curvature 4.
Analogously, consider H4n+1

2n = {z ∈ C2n+1
n+1 ; bn+1,2n+1(z, z) = −1}, which is

an indefinite real space form of constant sectional curvature −1. The Hopf fibration

π : H4n+1
2n → CH2n

n : z 7→ z ·C∗

is a submersion and there exists a unique neutral metric on CH2n
n such that π is a

Riemannian submersion. The pseudo-Riemannian manifold CH2n
n is a Lorentzian

complex space form of constant holomorphic sectional curvature −4.
We denote by 〈 , 〉 the inner product induced from the neutral metrics on neutral

manifolds. A tangent vector v of a neutral manifold M2n
n is called space-like

(respectively, time-like) if 〈v, v〉 > 0 (respectively, 〈v, v〉 < 0). A vector v is called
null or light-like if it is a nonzero vector and it satisfies 〈v, v〉 = 0.

A distribution D on a neutral manifold M2n
n is called space-like (respectively,

time-like) if each nonzero vector v ∈ D is space-like (respectively, time-like).

The notion of slant submanifolds in Kaehler manifolds (or more generally, in

almost Hermitian manifolds) was introduced and studied in 1990 by the third author

in [6, 7]. Since then such submanifolds have been investigated extensively by many

geometers and many interesting results were obtained (see [7] and [8, Chapter 18]

for more details). Moreover, contact and Sasakian versions of slant submanifolds

have been studied in [2, 3, 4, 14, 18] among others.

In this article, we define the notion of slant submanifolds in neutral Kaehler

manifolds as a natural extension of the notion of slant surfaces in Lorentzian Kaehler
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surfaces studied in [9, 11, 13]. Some fundamental and classification results for

slant submanifolds in neutral Kaehler manifolds are obtained. In particular, we

characterize slant submanifolds with parallel canonical structures in section 4 and

section 5. In section 6, slant surfaces with parallel mean curvature vector are

completely classified. In the last section, we classify slant minimal surfaces in the

Lorentzian complex plane.

2. BASIC FORMULAS AND FUNDAMENTAL EQUATIONS

Let M̃ be an indefinite Kaehler manifold. Denote by R̃ the Riemann-Christoffel

curvature tensor of M̃ . Assume thatM is a pseudo-Riemannian submanifold of M̃ .
Denote by ∇ and ∇̃ the Levi Civita connections on M and M̃ , respectively.

The formulas of Gauss and Weingarten are given by (cf. [5, 7, 19])

∇̃XY = ∇XY + h(X, Y ),(2.1)

∇̃Xξ = −AξX +DXξ(2.2)

for tangent vector fields X, Y and a normal vector field ξ, where h, A and D are

the second fundamental form, the shape operator and the normal connection. For

each ξ ∈ T⊥
p M , the shape operator Aξ is a symmetric endomorphism of the tangent

space TpM at p ∈M .
The shape operator and the second fundamental form are related by

〈h(X, Y ), ξ〉 = 〈AξX, Y 〉(2.3)

for X, Y tangent to M and ξ normal to M .
For a vector X̃ ∈ TpM̃ , p ∈ M , we denote by X̃> and X̃⊥ the tangential and

the normal components of X̃, respectively. The equations of Gauss, Codazzi and
Ricci are given respectively by

(R̃(X, Y )Z)> = R(X, Y )Z +Ah(X,Z)Y − Ah(Y,Z)X,(2.4)

(R̃(X, Y )Z)⊥ = (∇Xh)(Y, Z)− (∇Y h)(X,Z),(2.5)

(R̃(X, Y )ξ)⊥ = h(AξX, Y )− h(X,AξY ) +RD(X, Y )ξ(2.6)

for vector fields X, Y and Z tangent to M , ξ normal to M , where ∇h and RD are

defined respectively by

(∇Xh)(Y, Z) = DXh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ),(2.7)

RD(X, Y ) = [DX , DY ]−D[X,Y ].(2.8)
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The RD is known as the curvature tensor of the normal bundle.

The mean curvature vector H is defined by

H =
1
n

traceh, n = dimRM.(2.9)

The mean curvature vector is said to be parallel in the normal bundle if DH = 0
holds identically.

A submanifold M in an indefinite Kaehler manifold is called minimal if its

mean curvature vector vanishes identically; and M is called quasi-minimal if its

mean curvature vector is nonzero and light-like at each point on M .

3. BASICS OF SLANT SUBMANIFOLDS

An isometric immersion Ψ: M → M̃ of a manifold M into a neutral Kaehler

manifold M̃ is called purely real if the almost complex structure J on M̃ carries

the tangent bundle of M into a transversal bundle, that is J(TM) ∩ TM = {0}.
Obviously, every purely real immersion contains no complex points.

Let Ψ:M→M̃ be a purely real immersion. For each tangent vector X , we put

JX = PX + FX,(3.1)

where PX and FX are the tangential and the normal components of JX . Clearly,

P is an endomorphism of the tangent bundle TM of M and F is a normal-bundle-
valued 1-form on TM .

Similarly, for each normal vector ξ of M , we put

Jξ = tξ + fξ,(3.2)

where tξ and fξ are the tangential and the normal components of Jξ. Then f is
an endomorphism of the normal bundle and t is a tangent-bundle-valued 1-form on

the normal bundle.

For vectors X, Y tangent to M , it follows from (1.1) and (3.1) that

〈PX, Y 〉 = − 〈X,PY 〉 .(3.3)

Thus, we have

〈
P 2X, Y

〉
=
〈
X,P 2Y

〉
.(3.4)
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Example 3.1. (Slant surfaces in Lorentzian Kaehler surfaces). Let Ψ : M2
1 →

M̃2
1 be an isometric immersion of a Lorentz surface into a Lorentzian Kaehler

surface. Then, Ψ is always purely real (see [9, Proposition 3.1]).

Let e1, e1∗ be an orthonormal frame on M
2
1 such that

〈e1, e1〉 = 1, 〈e1, e1∗〉 = 0, 〈e1∗, e1∗〉 = −1.(3.5)

Then, it follows from (3.3) and (3.5) that Pe1 = γe1∗ for some nonzero real-valued
function γ. So, we find from (3.1) and (3.5) that 〈Fe1, Fe1〉 = 1 + γ2 > 1.
Hence, Fe1 is a space-like normal vector field. Therefore, there exists a nonzero
real number α such that

Je1 = sinhαe1∗ + coshαξ1(3.6)

for some unit space-like normal vector field ξ1.

It follows from (3.3) and (3.6) that

Je1∗ = sinhαe1 + coshαξ1∗(3.7)

for some unit time-like normal vector field ξ1∗ . By applying (1.1), (3.6) and (3.7),

we get

〈ξ1, ξ1〉 = 1, 〈ξ1, ξ1∗〉 = 0, 〈ξ1∗ , ξ1∗〉 = −1.(3.8)

Also, from (3.6) and (3.7) we find P 2 = (sinh2 α)I . The immersionΨ : M2
1 → M̃2

1

is called θ-slant if the function α is constant θ (see [13]).
If we denote the distributions on M2

1 spanned by e1 and e2 by D1
s and D1

t ,

respectively, then we have the orthogonal decomposition: TM2
1 = D1

s ⊕ D1
t such

that P (D1
s) = D1

t and P (D1
t ) = D1

s .

Now, we extend the above notion of slant surfaces in a Lorentzian Kaehler

surface to slant submanifolds in a neutral Kaehler manifold.

Definition 1. An isometric immersion Ψ : M2n
n → M̃2n

n of a neutral 2n-
manifold into a neutral Kaehler manifold of complex dimension 2n is called θ-slant
if there exist a real number θ and an orthogonal decomposition:

TM2n
n = Dn

s ⊕ Dn
t(3.9)

of the tangent bundle TM2n
n such that

(a) Dn
s is a space-like distribution and Dn

t a time-like distribution;

(b) P (Dn
s ) = Dn

t and P (Dn
t ) = Dn

s ;
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(c) P 2 = (sinh2 θ)I ,

where P is defined by (3.1).
The real number θ in the definition is called the slant angle. A slant submanifold

is called Lagrangian if its slant angle is equal to zero. A slant submanifold is called

proper slant if it is not Lagrangian.

For a Lagrangian submanifold M2n
n in a neutral Kaehler manifold M̃2n

n , the

almost complex structure J on M̃2n
n interchanges the tangent bundle of M2n

n with

its normal bundle of M2n
n .

Assume that Ψ : M2n
n → M̃2n

n is a θ-slant immersion with distributions Dn
s

and Dn
t given above. Let e1, . . . , en be an orthonormal frame of the space-like

distribution Dn
s . Then it follows from (3.3) and condition (c) in Definition 1 that

〈Pei, Pej〉 = −
〈
ei, P

2ej
〉

= −δij sinh2 θ.(3.10)

Hence, if we put

Pei = sinh θei∗ , i = 1, . . . , n,(3.11)

then e1∗, . . . , en∗ form an orthonormal frame of the time-like distributionDn
t . Also,

it follows from (3.11) and P 2 = (sinh2 θ)I that

Pei∗ = sinh θei, i = 1, . . . , n.(3.12)

Next, let us put Fei = cosh θξi, i = 1, . . . , n. Then we have

Jei = sinh θei∗ + cosh θξi, i = 1, . . . , n.(3.13)

From 〈Jei, Jej〉 = δij and (3.13) we know that ξ1, . . . , ξn are orthonormal space-
like normal vector fields of M2n

n .

Similarly, if we put Fei∗ = cosh θξi∗ , i = 1, . . . , n. Then we obtain

Jei∗ = sinh θei + cosh θξi∗ , i = 1, . . . , n,(3.14)

where ξ1∗ , . . . , ξn∗ are orthonormal time-like normal vectors. Moreover, it is easy to

verify that ξ1, . . . , ξn, ξ1∗, . . . , ξn∗ form an orthonormal frame of the normal bundle

of the slant immersion Ψ : M2n
n → M̃2n

n .

From (1.1), (3.13) and (3.14) we also have

(3.15) Jξi = − cosh θei − sinh θξi∗ , Jξi∗ = − cosh θei∗ − sinh θξi

for i = 1, . . . , n.
The frame

{e1, . . . , en, e1∗, . . . , en∗ , ξ1, . . . , ξn, ξ1∗, . . . , ξn∗}

chosen above is called an adapted slant frame of the θ-slant immersion.
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Remark 3.1. Let {e1, e1∗, ξ1, ξ1∗} be an adapted slant frame of a θ-slant surface
M2

1 in a Lorentzian Kaehler surface M̃
2
1 . If we put

(3.16) ê1 =
e1∗ + e1√

2
, ê2 =

e1∗ − e1√
2

, ξ̂1 =
ξ1∗ + ξ1√

2
, ξ̂1∗ =

ξ1∗ − ξ1√
2

,

then we have

(3.17)

〈ê1, ê1〉 = 〈ê1∗ , ê1∗〉 = 0, 〈ê1, ê1∗〉 = −1,

Jê1 = sinh θê1 + sinh θξ̂1, Jê1∗ = sinh θê1∗ + sinh θξ̂1∗ ,

Jξ̂1 = − cosh θê1 − sinh θξ̂1, Jξ̂1∗ = − cosh θê1∗ − sinh θξ̂1∗ .

Such a pseudo-orthonormal frame {ê1, ê1∗ , ξ̂1, ξ̂1∗} on the θ-slant surface is called
an adapted pseudo-orthonormal slant frame.

Obviously, adapted pseudo-orthonormal slant frames can also be defined for

slant immersions from neutral manifoldsM2n
n into neutral Kaehler manifolds M̃2n

n

in a similar way.

4. SLANT SUBMANIFOLDS WITH ∇P = 0

Let Ψ : M2n
n → M̃2n

n be a θ-slant immersion of a neutral manifold into a neutral

Kaehler manifold. Let us choose an adapted slant frame e1, . . . , en, e1∗ , . . . , en∗ ,
ξ1, . . . , ξn, ξ1∗, . . . , ξn∗ of Ψ. Put

(4.1)

∇Xei =
n∑

j=1

ω
j
i (X)ej +

n∑

j=1

ω
j∗

i (X)ej∗,

∇Xei∗ =
n∑

j=1

ωj
i∗(X)ej +

n∑

j=1

ωj∗

i∗ (X)ej∗, i = 1, . . . , n,

for X tangent to M2n
n , where ∇ is the Levi-Civita connections of M2n

n .

From 〈ei, ej∗〉 = 0 and (4.1) we obtain

ωj∗

i = ωj
i∗ , i, j = 1, . . . , n.(4.2)

As usual, we define ∇P by

(∇XP )Y = ∇X(PY ) − P (∇XY )(4.3)

for X, Y tangent toM2n
n . The endomorphism P is called parallel if ∇P = 0 holds

identically. It follows from (4.1) and (4.2) that

(∇XP )ei = sinh θ
n∑

j=1

{
ωj∗

i∗ (X)− ωj
i (X)

}
ej∗ ,

(∇XP )ei∗ = sinh θ
n∑

j=1

{
ωj

i (X)− ωj∗

i∗ (X)
}
ej , i = 1, . . . , n,
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which imply the following.

Proposition 4.1. Let Ψ : M2n
n → M̃2n

n be a slant immersion of a neutral

manifold into a neutral Kaehler manifold. Then we have ∇P = 0 if and only if
with respect to an adapted slant frame of Ψ we have ωj∗

i∗ = ωj
i , i, j = 1, . . . , n.

An important application of Proposition 4.1 is the following.

Corollary 4.1. Let Ψ : M2
1 → M̃2

1 be a purely real surface in a neutral

Kaehler surface M̃2
1 . Then M

2
1 is a slant surface in M̃

2
1 if and only ∇P = 0 holds

identically.

Proof. Under the hypothesis, ifM2
1 is slant in M̃

2
1 , we have ω

1∗
1∗ = ω1

1 = 0 with
respect to an adapted slant frame e1, e1∗, ξ1, ξ1∗. Hence, by applying Proposition

4.1, we know that ∇P = 0 holds identically.
Conversely, assume that M2

1 is a purely real surface in M̃
2
1 satisfying ∇P = 0.

Let e1, e1∗ be an orthonormal frame satisfying (3.5) on M
2
1 . Then there exists a

function α such that Pe1 = sinhαe1∗ and P 2 = (sinh2 α)I . Hence, we have

(4.4)
0 = (∇XP )e1 = ∇X(sinhαe1∗) − P (ω1∗

1 (X)e1∗)

= (Xα) coshαe1∗ + sinhα∇Xe1∗ − ω1∗
1 (X)Pe1∗.

Since∇Xe1∗ and Pe1∗ are parallel to e1, (4.4) implies that α is constant. Therefore,

the surface is slant.

The next result characterizes slant submanifolds with ∇P = 0 in term of the
shape operator.

Proposition 4.2. Let Ψ : M2n
n → M̃2n

n be a purely real immersion of a neutral

manifold into a neutral Kaehler manifold. Then ∇P = 0 holds identically if and
only if the shape operator satisfies

AFY Z = AFZY(4.5)

for vectors Y, Z tangent to M2n
n .

Proof. Let Ψ : M2n
n → M̃2n

n be a purely real immersion. Then it follows

from (3.1), (3.3) and ∇̃J = 0 that

(4.6)

0 = ∇̃X(JY )− J∇̃XY

= ∇̃X(PY ) + ∇̃X(FY ) − J∇XY − Jh(X, Y )

= ∇X(PY ) + h(X,PY ) − AFYX +DX(FY ) − P (∇XY )

− F (∇XY ) − th(X, Y ) − fh(X, Y )
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for X, Y tangent to M2n
n . Thus, the tangential components of (4.6) yields

(∇XP )Y = AFY X + th(X, Y ),

which implies the Proposition.

5. SLANT SUBMANIFOLDS WITH ∇F = 0

Let Ψ : M2n
n → M̃2n

n be a θ-slant immersion of a neutral manifold into a neutral

Kaehler manifold. For the normal-bundle-valued 1-form F , we define as usual that

(∇XF )Y = DX(FY ) − F (∇XY )(5.1)

for vectors Y, Z tangent to M2n
n . With respect to an adapted slant frame

e1, . . . , en, e1∗, . . . , en∗ , ξ1, . . . , ξn, ξ1∗, . . . , ξn∗ ,(5.2)

we put

(5.3)

DXξi =
n∑

j=1

Φj
i (X)ξj +

n∑

j=2

Φj∗

i (X)ξj∗,

DXξi∗ =
n∑

j=1

Φj
i∗(X)ξj +

n∑

j=2

Φj∗

i∗ (X)ξj∗, i = 1, . . . , n.

The next result characterizes slant submanifolds with ∇F = 0 in term of con-
nection forms.

Proposition 5.1. Let Ψ : M2n
n → M̃2n

n be a slant immersion of a neutral

manifold into a neutral Kaehler manifold. Then ∇F = 0 holds if and only if we
have

F∇XY = DXFY(5.4)

for X, Y tangent to M2n
n ; or equivalently, with respect to an adapted slant frame,

we have

Φs
r = ωs

r , r, s = 1, . . . , n, 1∗, . . . , n∗.(5.5)

Proof. Let Ψ : M2n
n → M̃2n

n be a θ-slant immersion. We find from (3.13),
(4.1) and (5.3) that

(DXF )er = cosh θ

{
n∑

j=1

(Φj
r(X)− ωj

r(X))ξj +
n∑

j=1

(Φj∗
r (X)− ωj∗

r (X))ξj∗

}
,

which implies the Proposition.

An immediate consequence of Proposition 5.1 is the following.
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Corollary 5.1. Let Ψ : M2n
n → M̃2n

n be a slant immersion of a neutral manifold

into a neutral Kaehler manifold. If ∇F = 0 holds, then the Riemannian curvature
tensor R and the normal curvature tensors RD satisfy

F (R(X, Y )Z) = RD(X, Y )FZ(5.6)

for X, Y, Z tangent toM2n
n . In particular, the slant submanifoldM

2n
n is flat if and

only if it has flat normal connection in M̃2n
n .

The next result characterizes purely real submanifolds with ∇F = 0 in term of
second fundamental form.

Proposition 5.2. Let Ψ : M2n
n → M̃2n

n be a purely real immersion of a neutral

manifold into a neutral Kaehler manifold. Then ∇F = 0 holds if and only if the
shape operator A satisfies

fh(X, Y ) = h(X,PY )(5.7)

for vectors X, Y tangent to M2n
n , or equivalently,

AfξY = −Aξ(PY )(5.8)

for Y tangent to M2n
n and ξ normal to M2n

n .

Proof. This is obtained by comparing the normal components of (4.6).

Proposition 5.2 implies the following.

Corollary 5.2. Let Ψ : M2n
n → M̃2n

n be a slant immersion of a neutral

manifold into a neutral Kaehler manifold. If ∇F = 0 holds, then

h(ei, ei) = h(ei∗ , ei∗), i = 1, . . . , n,(5.9)

with respect to the adapted slant frame (5.2). In particular, a slant submanifold

with ∇F = 0 in a neutral Kaehler manifold M̃2n
n is a minimal submanifold.

Proof. Under the hypothesis, it follows from (3.11), (3.12) and (5.7) that

h(ei∗ , ei∗) = csch θfh(ei, ei∗) = h(ei, ei),

which implies the Corollary.

The following result characterizes minimal slant surfaces in a neutral Kaehler

surface among purely real surfaces in term of ∇F .



Slant Submanifolds of Neutral Kaehler Manifolds 571

Theorem 5.1. Let Ψ : M2
1 → M̃2

1 be a purely real surface in a neutral Kaehler

surface. Then ∇F = 0 holds if and only if M2
1 is a minimal slant surface.

Proof. Under the hypothesis, if∇F = 0 holds, then the shape operator satisfies
(5.8) by Proposition 5.2. Let e1, e1∗ be an orthonormal frame onM

2
1 satisfying (3.5).

Then there is a function α and normal vector fields ξ1, ξ1∗ satisfying (3.6)-(3.8).

Hence, we have

Jξ1 = − coshαe1 − sinh ξ1∗, Jξ1∗ = − coshαe1∗ − sinhαξ1.(5.10)

Thus, we obtain

(5.11)
AFe1e1∗ = cothαAξ1(Pe1) = − cschα cothαAfξ1∗ (Pe1)

= coshαAξ1∗e1 = AFe1∗ e1.

Therefore, according to Proposition 4.2 and Corollary 4.1, M2
1 is a slant surface.

Consequently, M2
1 is a minimal slant surface according to Corollary 5.2.

Conversely, if Ψ : M2
1 → M̃2

1 is a minimal slant surface, hence with respect to

an adapted slant frame e1, e1∗, ξ1, ξ1∗ we have

Aξ1e1∗ = Aξ1∗e1.(5.12)

Since M2
1 is minimal, we also have

h(e1∗ , e1∗) = h(e1, e1).(5.13)

So, it follows from (5.12) and (5.13) that the second fundamental form satisfies

h(e1, e1) = h(e1∗, e1∗) = βξ1 + γξ1∗, h(e1, e1∗) = −γξ1 − βξ1∗(5.14)

for some functions β, γ. Thus, after applying (3.11), (3.12), (3.15), and (5.14) we

obtain (5.7). Consequently, the slant surface satisfies ∇F = 0.

Corollary 5.3. If Ψ : M2
1 → M̃2

1 is a minimal slant surface in a neutral

Kaehler surface, then we have

F∇XY = DXFY(5.15)

for X, Y tangent to M2
1 .

Proof. Follows from Theorem 5.1 and (5.1).
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Remark 5.1. Let Ψ : M2n
n → M̃2n

n be a slant immersion of a neutral manifold

into a neutral Kaehler manifold and let t be the tangent-bundle-valued 1-form on
the normal bundle defined by (3.2). Define ∇t by

(∇Xt)ξ = ∇X(tξ) − tDXξ

for any normal vector field ξ and tangent vector X . Then, we may prove that

∇t = 0 holds if and only if ∇F = 0 holds.

Remark 5.2. Let Ψ : M2n
n → M̃2n

n be a slant immersion of a neutral manifold

into a neutral Kaehler manifold and let f be the endomorphism of the normal bundle
defined by (3.2). Define ∇f by

(∇Xf)ξ = DX(fξ)− f(DXξ)

for any tangent vector X and normal vector field ξ. Then ∇f = 0 holds identically
if and only if we have Φj∗

i∗ = Φj
i , i, j = 1, . . . , n, with respect to an adapted slant

frame of Ψ.

6. CLASSIFICATION OF SLANT SURFACES WITH DH = 0 IN C2
1

The light cone LC in C2
1 is defined by LC = {v ∈ C2

1 : 〈v, v〉 = 0}.
In this section, we completely classify slant surfaces with parallel mean curvature

vector in C2
1.

Theorem 6.1. Let Ψ : M2
1 → C2

1 be a slant surface in the Lorentzian complex

plane C2
1. If M

2
1 has parallel mean curvature vector, then either M

2
1 is a minimal

slant surface or, up to rigid motions, M2
1 is locally an open portion of one of the

following nine types of flat slant surfaces in C2
1 :

(a) A Lagrangian surface defined by Ψ(x, y) = z(x)e iay, where a is a nonzero
real number and z is a null curve lying in the light cone LC satisfying
〈iz′, z〉 = a−1;

(b) A Lagrangian surface defined by

Ψ(x, y) =

(
e icy

2c

(
2cx− i + 2

∫ y

0
u(y)dy

)
− 1
c

∫ y

0
e icyu(y)dy,

e icy

2c

(
2cx+ i + 2

∫ y

0
u(y)dy

)
− 1
c

∫ y

0
e icyu(y)dy

)
,

where c is a nonzero real number and u(y) is a nonzero real-valued function
defined on an open interval I 3 0;
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(c) A Lagrangian surface defined by

Ψ(x, y) =

(
x+ ky√

2k
,
e2i(x−ky)

2
√

2k

)
,

where k is a positive real number;

(d) A Lagrangian surface defined by

Ψ(x, y) =

(
e2i(x+by)

2
√

2b
,
x − by√

2b

)
,

where b is a positive real number;

(e) A Lagrangian surface defined by

Ψ(x, y) =
√
a√
2b

(
e i(1+a−1)(ax+by)

a+ 1
,
e i(a−1−1)(ax−by)

a − 1

)
,

where a and b are positive real numbers with a 6= 1;

(f) A Lagrangian surface defined by

Ψ(x, y) =
√
a√
2k

(
e i(a−1−1)(ax+ky)

a− 1
,
e i(1+a−1)(ax−ky)

a+ 1

)
,

where a and k are positive real numbers with a 6= 1;

(g) A Lagrangian surface defined by

Ψ(x, y) = e(i−a)x+(i−a−1)by

(
e2ax − (a+ i)4e2b−1by

8b(1 + a2)2
, e2ax − e2a−1by

8b

)
,

where a is a positive real number and b is a nonzero real number;

(h) A proper slant surface with slant angle θ defined by

Ψ(x, y) = z(x)
(2y sinh θ − a cosh θ)

1
2
− i

2
csch θ

sinh θ − i
,

where a is a real number and z(x) is a null curve lying in the light cone LC
which satisfies 〈z′, iz〉 = cosh2 θ;
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(i) A proper slant surface with slant angle θ defined by

Ψ(x, y) =

(
sech 2θ

∫ y

0

u(y)(2y sinh θ − a cosh θ)
3
2−

i
2 csch θdy

+(2y sinh θ−a cosh θ)
1
2−

i
2 csch θ

(
x+

i
2

+ sech 2θ

∫ y

0

(2y sinh θ − a cosh θ)u(y)dy

)
,

sech 2θ

∫ y

0

u(y)(2y sinh θ − a cosh θ)
3
2−

i
2 csch θdy

+(2y sinh θ−a cosh θ)
1
2−

i
2 csch θ

(
x− i

2
− sech 2θ

∫ y

0

(2y sinh θ − a cosh θ)u(y)dy

))
,

where a is a real number and u(y) is a nonzero real-valued function defined
on an open interval I 3 0.

Proof. Let Ψ : M2
1 → C2

1 be a θ-slant surface with DH = 0 in C2
1. Then

〈H,H〉 is constant. Thus, if Ψ is non-minimal, then either Ψ is quasi-minimal or

〈H,H〉 is a nonzero constant. When Ψ is quasi-minimal, it follows from the main

result of [12] that M2
1 is a flat surface given by cases (a), (b), (h) or (i) of the

theorem. So, in the remaining part of the proof of this theorem, we assume that

〈H,H〉 is a nonzero constant.
On the slant surface M2

1 we may choose an adapted pseudo-orthonormal slant

frame {e1, e1∗, ξ1, ξ1∗} such that

〈e1, e1〉 = 〈e1∗ , e1∗〉 = 0, 〈e1, e1∗〉 = −1,(6.1)

〈ξ1, ξ1〉 = 〈ξ1∗ , ξ1∗〉 = 0, 〈ξ1, ξ1∗〉 = −1,(6.2)

Je1 = sinh θe1 + cosh θξ1, Je1∗ = sinh θe1∗ + cosh θξ1∗(6.3)

It follows from (5.3) and (6.2) that

DXξ1 = Φ(X)ξ1, DXξ1∗ = −Φ(X)ξ1∗, Φ = Φ1
1.(6.4)

From Corollary 4.1 we have ∇P = 0. Hence, after applying Proposition 4.2,
we see that the second fundamental form satisfies

h(e1, e1)=βξ1+γξ1∗, h(e1, e1∗)=µξ1+βξ1∗ , h(e1∗ , e1∗)=λξ1+µξ1∗(6.5)

for some functions β, γ, λ, µ.

From (2.9), (6.1) and (6.5), we know that the mean curvature vector is given by

H = −h(e1, e1∗) = −µξ1 − βξ1∗ .(6.6)
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Since 〈H,H〉 is a nonzero constant, (6.2) and (6.6) implies that β and µ are nowhere
zero. Moreover, since DH = 0, it follows from (6.4) and (6.6) that

Φ = d(lnβ) = −d(lnµ).(6.7)

Hence, we have µ = bβ−1 for some nonzero real number b.
From (4.1) and (6.1) we have

∇Xe1 = ω(X)e1, ∇Xe1∗ = −ω(X)e1∗, ω = ω1
1.(6.8)

Now, by applying Lemma 3.2 of [9], we also have

ω(e1) − Φ(e1) = 2β tanh θ, ω(e1∗) − Φ(e1∗) = 2µ tanh θ.(6.9)

On the other hand, it follows from (6.4), (6.5), (6.7), (6.8) and the equation of

Codazzi that

ω = Φ, e1∗γ = 3γω(e1∗), e1λ = −3λω(e1).(6.10)

By combining (6.9) and the first equation in (6.10) we get θ = 0. Hence, Ψ is a

Lagrangian immersion. Therefore, (6.3) reduces to

Je1 = ξ1, Je1∗ = ξ1∗.(6.11)

From (6.7) and ω = Φ, we have dβ = βω. By applying this and (6.8) we derive

that [β−1e1, βe1∗ ] = 0. Thus, there exist coordinates {x, y} such that

∂

∂x
= β−1e1,

∂

∂y
= βe1∗ .(6.12)

So, by (6.1) and (6.12) we know that the metric tensor g is

g = −(dx⊗ dy + dy ⊗ dx),(6.13)

which implies that the surface is flat and the Levi-Civita connection satisfies

(6.14) ∇∂/∂x
∂

∂x
= ∇∂/∂x

∂

∂y
= ∇∂/∂y

∂

∂y
= 0.

From (6.12) and (6.14) we get

ω(e1) = βx, ω(e1∗) =
βy

β2
.(6.15)

By applying (6.7), (6.10) and (6.15) we obtain

γ = p(x)β3, λβ3 = q(y)(6.16)
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for some functions p(x), q(y).
From (6.5), (6.11) and (6.12) we obtain

(6.17)

h

(
∂

∂x
,
∂

∂x

)
= iΨx + ip(x)Ψy ,

h

(
∂

∂x
,
∂

∂y

)
= ibΨx + iΨy ,

h

(
∂

∂y
,
∂

∂y

)
= iq(y)Ψx + ibΨy ,

where b is a nonzero real number.
Since the surface is flat, (6.17) and the equation of Gauss yield p(x)q(y) = b.

Thus, we must have p(x) = c and q(y) = b/c for some nonzero real number c.
Consequently, we obtain from (6.14), (6.17) and the formula of Gauss that

(6.18)

Ψxx = iΨx + icΨy ,

Ψxy = ibΨx + iΨy ,

Ψyy = ibc−1Ψx + ibΨy.

The first two equations in (6.18) imply

Ψxxx = 2iΨxx + (1 − bc)Ψx.(6.19)

Case 1. bc = 1. After solving (6.19) we obtain

(6.20) Ψ(x, y) = e2ixA(y) + xB(y) + C(y)

for some vector functions A(y), B(y) and C(y). Substituting this into the first
equation in (6.18) yields

A′(y) = 2ibA(y), B′(y) = 0, C ′(y) = −bB(y).(6.21)

By solving the three equations in (6.21) we have

A(y) = c2e
2iby , B(y) = c1, C(y) = −c1by

for some vectors c1, c2. Combining these with (6.20) gives

(6.22) Ψ(x, y) = c1(x− by) + c2e
2i(x+by).

Therefore, after choosing suitable initial conditions, we obtain cases (c) and (d) of
the theorem.
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Case 2. bc = a2, a > 0 and a 6= 1. In this case, after solving (6.19) we obtain

(6.23) Ψ(x, y) = e i(1−a)x
(
e2iaxA(y) + B(y)

)
+ C(y).

Substituting this into the first equation in (6.18) we get

aA′(y) = i(1 + a)bA(y), aB′(y) = i(a− 1)bB(y), C ′(y) = 0.(6.24)

After solving the three equations in (6.24) we obtain from (6.23) that

(6.25) Ψ(x, y) = e i(1−a)x
{
c1e

i(2ax+(1+a−1)by) + c2e
i(1−a−1)y

}
+ c0

for some vectors c0, c1, c2. Thus, by choosing suitable initial conditions, we obtain
cases (e) and (f).

Case 3. bc = −a2, a > 0. In this case, after solving (6.19) in the similar way
as case (2) we obtain

Ψ(x, y) = e(i−a)x
{
c1e

2ax+(i−a−1)by + c2e
(i+a−1)by

}
+ c0

for some vectors c0, c1, c2. Hence, after choosing suitable initial conditions, we
obtain case (g).

Remark 6.1. By direct computation, one can verify that the nine types of

surfaces described in Theorem 6.1 are slant surfaces with nonzero parallel mean

curvature vector.

Remark 6.2. In views of Theorem 6.1 and Theorem 1.1 of [7, page 50], we

know that the situation of slant surfaces with parallel mean curvature vector in C2

and in C2
1 are quite different.

7. CLASSIFICATION OF MINIMAL SLANT SURFACES IN C2
1

In this section we classify minimal slant surfaces in C2
1.

Theorem 7.1. Let Ψ : M2
1 → C2

1 be a minimal slant surface in the Lorentzian

complex plane C2
1. Then, up to rigid motions, M

2
1 is locally an open portion of

one of the following three types of surfaces:

(i) A totally geodesic slant plane;
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(ii) A flat θ-slant surface defined by

Ψ(x, y) =
(
x− iy

2
cosh θ coth θ + (i sech θ + tanh θ)K(y),

x− y +
iy
4

(cosh 2θ − 3) csch θ + (i sech θ + tanh θ)K(y)
)
,

where K(y) is a non-constant function;
(iii) A non-flat θ-slant surface defined by

Ψ(x, y)=

(∫ y

0

dy√
v′(y)

− 1 + i sinh θ
2c

∫ x

0

u(x)dx√
u′(x)

+
i cosh θ

2b
3
2

∫ y

0

v(y)dy√
v′(y)

+b
3
2 c(i sech θ − tanh θ)

∫ x

0

dx√
u′(x)

,

∫ y

0

dy√
v′(y)

+
1+i sinh θ

2c

∫ x

0

u(x)dx√
u′(x)

− i cosh θ

2b
3
2

∫ y

0

v(y)dy√
v′(y)

+b
3
2 c(i sech θ − tanh θ)

∫ x

0

dx√
u′(x)

)
,

where b, c are nonzero real numbers, and u(x), v(y) are functions with
u′(x) > 0, v′(y) > 0 defined respectively on open intervals I1 and I2 con-
taining 0.

Proof. Let Ψ : M2
1 → C2

1 be a minimal slant surface in the Lorentzian

complex plane C2
1. Let {e1, e1∗, ξ1, ξ1∗} be an adapted pseudo-orthonormal slant

frame of M2
1 . Then, as in the proof of Theorem 6.1, we have

〈e1, e1〉 = 〈e1∗ , e1∗〉 = 0, 〈e1, e1∗〉 = −1,(7.1)

〈ξ1, ξ1〉 = 〈ξ1∗ , ξ1∗〉 = 0, 〈ξ1, ξ1∗〉 = −1,(7.2)

Je1 = sinh θe1 + cosh θξ1, Je1∗ = sinh θe1∗ + cosh θξ1∗ ,(7.3)

∇e1 = ωe1, ∇e1∗ = −ωe1∗ , Dξ1 = Φξ1, Dξ1∗ = −Φξ1∗ .(7.4)

Since M2
1 is minimal slant, it follows from Proposition 5.1 and Theorem 5.1 that

Φ = ω. Also, it follows from (2.9), (7.1), Corollary 4.1 and Proposition 4.2 that

h(e1, e1) = fξ1∗ , h(e1, e1∗) = 0, h(e1∗, e1∗) = kξ1(7.5)

for some real-valued functions f, k.

From (7.4), (7.5), Φ = ω and the equation of Codazzi we obtain

e1∗f = 3fω(e1∗), e1k = −3kω(e1).(7.6)
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We divide the proof into several cases:

Case (a). f = k = 0. In this case, the slant surface is totally geodesic. Hence,
the surface is an open portion of a slant plane. This gives case (i) of the theorem.

Case (b). f = 0 and k 6= 0. In this case, (7.5) and the equation of Gauss show
that the slant surface is flat.

If we choose a local coordinate system {x, y} inM2
1 such that ∂/∂x, ∂/∂y are

parallel to e1, e1∗, respectively, then the metric tensor of M
2
1 takes the form:

g = −ψ2(dx⊗ dy + dy ⊗ dx)(7.7)

for some nonzero real-valued function ψ = ψ(x, y). We may put

∂

∂x
= ψe1,

∂

∂y
= ψe1∗.(7.8)

The Levi-Civita connection satisfies

∇∂/∂x
∂

∂x
=

2ψx

ψ

∂

∂x
, ∇∂/∂x

∂

∂y
= 0, ∇∂/∂y

∂

∂y
=

2ψy

ψ

∂

∂y
.(7.9)

In view of (7.3) and (7.8) we have

h

(
∂

∂x
,
∂

∂x

)
= 0, h

(
∂

∂x
,
∂

∂y

)
= 0, h

(
∂

∂y
,
∂

∂y

)
= kψ2ξ1.(7.10)

Thus, by applying (7.3), (7.8), (7.9) and (7.10), we know that the slant immersion

satisfies

(7.11)

Ψxx =
2ψx

ψ
Ψx, Ψxy = 0,

Ψyy =
2ψy

ψ
Ψy + (i sech θ + tanh θ)kψΨx.

The compatibility conditions of this system are given by

ψψxy − ψxψy = 0, ψkx = −3kψx.(7.12)

The first condition in (7.12) implies ψ2 = p(x)q(y) for some functions p(x) and
q(y). Thus, after replacing x and y by some anti-derivatives of p(x) and q(y),
respectively, we get

g = −(dx⊗ dy + dy ⊗ dx).(7.13)
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Hence, the second condition in (7.12) becomes kx = 0 which implies that k = k(y).
Therefore, system (7.11) becomes

(7.14)
Ψxx = Ψxy = 0,

Ψyy = (i sech θ + tanh θ)k(y)Ψx.

After solving this system and choosing suitable initial conditions, we obtain case

(ii) of the theorem.

Case (c). k = 0 and f 6= 0. After interchanging x and y this reduces to case
(b).

Case (d). f, k 6= 0. We find from (7.4) and (7.6) that [f−
1
3 e1, k

− 1
3 e2] = 0.

Thus, there exist coordinates {x, y} such that

e1 = f
1
3
∂

∂x
, e2 = k

1
3
∂

∂y
.(7.15)

Hence, we find from (7.5) and (7.15) that

h

(
∂

∂x
,
∂

∂x

)
= f

1
3 ξ1∗, h

(
∂

∂x
,
∂

∂y

)
= 0, h

(
∂

∂y
,
∂

∂y

)
= k

1
3 ξ1.(7.16)

Moreover, we know from (7.2) and (7.15) that

g = −1
δ
(dx⊗ dy + dy ⊗ dx), δ = f

1
3k

1
3 .(7.17)

The Levi-Civita connection of (7.17) satisfies

(7.18) ∇∂/∂x
∂

∂x
= −(ln δ)x

∂

∂x
, ∇∂/∂x

∂

∂y
= 0, ∇∂/∂y

∂

∂y
= −(ln δ)y

∂

∂y
.

Consequently, by (7.3), (7.16) and (7.18), we obtain

(7.19)

Ψxx = −(ln δ)xΨx + f
5
6k−

1
6 (i sech θ − tanh θ)Ψy ,

Ψxy = 0,

Ψyy = −(ln δ)yΨy + f−
1
6 k

5
6 (i sech θ + tanh θ)Ψx.

The compatibility conditions of system (7.19) are given by

(ln δ)xy = −δ2,(7.20)

(ln f)x = (lnk)x, (ln f)y = (lnk)y.(7.21)
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After solving (7.20) we find the following solution:

f
1
3k

1
3 =

c
√
u′(x)v′(y)

c2v(y)− u(x)
(7.22)

for some differentiable functions u(x), v(y) and nonzero real number c (see [10]).
Also, it follows from (7.21) that f = b3k for some nonzero constant b. Hence, by
applying (7.22) and f = b3k, we have

f =
b

3
2 c

3
2 u′(x)

3
4 v′(y)

3
4

(c2v(y)− u(x))
3
2

, k =
c

3
2 u′(x)

3
4 v′(y)

3
4

b
3
2 (c2v(y)− u(x))

3
2

.

Without loss of generality, we may assume that u(x) and v(y) are defined on some
open intervals I1 and I2 containing 0, respectively. Therefore, by combining these
with (7.19), we obtain

(7.23)

Ψxx =−

(
ln
c
√
u′(x)v′(y)

c2v(y)−u(x)

)

x

Ψx+
b

3
2 c
√
u′(x)v′(y)

c2v(y)− u(x)
(i sech θ−tanh θ)Ψy ,

Ψxy =0,

Ψyy =−

(
ln
c
√
u′(x)v′(y)

c2v(y)− u(x)

)

y

Ψy +
c
√
u′(x)v′(y)(i sech θ + tanh θ)

b
3
2 (c2v(y)− u(x))

Ψx.

Solving the second equation in (7.23) gives

Ψ = z(x) + w(y)(7.24)

for some C2
1-valued functions z(x) and w(y). By substituting this into the first

equation in (7.23), we find

(
z′(x)

√
u′(x)

c2v(y)− u(x)

)

x

=
b

3
2 cu′(x)

√
v′(y)

(c2v(y)− u(x))2
(i sech θ − tanh θ)w′(y).

From this we get

(7.25) z′(x) =
A(y)(c2v(y)− u(x))

c
√
u′(x)v′(y)

+
b

3
2 c(i sech θ − tanh θ)

√
v′(y)w′(y)√

u′(x)
,

which implies that

(7.26)

z(x) =
cv(y)A(y)√

v′(y)

∫ x

0

dx√
u′(x)

− A(y)
c
√
v′(y)

∫ x

0

u(x)√
u′(x)

dx

+ b
3
2 c(i sech θ − tanh θ)

√
v′(y)w′(y)

∫ x

0

dx√
u′(x)

+B(y).
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On the other hand, substituting (7.24) into the last equation in (7.23) gives

(7.27)

(
w′(y)

√
v′(y)

c2v(y)− u(x)

)

y

=
c
√
u′(x)v′(y)(i sech θ + tanh θ)

b
3
2 (c2v(y)− u(x))2

z′(x).

By combining (7.25) and (7.27) we obtain

w′′(y) +
v′′(y)
2v′(y)

w′(y) =
i sech θ + tanh θ

b
3
2

A(y).

After solving this second order differential equation we get

(7.28) w(y) =
i sech θ + tanh θ

b
3
2

∫ y

0

∫ y
0

√
v′(t)A(t)dt√
v′(y)

dy + c1

∫ y

0

dy√
v′(y)

+ c0

for some vectors c0, c1 ∈ C2
1. From (7.24), (7.26) and (7.28) we obtain

(7.29)

Ψ(x, y) =
cv(y)A(y)√

v′(y)

∫ x

0

dx√
u′(x)

− A(y)
c
√
v′(y)

∫ x

0

u(x)√
u′(x)

dx+ c1

∫ y

0

dy√
v′(y)

+ c1b
3
2 c(i sechθ − tanh θ)

∫ x

0

dx√
u′(x)

− c

∫ x

0

dx√
u′(x)

∫ y

0

√
v′(y)A(y)dy

+
isech θ + tanh θ

b
3
2

∫ y

0

∫ y
0

√
v′(t)A(t)dt√
v′(y)

dy + B(y) + c0.

Substituting this into the second equation in (7.23) yields

2A′(y)v′(y) = A(y)v′′(y),

which implies A(y) = c2
√
v′(y) for some vector c2. Therefore, (7.29) becomes

(7.30)

Ψ(x, y) = c1

∫ y

0

dy√
v′(y)

+ c1b
3
2 c(i sech θ − tanh θ)

∫ x

0

dx√
u′(x)

− c2
c

∫ x

0

u(x)√
u′(x)

dx+ c2
i sech θ + tanh θ

b
3
2

∫ y

0

v(y)√
v′(y)

dy + B(y) + c0.

Now, by substituting (7.30) into the first equation in (7.23), we get B′(y) = 0.
Hence, B(y) = c3 for some vector c3. Consequently, after applying a suitable
translation on C2

1, we obtain

(7.31)

Ψ(x, y) = c1

∫ y

0

dy√
v′(y)

+ c1b
3
2 c(i sech θ − tanh θ)

∫ x

0

dx√
u′(x)

− c2
c

∫ x

0

u(x)√
u′(x)

dx+ c2
i sech θ + tanh θ

b
3
2

∫ y

0

v(y)√
v′(y)

dy.
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From (7.31) we have

(7.32)

Ψx =
b

3
2 c2c1(i sech θ − tanh θ) − c2u(x)

c
√
u′(x)

,

Ψy =
b

3
2 c1 + c2(i sech θ + tanh θ)v(y)

b
3
2

√
v′(y)

.

It follows from (7.3), (7.17), (7.22) and (7.32) that c1 and c2 are light-like vectors

satisfying 〈c1, c2〉 = −1 and 〈c1, ic2〉 = sinh θ. Therefore, up to rigid motions, we
may choose c1, c2 such that

c1 = (1, 1), c2 =
1
2
(
1 + i sinh θ,−1 − i sinh θ

)
.

Consequently, we obtain case (iii) of the theorem from (7.31).

Remark 7.1. By direct computation we can verify that the maps given in case

(ii) and case (iii) of Theorem 7.1 define minimal slant surfaces in C2
1.
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