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CHEN INEQUALITIES FOR
SUBMANIFOLDS OF A LOCALLY
CONFORMAL ALMOST COSYMPLECTIC
MANIFOLD WITH A SEMI-SYMMETRIC
METRIC CONNECTION

Cihan OZGUR and Cengizhan MURATHAN

Abstract

In this paper we prove Chen inequalities for submanifolds of a lo-
cally conformal almost cosymplectic manifold N*™%!(¢) of constant -
sectional curvature ¢ endowed with a semi-symmetric metric connec-
tion, i.e., relations between the mean curvature associated with the
semi-symmetric metric connection, scalar and sectional curvatures, Ricci
curvatures and the sectional curvature of the ambient space.

1 Introduction

In [10], Friedmann and Schoutenn introduced the notion of a semi-symmetric
linear connection on a differentiable manifold. Later in [11], H. A. Hayden
defined a semi-symmetric metric connection on a Riemannian manifold. In
[23], K. Yano studied some properties of a Riemannian manifold endowed
with a semi-symmetric metric connection. In the case of hypersurfaces, in
[12] and [13], T. Imai found some properties of a Riemannian manifold and a
hypersurface of a Riemannian manifold with a semi-symmetric metric connec-
tion. In [19], Z. Nakao studied submanifolds of a Riemannian manifold with
a semi-symmetric metric connection.
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To establish simple relationships between the main intrinsic invariants and
the main extrinsic invariants of a submanifold is one of the most fundamental
problems in submanifold theory as recalled by B.-Y. Chen [6]. The main in-
trinsic invariants include Chen’s d-invariant, scalar curvature, Ricci curvature
and k-Ricci curvature. The main extrinsic invariants are squared mean cur-
vature and shape operator. There are also other important modern intrinsic
invariants of submanifolds introduced by B.-Y. Chen [9]. Many famous results
in differential geometry can be regarded as results in this respect.

Following B.-Y. Chen, many geometers have studied similar problems for
different submanifolds in various ambient spaces, for example see [2], [3], [15],
[16] and [20].

In [4], [14], [22] and [24], submanifolds of locally conformal almost cosym-
plectic manifolds of pointwise constant ¢-sectional curvature ¢ satisfying Chen’s
inequalities were studied.

Recently, in [17] and [18], the first author and A. Mihai proved Chen in-
equalities for submanifolds of real space forms with a semi-symmetric metric
connection and Chen inequalities for submanifolds of complex space forms
and Sasakian space forms endowed with semi-symmetric metric connections,
respectively.

Motivated by the studies of the above authors, in this study, we consider
Chen inequalities for submanifolds in a locally conformal almost cosymplectic
manifold N2™*1(c) of pointwise constant ¢-sectional curvature ¢ endowed with
a semi-symmetric metric connection.

2 Semi-symmetric metric connection

Let NP be an (n + p)-dimensional Riemannian manifold and V a linear
connection on N™P. If the torsion tensor T of V, defined by

T(X,7)=VgV - VX - [X.7],

for any vector fields X and Y on N ntP satisfies

T (5( 57) = w(V)X —w(X)Y

for a 1-form w, then the connection V is called a semi-symmetric connection.
Let g be a Riemannian metric on N"*?. If Vg = 0, then V is called a
semi-symmetric metric connection on N”jp.
A semi-symmetric metric connection V on N"*? is given by

Vi = ViV +w()X —g(X,Y)U,
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for any vector fields X and Y on N ntP  where V denotes the Levi-Civita
connection with respect to the Riemannian metric g and U is a vector field
defined by ¢(U, X) = w(X), for any vector field X [23].

We will consider a Riemannian manifold N*™? endowed with a semi-

symmetric metric connection V and the Levi-Civita connection denoted by
o

V.
Let M™ be an n-dimensional submanifold of an (n + p)-dimensional Rie-
mannian manifold N**?. On the submanifold M™ we consider the induced

semi-symmetric metric connection denoted by V and the induced Levi-Civita
o

connection denoted by V.

(o)

Let R be the curvature tensor of NP with respect to V and R the cur-
[e]

vature tensor of N™'P with respect to V. We also denote by R and R the
[e]
curvature tensors of V and V, respectively, on M™.

The Gauss formulas with respect to V, respectively V can be written as:

VxY =VxY +h(X,Y), XY €x(M),

VY = ViY + h(X,Y), X,Y e x(M),

where h is the second fundamental form of M™ in N"*? and h is a (0, 2)-tensor
on M"™. According to the formula (7) from [19] h is also symmetric. The Gauss
equation for the submanifold M™ into an (n + p)-dimensional Riemannian
manifold N™*P is

2 o o

R(X,Y,2,W) = R(X,Y, Z,W) + g(h(X, Z), h(Y,W)) — g(h(X, W), h(Y, Z)).
(1)

One denotes by H the mean curvature vector of M™ in NP,
Then the curvature tensor R with respect to the semi-symmetric metric
connection V on N™*? can be written as (see [13])

o

R(X,K 27 W) = R(Xv Yv Za W) - Ck(Y, Z)g(X7 W) + Oé(X, Z)g(y, W)_ (2)
—a(X, W)g(Y, Z) + a(Y, W)g(X, Z),

for any vector fields X,Y,Z, W € x(M™), where « is a (0,2)-tensor field
defined by

o

a(X,Y) = (%;au) Y —w(X)w() + %w(P)g(X, Y), VX,Y € x(M).
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Denote by A the trace of «.

Let m € T,M"™, x € M"™, be a 2-plane section. Denote by K(m) the
sectional curvature of M™ with respect to the induced semi-symmetric metric
connection V. For any orthonormal basis {eq,...,e,,} of the tangent space
T,M™", the scalar curvature 7 at x is defined by

T(x) = Z K(e; Nej).

1<i<j<n
Recall that the Chen first invariant is given by
dm(z) =71(x) —inf{K(n) |7 C T,M",x € M",dim7 = 2},

(see for example [9]), where M™ is a Riemannian manifold, K () is the sec-
tional curvature of M™ associated with a 2-plane section, # C T, M™,x € M"
and 7 is the scalar curvature at x.

The following algebraic Lemma is well-known.

Lemma 2.1. [6] Let ay,asg,...,an,b be (n+1) (n > 2) real numbers such that

(Za,) =(n-1) (Za?—kb).

Then 2a1as > b, with equality holding if and only if a1 + a2 = az = ... = a,.

Let M™ be an n-dimensional Riemannian manifold, L a k-plane section of
T, M™, x e M™ and X a unit vector in L.

We choose an orthonormal basis {es, ..., ex} of L such that e; = X.

One defines [8] the Ricci curvature (or k-Ricci curvature) of L at X by

RiCL(X) = Kis + Ki3 + ... + K1k,
where Kj;; denotes, as usual, the sectional curvature of the 2-plane section

spanned by e;,e;. For each integer k, 2 < k < n, the Riemannian invariant
O on M™ is defined by:

Ok(z) =

- 1£?£R20L(X), xe M,

where L runs over all k-plane sections in T,M™ and X runs over all unit
vectors in L.
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3 Chen first inequality for submanifolds of locally con-
formal almost cosymplectic manifolds

Let N2+ be a (2m + 1)-dimensional almost contact manifold endowed with
an almost contact structure (¢,&,n), that is, ¢ is a (1, 1)-tensor field, & is a
vector field and 7 is 1-form such that p?X = —X + n(X)E, n(€) = 1. Then,
pé =0 and noy = 0. The almost contact structure is said to be normal if the
induced almost complex structure J on the product manifold N x R defined
by J(X,a%) = (pX — ag,n(X)%) is integrable, where X is tangent to N, t
the coordinate of R and a a smooth function on N x R. The condition for
being normal is equivalent to vanishing of the torsion tensor [p, ¢] + 2dn & &,
where [, ¢] is the Nijenhuis tensor of .

Let g be a compatible Riemannian metric with (¢, £, n), that is, g (¢ X, ¢Y) =
g (X,Y) —n(X)n(Y) or equivalently, ®(X,Y) = g(X,¢Y) = —g(¢X,Y) and
9(X, &) =n(X) for all X, Y € TN. Then N becomes an almost contact metric
manifold equipped with an almost contact metric structure (p,&,n,9) [5].

If the fundamental 2-form ® and 1-form 7 are closed then NNV is said to be
an almost cosymplectic manifold. A normal almost cosymplectic manifold is
cosymplectic. N is called a locally conformal almost cosymplectic manifold if
there exist a 1-form w such that d® = 2w A @, dnp = w A n and dw = 0 [21].

A necessary and sufficient condition for a structure to be normal locally
conformal almost cosymplectic is

(%ap) Y = f(9(X,9Y)§ —n(Y)pX), (3)

o
where V is the Levi-Civita connection of the Riemannian metric g and w = fn.
From formula (3) it follows that

V= F(X —n(X)E).

(see [21]).
A locally conformal almost cosymplectic manifold N2+ of dimension > 5
is of pointwise constant y-sectional curvature c if and only if its Riemannian
[e]

curvature tensor R is of the form

RXY,2,0) = “—2E g0 W)g(v,2) - g%, 2)g(V, W)+
s / [9(X, oW )g(Y,0Z) — g(X, pZ)g(Y,oW) — 29(X, Y )g(Z, pW)]

4
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B <c+f2

L) @0 W) e 20 (@)

+n(X)n(W)g(Y, Z) —n(X)n(Z)g(Y,W)],

where f is the function such that w = fn, f/ = £f [21].

If N?m*+l(¢) is a (2m + 1)-dimensional locally conformal almost cosym-
plectic manifold of pointwise constant ¢-sectional curvature ¢ endowed with
a semi-symmetric metric connection V, from (2) and (4) it follows that the
curvature tensor R of N Zm+1(c) can be expressed as

. _ 2
Ry, zm) =<2

[9(X, W)g(Y, Z) — g(X, Z)g(Y, W)]+

c+ f?

A

[9(X, oW)g(Y,0Z) — g(X, pZ)g(Y, W) — 29(X, pY)g(Z, pW)]
(5)

c 2
_<_zf+f>M@WN@ﬂXWQ—MYMWOMXZH-

+n(X)n(W)g(Y, Z) — n(X)n(Z)g(Y, W)]

—a(Y, Z)g(Xa W) + a(Xv Z)g(Yv W) - a(Xv W)Q(Ya Z) + O‘(Ya W)g(Xv Z)'

Let M™, n > 3, be an n-dimensional submanifold of an (2m+1)-dimensional
locally conformal almost cosymplectic manifold NP (c) of constant ¢-sectional
curvature c. For any tangent vector field X to M™, we put

0X = PX + FX,

where PX and F X are tangential and normal components of ¢ X, respectively
and we decompose

E=¢"+¢,
where ¢ and ¢tdenotes the tangential and normal parts of &.

Denote by ©2(m) = g?(Pey1, e3), where {e1, e2} is an orthonormal basis of a
2-plane section 7, is a real number in [0, 1], independent of the choice of eq, es
(see [1]).

For submanifolds of locally conformal almost cosymplectic manifold N2 +1(c)

of constant ¢-sectional curvature ¢ endowed with a semi-symmetric metric
connection we establish the following optimal inequality.
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Theorem 3.1. Let M™, n > 3, be an n-dimensional submanifold of an (2m +
1)-dimensional locally conformal almost cosymplectic manifold of pointwise
constant @-sectional curvature N*™1(c) endowed with a semi-symmetric met-

ric connection V. We have:

n? c—3f°
)~ Kn) < (-2 | g W+ e 02 <o+ (@
B (e -6 ) + (5 ) [ €T ] -

—trace (Oz|”L> s
where w is a 2-plane section of T, M™, x € M™ .

Proof. From [19], the Gauss equation with respect to the semi-symmetric
metric connection is

(7)

Let © € M™ and {ey, e, ...,e,} and {€,41, ..., €21} be orthonormal basis

of T, M™ and T;} M™, respectively. For X = W =¢;,Y = Z = ej, i # j, from
the equation (5) it follows that:

. cf3f2+3(c+f2)

R(6i76j7€jaei) = 4 4 gz(Pejaei)i (8)

et 2
_ ( J;f + f/) {ﬂ(ei)2 + n(ej)2} —ale;, e;) — aley, e5).
From (7) and (8) we get

c—3f2+3(c+f2) c+ f?

4 4

o Pes,e) = (4 1) (e 4 ntes?) - aten e -

—a(ej,ej) = Rles ej,€5,e;) + g(h(ei, e5), hiei e5)) — g(hles, e:), hiej, €5)).

By summation after 1 < 4,5 < n, it follows from the previous relation that

c=3f*\ 3(c+ /%) 2
)+ XDy -

27 +||h|*=n? | H|? = —2(n—1)A+(n?—n) (

2
(L) e
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We take
c—2r— % H|? + 2(n — DA — (n® — n) <C43f2) 0
AT e va (L ) - e
Then, from (9) and (10) we get
n? | H|? = (n = 1) (0] +¢) (1)

Letx € M", 7 C T,M™, dimm = 2, m = sp{e1,ea}. Wedefine e, 11 = ”—g”
and from the relation (11) we obtain:

n 2m-+1
Zh”“ ==Y Y (P +e)
i,j=1r=n+1
or equivalently,
n n n  2m+l1
(Z hZ—H)Q — (n -1) Z hn-i—l + Z hn-i—l + Z Z
i=1 i=1 i#j 3,j=1r=n+2

By using the algebraic Lemma we have from the previous relation

n  2m+1

+1pn+1 +1
M ha 2 3 (BT Y D
i#£] i,j=1r=n+2

If we denote by &, = pr& we can write (see [18])

n(en)® +nle2)” = [1&17

The Gauss equation for X =W =e1,Y = Z = ey gives

—3f2 2 2
C 3f +3(C+f >g2(P61,€2)—(c—zf +f/> ||§7-r||2_

K(m) = R(e1,e2,ea,e1) =

4 4
2m—+1
—afer,e1) —ales,ea) + Y[R hsy — (h12)%] >
r=n+1

> o3 Set] )gi’(pel,ez)(ﬁf +f') I lP—ater,er)—ales, e2)+
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1 n 2m—+1 2m—+1 2m—+1
DR Y D ()P e+ Yo hihh = Y ()=
i#£] i,j=1r=n+2 r=n+2 r=n-+1

S 43f +3(sz )92(Pe1,e2)_(c+4f +f/> ||§7T||2—a(e1,el)—a(62,€2)+

n 2m—+1 2m—+1 2m-+1
Py I 5 30 S (R get Y B Y (WD) =
i#] i,j=1r=n+2 r=n-+2 r=n-+1

= 43f +3(sz )92(P61,e2)_(c+4f +f/) &= 11” —a(er, er)—a(ez, e2)+

2m+1 1 2m+1 1
+= Z hn+1 Z Z Z 1+h Z h’ﬂ+1 h’I’L+1) ]—I—*E >
1;&] r=n+21i,j>2 r=n-+2 j>2 2

_ 2 2 2
> +3(6Zf)g2<p61,62>(c+f 1) el -ater e -alea,ea) 5,

2

which implies

c—3f2 3(c+ f2) c+ f?

K 2 M D) ppe, e (L4 ) el -ater e -atenea)t

Denote by
aler,er) + ales, e2) = A — trace (a‘“> ,

(see [18]). From (10) it follows

K 2702 |z 1P + o+ )2 a4

HHEL) (2 - i)+ (4

which represents the inequality to prove.

) [ = DT = e trace (e, )

Corollary 3.2. Under the same assumptions as in Theorem 3.1 if € is tangent
to M™, we have

n2 2 Cc — 2
)~ K(7) < (n=2) |5 I 4 (ot 2 =+

et /) (;”pp - @2<w))+< i f> [0 = 1)+ g l?] ~trace (o, )
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If & is normal to M™, we have

@) - K@) < (n-2) {2(””21) IH|? + (n + 1)< _83f2 - )\] +
+3(%f2) (;HPH2 - @2(7r)> — trace (a|ﬂL) .

Recall the following important result (Proposition 1.2) from [12].

Proposition 3.3. The mean curvature H of M™ with respect to the semi-
o

symmetric metric connection coincides with the mean curvature H of M™
with respect to the Levi-Civita connection if and only if the vector field U is
tangent to M™.

Remark 3.4. According to the formula (7) from [19] (see also Proposition
3.3), it follows that h = h if U is tangent to M™. In this case inequality (6)
becomes

+(n+1)

2

2(n—1)
AL (e -0 + (L + 1) [lecl - (0~ 1] -

—trace <a| L) .

Theorem 3.5. If the vector field U is tangent to M™, then the equality case of
inequality (6) holds at a point © € M™ if and only if there exists an orthonor-
mal basis {e1,e2,...,en} of TyM™ and an orthonormal basis {€n+1,...; €ntp}
of T-M™ such that the shape operators of M™ in N*™*l(c) at x have the
following forms:

o

g c—3f?

T(x) — K(m) < (n—2) 3

- A

+

a 0 0 0
0 b 0 0
Aeryr = 00 u --- 0 . at+b=p,
0 0 O W
n hip 0 0
12 —hi 0 0
L= , n+2<i1<2m+1,

N
@
|
Lo
)
o
=)
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where we denote by hi; = g(h(ei,ej),er), 1 <i,j<nandn+2<r <2m+1.

Proof. The equality case holds at a point z € M™ if and only if it achieves
the equality in all the previous inequalities and we have the equality in the
Lemma.

n+1 __ . ...
hij _07V7’7é,7uz7]>27
hi; =0,Vi# j,i,5 > 2,r =n+1,...2m + 1,
€1+h£2 ZO,VTZH—I—Z,...,ZT)’L—I—L

e e

W+ npt = bt = o=t
We may chose {e1, ez} such that 75t = 0 and we denote by a = h};,b =
hr _ hfb-‘rl _ — pntl
22, M 33 nn

It follows that the shape operators take the desired forms.

4 Ricci curvature for submanifolds of locally conformal
almost cosymplectic manifolds

We first state a relationship between the sectional curvature of a submanifold
M™ of alocally conformal almost cosymplectic manifold N2+ (c) of constant
p-sectional curvature ¢ endowed with a semi-symmetric metric connection v
and the squared mean curvature ||H ||2 Using this inequality, we prove a
relationship between the k-Ricci curvature of M™ (intrinsic invariant) and
the squared mean curvature |H|® (extrinsic invariant), as another answer
of the basic problem in submanifold theory which we have mentioned in the
introduction.

In this section we suppose that the vector field U is tangent to M™.

Theorem 4.1. Let M"™,n > 3, be an n-dimensional submanifold of an (2m+
1)-dimensional locally conformal almost cosymplectic manifold N?"+1(c) of
pointwise constant p-sectional curvature ¢ endowed with a semi-symmetric
metric connection V such that the vector field U is tangent to M"™. Then we
have

2 2 c—3f? 3

HI?> -+ 2
IH17" = nin —1) +n 4 4dn(n — 1)

2 (c+ f? / T
w2 () e (12)

(c+ /) IPI* +
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Proof. Let x € M™ and {ej,es,...,e,} and orthonormal basis of T, M™.
The relation (9) is equivalent with

IPI* + (13)

2 17 = 20 200 DA~ )

c 2
2 (XL ) -l

We choose an orthonormal basis {e1, ..., e, €nt1, ..., €ntp} at x such that
en+1 is parallel to the mean curvature vector H(z) and eq, ..., e, diagonalize
the shape operator A Then the shape operators take the forms

c—=3f%\ 3(c+/?
4 )_ 4

€n+41°
(5] 0 e 0
0 as ... 0
Aenia : . : ’
0 0 ... ap

A, = (hfj)7 ,j=1..,nr=n+2,..,2m+ 1,trace A, = 0.
From (13), we get

2m+1 n
2||HH _27._|_Za 4 Z Z —|—2 (n—1)A— (14)
r=n+24,j=1
- (20) - XD e (+4f 1) =TI

Since
n
2
> al=nlH|?,
i=1

hence we obtain

a2
712||H||2 > 27'—|—nHH||2+2(n—1))\—(n2—n) (c 43f>

2 2
D o2 (2L ) - wieTe

Last inequality represents (12).
Using Theorem 4.1, we obtain the following
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Theorem 4.2. Let M™, n > 3, be an n-dimensional submanifold of an (2m +
1)-dimensional locally conformal almost cosymplectic manifold N?"*1(c) of
pointwise constant p-sectional curvature ¢ endowed with a semi-symmetric
metric connection V, such that the vector field U is tangent to M™. Then, for
any integer k, 2 < k < n, and any point x € M™, we have

2 Cc — 3f2 3 2
H|? (z) > - - %) |P
I () 2 O(e) + 2= P = S (e ) [PIP 4
2 [c+ f2 ’ T2
— . 15
2 () e (15)
Proof. Let {e1,...ep} be an orthonormal basis of T, M. Denote by L;, .,
the k-plane section spanned by e;, , ..., e;, . By the definitions, one has
1 .
T(Llllk) = 9 Z RZCLil...ik (61‘), (16)
ie{il ..... ik}
1
7'(.73‘) = F Z T(Lil...ik)- (17)

n—2 1<i; <...<ip<n
From (12), (16) and (17), one derives

(2) > n(n —1)

> 5 O (x),

which implies (15).
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