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Abstract: Analogous to use of bullet scratches in forensic science, the au-
thenticity of a digital image can be verified through the noise characteristics
of an imaging sensor. In particular, photo-response non-uniformity noise
(PRNU) has been used in source camera identification (SCI). However, this
technique can be used maliciously to track or inculpate innocent people.
To impede such tracking, PRNU noise should be suppressed significantly.
Based on this motivation, we propose a counter forensic method to deceive
SCI. Experimental results show that it is possible to impede PRNU-based
camera identification for various imaging sensors while preserving the
image quality.
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1. Introduction

Today, digital multimedia is widely used in all areas of life, such as media outlets, businesses,
industries, and even courts of law as a primary way to present, process, and store information.
With the advances in digital technologies, it is possible to edit and manipulate multimedia with
low cost, effort, and expertise. The availability of such technologies and their ease of use risk
the credibility of digital information. Thus, when digital information is used or presented, there
should be some guarantee about its origin, integrity, and nature of the digital content.

Analogous to use of bullet scratches in forensic science, the authenticity of a digital image
can be verified using the noise characteristics of the imaging sensor [1], physical defects [2, 3],
distortions [4] in the optical path, and their effects on the digital imaging output. Unlike the shot
and read-out noise, the photo-response non-uniformity (PRNU) of the imaging sensor is unique
to the device and creates a noise pattern, which does not change in time [1]. PRNU is temporally
constant and laterally non-uniform. Therefore, it can be considered an intrinsic fingerprint of an
imaging sensor and can be used to trace back an imageI to its sourceX when its authenticity is
questioned. Studies in the literature show that PRNU-based camera identification is quite robust
to image manipulations such as JPEG compression, cropping, printing [5], and downsizing
[6]. Nevertheless, a PRNU pattern can be transferred from one image to another for malicious
use or deception in a court case. Although there are some forensic methods [7, 8] to detect
such noise transfer, they have limitations and work under certain circumstances. Furthermore,
PRNU-based source camera identification has a potential to be used by an adversary for illegal
identity tracking from shared images in different social networks by violating the privacy rights.
Therefore, a counter method against source camera identification (SCI) is needed to protect
personal privacy and to avoid mistrials in court of law [9, 10].

Previously used preventative measures against PRNU-based camera identification have
shown to be surmounted [7, 8]. In [6], it is shown that reducing the image quality can degrade
the PRNU noise significantly. However, PRNU-based source identification is still possible un-
der heavy post-processing and manipulations [11]. Another counter attempt is to use a method
called flat-fielding [12]. Ideally, this method has a number of physical requirements, such as
capturing completely dark and uniformly lightened images having the same parameters, e.g.,
light sensitivity (ISO), with the targeted image. Furthermore, the color correction algorithms in
various camera firmwares may also yield less accurate flat images, thus requiring the method
to be applied with raw images for accurate results. Therefore, flat-fielding may not be a generic
solution to remove PRNU noise and preclude SCI [9, 10, 12]. Another counter method to SCI
can be realized by subtracting the PRNU fingerprint from a target image [12, 13] For a success-
ful PRNU removal, the fingerprint should be multiplied with a specific factor, which makes the
correlation between the camera fingerprint and the PRNU noise in the image near zero [12, 13].
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One of the problems in this method is to estimate the correct multiplication factor. In addition,
it isnot clear whether near-zero correlation is achievable.

In this paper, we would like to answer the following question: “Can we impede the PRNU
based source camera identification, without sacrificing the image quality for different camera
brands or models?” To answer the question, we propose a new counter method against PRNU-
based source camera identification that uses the noise-estimate of a target image and a PRNU
fingerprint of the subjected camera. The proposed method does not particularly require physical
access to the source device. With a set of images taken from a particular camera, it is possible to
estimate the PRNU fingerprint and anonymize any image taken from the same camera. In this
paper, when we use the term “anonymization” we refer to the PRNU-noise degradation process
to prevent SCI.

The organization of the paper is as follows: In Section 2, we provide the notations and the
preliminaries of PRNU noise and SCI. Section 3 introduces the theoretical background of the
proposed counter method. The implementation of the counter method is described in Section
4. The experimental results are presented and discussed in Sections 5 and 6. Finally, Section 7
concludes the paper.

2. PRNU based source camera identification

Due to the nature of PRNU, each pixel in the imaging sensor produces slightly different reaction
to the same level of light intensity. This imperfect behavior causes a temporal random noise
pattern that can be considered an intrinsic fingerprint of a digital camera device. Let the PRNU
pattern (fingerprint) of a digital cameraX beFx. Ignoring the gamma correction factor, the raw
imaging output can be written as:

Ix = I0+(I0Fx +Φ) (1)

where I0 is the actual optical view, andIx is the digital output distorted with the sensor
imperfections and noise. In this model, we omit the post-processing noise in the optical path
due to color demosaicing, white balance, etc. In Eq. (1),Φ refers to other noise elements such
as shot noise, read-out noise, dark current, and quantization distortion. The fingerprintFx can
be predicted by estimating the noise of a set of images using a wavelet-based denoising filter
WDF [14]. The sensor noise estimate of a single image can be computed as:

N(i)
x = I(i)x −WDF(I(i)x ) (2)

whereN(i)
x is the sensor noise estimate of imageI(i)x . The fingerprintFxin Eq. (1) can then be

estimated with the maximum likelihood estimator as introduced in [11]:

F̂x =
∑M

i=1 N(i)
x I(i)x

∑M
i=1(I

(i)
x )2

(3)

whereM is the number of images used to estimateFx. It is well known that the higher the
M is, the betterFx can be estimated. However, this estimate may contain periodic signals and
high spectral magnitudes that are specific to the camera brand or model class because of the
color-filter-array demosaicing. To suppress these periodic traces inF̂x, the mean of the rows
and columns of the fingerprint is set to zero [15], and Wiener filtering is applied in the fre-
quency domain [16] after the maximum likelihood estimation. These post operations increases
the uniqueness of the fingerprint estimate among the same camera brand or model class.

Similar to the identification of human fingerprints in crime scene investigations, source cam-
era identification of a subjected imageI requires a fingerprint database to measure the similarity
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between the sensor noise estimate ofI (N = I−WDF(I)) and a fingerprint of a suspected cam-
era. This similarity can be measured by normalized cross correlation betweenN andF̂x as:

ρ(u,v;N, F̂x) =
∑K

k=1 ∑L
l=1(N[k, l]−N)(F̂x[k+ u, l+ v]− F̂x)

‖N −N‖‖F̂x − F̂x‖
(4)

where‖.‖ is the L2 norm. If the imageI is not taken by cameraX , the maximum of the
correlation ratio (max(ρ)) is expected to be close to zero. If the imageI is taken by cameraX ,
then the correlation ratio should be significantly higher than zero. However, it is not possible to
set a reliable detection threshold for all camera devices because of the different resolutions and
sensor types. This issue has been solved using a peak-to-correlation-energy (PCE) ratio [15].
The PCE ratio is defined by:

PCE=
ρ2

peak
1

|s|−|ε| ∑s 6∈ε ρ2
s

(5)

where,ρ is the normalized cross correlation betweenN andF̂x. ρpeak is the supremum ofρ
ands is the map to all entries ofρ . ε represents a small, centered region aroundρpeak, whereas
|s|−|ε| is the total number of entries outsideε. The size mismatch betweenN andF̂x in Eq. (4),
if occurs, can be compensated using zero padding to the lesser one [17]. Then, the PCE ratio
is compared against a fixed threshold to decide whether the unknown imageI is captured with
cameraX . Experimental results in [17] suggest that the decision threshold can be set to 50 or
higher. For brevity, we denote the PCE as a function ofI andF̂x, i.e., PCE(I, F̂x) throughout the
paper. Thus, if PCE(I, F̂x)> 50, thenI is matched with camera X; otherwise,I is considered to
be taken with another camera. Throughout the paper, these two cases will be referred to as the
matching case and thenon-matching case, respectively.

3. Theoretical model

In this section, we will introduce the theoretical background of our PRNU noise removal
method. All operations are element-wise matrix operations. Let’s consider the image model in
Eq. (1) whereFxI0 is the PRNU term andΦ1 is the non-temporal, stationary sensor noise. For
a successful PRNU-based image anonymization, the PRNU term in the output model should
be zero. Let’s denose the imageIx in spatial-domain with a 2D Wiener filterΩ [18]. Thus, the
sensor noise can be estimated as:Nx = Ix −Ω(Ix). We assume that both PRNU (FxI0) and the
non-temporal noise terms (Φ1) are suppressed after applying image denosing. As a result, the
noise residueNx can be obtained as:

Nx = bFxI0+Φ2 (6)

where,b < 1 andvar(Φ2) < var(Φ1). To remove the PRNU term inNx, let us multiply the
noise residue by a constant factorψ and subtract it from the imageIx as:

I
′

x = Ix −ψNx (7)

Let us expand Eq. (7) and rewrite:

I
′

x = I0+(FxI0+Φ1)−ψ(bFxI0+Φ2) (8)

After re-arranging the terms, we obtain:

I
′

x = I0+(1−ψb)FxI0+(Φ1−ψΦ2) (9)
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Now, we can find theψ factor that makes the PRNU term zero inI
′

x as:

ψ0 = 1/b (10)

Equations (9) and (10) show that there exists a positiveψ factor that makes the noise term
of I

′

x uncorrelated with the camera fingerprint estimateF̂x. ψ > 1 becauseb is smaller than 1.
Although we choose to use 2D Wiener filter to remove the PRNU term, the proposed model can
be extended to any denoising algorithm. Spatial-domain Wiener filter used in the anonymization
is intentionally chosen to show that PRNU suppression can be achieved with different denosing
filter than used in SCI [17].

The image quality degradation introduced by anonymization can be computed fromψ and
Φ2. While the PRNU term in Eq. (9) becomes zero with a carefully chosenψ factor, the
(−ψΦ2) term adds noise to the image and decreases the image quality. The PSNR ofI

′

x af-
ter anonymization can be estimated as follows:

PSNR(I
′

x, Ix) = 10log10(2552)−10log10(var(FxI0)+ψ2var(Φ2)) (11)

The SNR of PRNU noise is approximately -50 dB or less [5]. Thus, ignoring the PRNU term,
Eq. (11) can be simplified to:

PSNR(I
′

x, Ix)≈ 10log10(2552)−10log10(ψ2var(Φ2)) (12)

Let us consider a case wherevar(Φ2) = 0.5 andψ = 3. Then, the PSNR of the anonymized
image becomes 41.60 dB. From Eq. (12), it is seen that theψ andΦ2 terms directly affect
the PSNR. A lower variance ofΦ2 corresponds to a higher PSNR. This shows that PRNU-
based image anonymization can be achieved without significantly degrading the image quality,
depending on the performance of the denoising algorithm. In the following section, we will
show how theψ value is estimated using the PRNU fingerprintFx and the peak-to-correlation-
energy (PCE) ratio.

4. Image source anonymization

The main objective of image source anonymization is to remove the PRNU term in Eq. (1). As
it is shown in the previous section, this objective can be realized by subtracting a sensor noise
estimate, which is multiplied with a specific gain factorψ , from a target image. It is expected
that after source anonymization, the target image yields a PCE metric lower than the decision
threshold. To achieve such low PCE value, we will introduce an iterative PRNU removal process
using the PCE ratio to measure how well theψ factor is estimated for the target image. We will
use the termI

′

x as an intermediate - not-yet-anonymized version of the target imageI, whereas
Ia
x is the ultimate anonymized image. To simplify the description of the anonymization process,

let us define the PCE as a function ofψ factor forI
′

x as:

fPCE(ψ) = PCE(I
′

x(ψ), F̂x) (13)

I
′

x(ψ) is the output of Eq. 7. Our ultimate goal is to find the best value ofψ factor that
makes fPCE(ψ) zero. For a generic PRNU removal method, it is notably hard to estimateψ
factor analytically. Thus, we will search for the value ofψ factor usingfPCE(ψ) as an objective
function. The exhaustive search can be formulated as:

ψo = argmin
ψ∈[1,∞)

( fPCE(ψ)) (14)
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whereψo is the optimum factor of the PRNU noise estimate of imageIx. However, searching
for the optimumψo in Eq. (14) may not be viable. For the purpose of anonymization, a more
viable approach is to impede the source camera identification by rendering amatching case
into a non-matching case and finding this condition using a grid search. This process can be
achieved by implementing the condition in Eq. (15).

fPCE(ψa)≤ εa (15)

The decision thresholdεa could be set to 50 or to a smaller metric such as the PCE metric of
any known non-matching case (an image from cameraY ), which is given byεa ≤ PCE(Iy, F̂x).
Then, the source identification method would not be able to decide whetherIx is originating
from device X or device Y.

Ia
x = Ix −ψa(Ix −W(Ix)) (16)

Therefore, instead of finding the value of optimumψO, we could use a near-optimum solution
ψa to create an anonymized image,Ia

x , as given in Eq. (16). After the anonymization,Ia
x cannot

be associated with cameraX any more because its source could be any other camera device.
The condition in Eq. (15) can be used to compute the success rate of the anonymization (AR)
for a given set of M anonymized images against anyεa:

AR(εa)= 100
M ∑M

i=1S(i;εa); S(i;εa) =

{

1 if fPCE(ψa(i))≤ εa; i=1,..,M
0 otherwise

(17)

where,ψa(i) is the anonymization factor fori th image. Ifεa is chosen as the decision thresh-
old (e.g., 50), then Eq. (17) gives the miss rate of source camera identification method for the
anonymized image set, and could also be used against the source camera identification.

5. Experimental setup and results

In this section, we compare the performance of our proposed anonymization method with two
other counter attacks: flat-fielding and image denoising. Since flat-fielding requires specially
captured images such as dark field and flat frames we choose to use Dresden Image Database
[19] providing dark and flat frames along with other images for a variety of digital cameras.

Table 1. The camera models used in the experiments from the Dresden Image Database.

Camera Model Native Resolution Device Id. Other Id.
(matching case) (non-matching case)

Sony DSC-H50 3456×2592 Id 0 Id 1
Nikon D200 3872×2592 Id 1 Id 0
Panasonic DMC-FZ50 3648×2736 Id 0 Id 2

The Dresden Image Database provides necessary information to distinguish cameras of the
same model by device id. For example, if a user wishes to access two images taken by two
different devices of one model, such as Nikon D200, the user is provided with a list of direct
links to the images acquired using a specific device in a particular model class. From this
database, 3 camera models were used in the experiment for comparing the performance of
flat-fielding against our proposed anonymization method.
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We downloaded the natural, dark and flat images taken by three camera models, which are
listed in Table 1. The images were cropped to 1024× 1024 pixels without inducing any quality
loss to speed up the process of iterative anonymization. Here, the experiment will be explained
for only one camera model because we have repeated the same process for the images from the
other camera models. Images from device 1 were selected to simulate the matching case.

Table 2. Grid search statistics (num. of iteration andψa) per camera.

Camera Avg. Iter. Avg.ψa Std.ψa

Sony 68.2 2.93 0.26
Nikon 84.4 2.83 0.34
Panasonic 80.7 3.27 0.32

To estimate the image sensor noiseNx, the noise residues of three color channels of indi-
vidual images were combined with rgb to gray conversion weights as it is introduced in [17].
Then, the PRNU fingerprint̂Fx was computed with Eq. (3) using the noise estimates of 50
images (training set) taken from device 1. Apart from the images used in the fingerprintF̂x

computation, 50 additional images of the same device (test set), not used in the training, were
used to benchmark the PRNU removal techniques, which include our proposed anonymization
method. To simulate the “non-matching” case, each camera fingerprint is paired with 50 images
captured with another device of the same model, which will be denoted by “other device”.

10
−5

10
0

10
5

original  flat−fielded denoised anonymized other

SonyH50

lo
g

1
0
P

C
E

Fig. 1. Comparison of the PRNU removal methods for Sony H50. The proposed method
“anonymized” 98% of the images taken with Sony H50. (Decision Threshold=50)

To create the flat-fielded versions of the test images, 25 dark and 25 light frames were first
averaged for each selected device. Then, these average frames were used to perform flat-fielding
on each of the test images. In addition to flat-fielding, we performed image denoising for the
test images using 2D Wiener filter in the spatial domain. It is known that image denoising
suppresses the PRNU noise to some extent but does not completely remove the PRNU term.
This type of attack corresponds to the case whereψa = 1 in our proposed method.
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Fig. 2. Comparison of the PRNU removal methods for Nikon D200. The proposed method
“anonymized” all of the images taken with Nikon D200. (Decision Threshold=50)

5.1. Method parameters

The proposed method was applied to estimate theψa coefficient for each image, which re-
duces the PCE value below the decision threshold. Then,ψa was used in the anonymization
process as shown in Eq. 16. To estimate theψa value, a grid search algorithm was performed
by focusing on the grid minimum iteratively until the absolute change for the PCE is lower
than 0.1% and the corresponding PCE is below the decision threshold (50). This process was
repeated for all images in the test set. To evaluate the convergence property of the proposed
method, the average number of iterations andψa values were measured for Sony, Nikon, and
Panasonic cameras. These statistics are shown in Table 2. It is seen from the experimental data
that the proposed method takes approximately 70-80 iterations, and the typicalψa values are
approximately around 3.0.
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original  flat−fielded denoised anonymized other

PanasonicFZ50

lo
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P
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E

Fig. 3. Comparison of the PRNU removal methods for Panasonic FZ50. The proposed
method “anonymized” 84.4% of the images taken with Panasonic FZ50. (Decision Thresh-
old=50)
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5.2. Benchmarking

For benchmark, we created 3 attacked versions of each test image: (i) flat-fielded version, (ii)
denoised version, and (iii) anonymized version. For three counter methods, all attacked images
were saved in JPEG format with 100% quality factor. Recall that we use the term “anonymized”
solely for the images created with the proposed PRNU removal method. The performance of
all counter methods were compared based on the PCE measurements of the attacked images.
To obtain the PCE distributions for the matching (device 1) and non-matching (device 2) cases,
the PCE values were computed for the images taken with device 1 and device 2. It should be
noted that device 1 and device 2 have the same model and brand.

Table 3. Average PCE values (Decision threshold =50)

Original Flat-fielded Denoised Anonymized Other Camera

Sony 5621.94 4843.05 3938.12 6.29 0.33
Nikon 1852.25 1747.09 1007.26 2.88 0.33
Panasonic 978.33 966.02 641.81 22.50 0.66

Average 2880.90 2572.30 1904.50 10.14 0.43

To test the performance of the proposed method, all test images were anonymized using the
fingerprint estimateF̂x obtained from the training set. To simulate a more realistic scenario
and a fair evaluation, we allow adversary/forensic expert to have a different PRNU fingerprint
estimate than used in the anonymization step. It is more realistic because the adversary may
create different fingerprint estimates especially if he/she can have access to the source device or
different image sets of the same camera. Therefore, for each camera, a second PRNU fingerprint
was estimated using 50 new images not used in training and test steps. For brevity, this new
fingerprint estimate will be denoted by F-50. In the benchmark, the PCE values of the attacked
images for three counter methods were computed using the same F-50.

Table 4. Anonymization rates

Flat-fielded Denoised Anonymized

Sony 0.0% 0.0% 98.0%
Nikon 0.0% 0.0% 100.0%
Panasonic 0.0% 2.2% 84.4%

Average 0.0% 0.68% 94.4%

Box plots of the computed PCE values for three counter methods (flat-fielding, denoising,
and the proposed method) are depicted in Figs. 1, 2, and 3 for Sony, Nikon, and Panasonic
cameras, respectively. The PCE distributions for the matching and non-matching cases are also
provided in the figures for better comparison. The dashed lines in the figures represent the
decision threshold of source camera identification (εa = 50). For clarity, the decision threshold
is provided in the figure captions. For each box in the figures, the red line is the median of
the PCE distribution. The box shape is limited with the 25th and 75th percentiles. The outliers
are also shown with red plus signs. Each box is labeled according to its origin (device 1 as
“original” and device 2 as “other”) and the applied PRNU removal method (denoising, flat-
fielding, anonymization). The mean values of the PCE distributions are also provided in Table
3. The PCE box plots in Figs. 1-3 and mean values in Table 3 show that the proposed method
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outperforms flat-fielding and denoising for three cameras. The experimental results also show
that flat-fielding and denoising may not be effective to remove the PRNU fingerprint when they
are applied to JPEG images. The success of the anonymization of three counter methods are
given in Table 4. The average anonymization rate (AR) of the proposed method is 94.4%. For
flat-fielding and denoising methods AR were measured 0.0% and 0.68%, respectively. Although
the Wiener image denoising is a special case of our proposed method whereψ = 1, it does not
suppress the PRNU noise.

Table 5. PSNR [dB] after anonymization

Flat-fielded Denoised Anonymized
Avg. Std. Avg. Std. Avg. Std.

Sony 49.76 0.51 44.24 4.1536.93 3.17
Nikon 53.79 2.08 48.42 3.40 41.68 3.22
Panasonic 51.47 1.61 44.51 3.3236.68 3.01

Average 47.88 1.39 45.76 3.6338.39 3.13

One of the key parameters of our anonymization method is the image quality. Intuitively, the
successive lossy operations applied to a target image can suppress the PRNU noise component.
However, a significant quality loss after such operations cannot be tolerated. In the benchmark,
we also compared the PSNR of the attacked images for three counter methods. The average
PSNR of the anonymized images was measured as 38.39 dB with standard deviation 3.13 dB.
The PSNR results for three counter methods are given in Table 5.

Table 6. Average correlation cofficients (F-50, Decision Threshold=0.0100)

Original Flatfielded Denoised Anonymized Other Camera

Sony 0.0717 0.0652 0.0596 0.0016 0.0009
Nikon 0.0407 0.0395 0.0298 0.0013 0.0008
Panasonic 0.0300 0.0298 0.0242 0.0039 0.0008

Average 0.0481 0.0454 0.0383 0.0022 0.0008

Although, the objective function of the proposed method is set to minimize the PCE ratio
to deceive SCI, it would be interesting to compare the counter methods in terms of correla-
tion coefficient (ρpeak). The motivation behind this comparison is that the adversary can use
different correlation detectors to find a link between the test image and the subjected camera
device. Therefore, we repeated the experiments measuring the correlation coefficient between
the attacked images and the camera fingerprints (F-50) for all counter methods and the cam-
eras. The correlation results are shown in Table 6. We can infer from the results that the use of
the correlation coefficient does not bring any improvement to source camera identification on
anonymized images.

5.3. Further evaluation of the proposed method

In the previous experiments, we have shown that the proposed method outperforms other
counter methods in terms of the PCE ratio, and the correlation coefficient. Recall that in the
benchmarks, adversary was allowed to acquire a unique fingerprint (F-50) with 50 new images
not used in the training and the test steps. Recall also the camera fingerprint estimateF̂x used
in the objective function were generated using 50 images in the training set. This experimental
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setting balances the quality of fingerprint estimates used in the anonymization step and final
PCEcomputation by the adversary. On the other hand, the adversary may have more than 50
images taken from the same camera and obtain a better fingerprint than F-50. In that case, can
the adversary identify the source of the anonymized image? To answer this question, we will
allow the adversary to estimate a second fingerprint using 100 images taken by the same cam-
era which are not used in the training and test step. We will denote this fingerprint by F-100
for brevity. Furthermore, to better evaluate the performance of the proposed method, we extend
the camera database including smart phones (Nexus 4, Samsung S3 Mini), DSLR (Canon EOS
1100D), and compact cameras. A complete list of camera devices used in this Section is shown
in Table 7.

Table 7. The camera models used in the experiment.

Camera Model Native Resolution

BenQ AE100 4320×3240
Casio QV-R200 4320×3240
LG Nexus 4 3264×2448
Olympus D-745 4288×3216
Samsung S3 Mini 2560×1920
Canon EOS1100D 4272×2848

All images were captured using “automatic mode” from various natural scenes, and saved
using the native resolution with the highest image quality available for each camera model in
JPEG format. Natural scenes were captured from various times of day, and various environ-
ments. We also avoid taking overexposed or underexposed images, and cropped all images to
1024×1024 pixels.

Table 8. The average number of iterations of grid search and the statistics ofψa per camera.

Camera Avg. Iter. Avg.ψa Std.ψa

BenQ 69.8 3.74 0.85
Casio 70.4 3.78 0.46
LG 68.1 2.96 0.28
Olympus 69.8 3.34 0.17
Samsung 68.6 3.03 0.27
Canon 66.5 2.78 0.48

200 images were taken from each camera device. Randomly selected 50 images (training
set) were used to estimate the PRNU fingerprint of the target camera for anonymization. The
proposed method was then applied on 50 images (test set) not used in the training step by
performing the grid search. The fingerprint estimates F-50 (from 50 images) and F-100 (from
100 images) were created from the rest of the 100 images. The average number of iterations
of the grid search and the statistics of the estimatedψa factors are shown in Table 8. It is seen
from the table that the average iteration for the new camera database were measured between
66-71. The average PSNR of the anonymized images for 6 cameras is 33.36 dB with 2.07 dB
standard deviation. The PCE of the anonymized images and the corresponding anonymization
rates are summarized in Table 9 and 10. The use of F-100 instead of F-50 increased the average
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PCE around 45%. This is intuitive because F-100 was estimated from 100 images while F-50
wascreated using 50 images. On the other hand the average anonymization rate for 6 cameras
decreased from 99.3% to 99.0 %. This result shows that the anonymized images cannot be iden-
tified even if the adversary uses a better camera fingerprint estimate e.g. F-100 for SCI. This
is mostly because we do not use the camera fingerprint estimateF̂x directly in the anonymiza-
tion (see Eq. 16). Instead we useF̂x to measure the detectability of the anonymized image by
computing the PCE at each iteration.

Table 9. PCE Values and Anonymization Rates (F-50)

Original Anonymized AR

BenQ 678.97 9.53 98%
Casio 357.67 6.93 98%
LG 2796.09 1.55 100%
Olympus 1608.62 1.23 100%
Samsung 1975.54 2.49 100%
Canon 102.17 3.39 100%

Average 1253.17 4.18 99.3%

Table 10. PCE Values and Anonymization Rates (F-100)

Original Anonymized AR

BenQ 1076.53 15.13 96%
Casio 575.59 11.76 98%
LG 3969.39 2.11 100%
Olympus 2229.69 1.29 100%
Samsung 2875.23 2.78 100%
Canon 208.27 4.54 100%

Average 1822.45 6.26 99.0%

6. Discussion

Theexperimental results show that the proposed method outperforms flat-fielding and denois-
ing methods for 9 cameras including DSLR, smart phone, and compact cameras. The average
PSNR of the proposed anonymization method is around 34 dB. It is worth noting that it is
possible to set a second threshold for a desired PSNR level in the anonymization process.

It is intuitive that better fingerprint estimate may lead to better identification. Keeping this
in mind, the user can increase the strength of his/her privacy utilizing higher number of im-
ages during the fingerprint estimation phase. Nevertheless, it is shown in the further evaluation
section that the anonymized images cannot be identified successfully even if the adversary
has similar (F-50) or “better” quality fingerprint estimates (F-100) compared to the user’s one.
However, the analyst in a real-world setting like a court case can try much higher number of
images (N>100) to identify the source camera. Therefore, we conducted an additional exper-
iment on anonymized images for N=250, 350, 450, and 550 with Nexus 4. In none of these
cases, were the source of the anonymized images identified. The corresponding average PCE
ratios were measured as: 2.9, 3.3, 3.6, and 4.1, respectively. It is seen from the results that all of
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the average PCE values are much lower than the decision threshold 50. This additional analysis
also supports the robustness of the proposed method to high quality fingerprint attacks

7. Conclusion

In this paper, we introduce a novel image source anonymization method against PRNU-based
source camera identification. Using theoretical and experimental analysis, it is shown that
the image source anonymization is feasible for various digital camera sensors. The proposed
method does not require any physical access to the source camera device. Instead, a set of im-
ages taken from the camera is enough to provide an initial fingerprint to impede the camera
identification. The experimental results show that the proposed counter method does not sac-
rifice the image quality while degrading the PRNU noise. Performed benchmark results indi-
cate that on all of the cameras used in the experiments, the proposed anonymization method
is superior to flat-fielding and image denoising. Furthermore, the investigations show that
the anonymity of the source camera is kept confidential even if an adversary uses a better-
estimated fingerprint to identify the source camera. Performed experiments on 9 cameras in-
cluding DSLR, compact, and smart phones indicate that illegal individual tracking using PRNU
fingerprints can be prevented by the proposed anonymization method. Moreover, we believe
that the presented results and issues addressed in this work will help developing better source-
camera identification schemes.
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