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Aim: Nano-diamino-tetrac (NDAT) targets a receptor on integrin αvβ3; αvβ3 is 
generously expressed by cancer cells and dividing endothelial cells and to a small extent 
by nonmalignant cells. The tetrac (tetraiodothyroacetic acid) of NDAT is covalently 
bound to a poly(lactic-co-glycolic acid) nanoparticle that encapsulates anticancer 
drugs. We report NDAT delivery efficiency of cisplatin to agent-susceptible urinary 
bladder cancer xenografts. Materials & methods: Cisplatin-loaded NDAT (NDAT-
cisplatin) was administered to xenograft-bearing nude mice. Tumor size response and 
drug content were measured. Results: Intratumoral drug concentration was up to 
fivefold higher (p < 0.001) in NDAT-cisplatin-exposed lesions than with conventional 
systemic administration. Tumor volume reduction achieved was NDAT-cisplatin > NDAT 
without cisplatin > cisplatin alone. Conclusion: NDAT markedly enhances cisplatin 
delivery to urinary bladder cancer xenografts and increases drug efficacy.
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Tumor development and growth depend on 
cancer cell gene transcription (DNA), upon 
transferring the gene transcription informa-
tion via RNA to protein-making factories 
in cells and on the resulting synthesis of 
proteins that support aggressive behavior of 
cancers. Generic cancer chemotherapeutic 
agents used widely today have one or more 
of the following actions. One of the actions 
is to disable cell DNA (an example drug is 
cisplatin [1], which causes DNA cross-link-
ing and distortion) or to inhibit synthesis 
of nucleic acid components that make up 
DNA and RNA (5-fluorouracil [2], metho-
trexate [3]). Other actions include disrup-
tion of gene transcription of specific RNAs 
(doxorubicin [4]), or inhibition of protein 
synthesis (paclitaxel [5]). Ideally, such drug 
effects would be limited to cancer cells, but 
these anticancer agents act widely on normal 
(nonmalignant) cells as well, causing serious 

side effects. The undesirable toxicity of these 
drugs on normal cells limits the concentra-
tions of the drugs to which cancer cells can 
be exposed clinically.

Targeted delivery of drugs directly to can-
cer cells, sparing normal cells, is of current 
interest in oncologic pharmacology [6–13]. A 
novel nanoparticulate formulation in which 
tetraiodothyroacetic acid (tetrac), a ligand 
of and targeted to a specific receptor on the 
extracellular domain of plasma membrane 
integrin αvβ3 [14], has been developed. Tet-
rac is chemically bonded via a short diamino-
propane linker to a 150–200 nm poly(lactic-
co-glycolic acid) (PLGA) nanoparticle. The 
nanoparticle is capable of bearing a chemo-
therapeutic drug payload [15] and the integrin 
αvβ3 is primarily expressed by cancer cells 
and dividing endothelial cells [16,17]. Thus, 
the tetrac-based nano-carrier offers specificity 
in terms of targeted anticancer drug delivery 
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Figure 1. Chemical structure of nano-diamino-tetrac 
(NDAT). The chemical name is {4-[4-(3-(3-(poly-2-(2-
hydroxyacetotoxy))propanamido)aminopropoxy)-3,5-
diiodophenoxy]-3,5-diiodophenyl} acetic acid. The 
subscripted numbers 0,21 and 0,79 mean the lactic 
acid:glycolic acid ratio in the poly(lactic-co-glycolic acid) 
polymer averages 79:21.
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and the prospect of reduced systemic toxicity. We have 
examined the efficacy of delivery by Nano-diamino-
tetrac (NDAT) of cisplatin to nude mouse urinary 
bladder cancer xenografts. We would emphasize that 
the delivery system includes no unbound PLGA. The 
delivery system is also suitable for paclitaxel and for 
doxorubicin, as shown in a separate report [18]. The 
agent NDAT (also called Nanotetrac), has the chemi-
cal name of {4-[4-(3-(3-(poly-2-(2-hydroxyacetotoxy))
propanamido)aminopropoxy)-3,5-diiodophenoxy]-
3,5-diiodophenyl} acetic acid (Figure 1).

Materials & methods
Materials
We purchased the following supplies from Sigma-
Aldrich (MO, USA): cisplatin (cis-diamineplatinum(II) 
dichloride), Dubelcco’s Modified Eagle Medium 
(DMEM), ethyl acetate, EDTA, fetal bovine serum 
(FBS), hygromycin B (H3274), Matrigel®, ortho-
phenylenediamine, penicillin, phosphate-buffered 
saline (PBS), polyvinyl alcohol (PVA, Mowiol 4–88), 
N4-[2-(4-phenoxyphenyl)ethyl]-4,6-quinazoline-
diamine (QNZ) (EVP4593), streptomycin and all 
 plasticware used.

Synthesis of void PLGA nanoparticles, NDAT 
nanoparticles & NDAT with encapsulated 
cisplatin
Void PLGA nanoparticles and NDAT nanoparticles 
were synthesized by modification of the method 
in [19]. In the first step of synthesis of void nanopar-
ticles, 5 ml of 1% w/v PVA was added to 100 mg 
of PLGA (avg. MW 8000, lactic acid:glycolic acid 
79:21, from Evonik Industries, AL, USA) in 1 ml of 
ethyl acetate, and the resultant mixture was sonicated 
intermittently for 90 s in a QSonica sonicator (model 
CL-188, CT, USA). Similarly, for NDAT nanopar-
ticles, 100 mg PLGA was conjugated to tetrac (DPx 
Fine Chemicals, Regensburg, Germany) instead of 
PLGA polymers.

The optimized method of incorporation of cisplatin 
to PLGA in NDAT involved 100 mg PLGA conjugated 
to tetrac to which 500 μl of cisplatin was added that was 
dissolved as 10 mg/ml in ethyl acetate. Five milliliters 
of 1% PVA was then added and the resultant mixture 
was sonicated intermittently for 90 s. The second step 
of the synthesis of the nanoparticles was similar for all 
of the nanoparticles (void, NDAT, NDAT-cisplatin). 
In this step, 10 ml of 0.05% PVA was added to each of 
the above mentioned mixtures and they were sonicated 
for 1 min. The ethyl acetate was then removed at 45°C 
for 20 min under vacuum in a rotary evaporator. The 
entire solution was dialyzed using dialysis membrane of 
12–14 KDa cutoff for about 12 h by changing the bulk 
water at least three-times to remove the free cisplatin. 
Resulting nanoparticles were characterized in terms of 
size and surface charge using dynamic light scattering 
(DLS) and transmission  electron microscopy (TEM).

Dynamic light scattering
The size distribution and surface charge of the synthe-
sized nanoparticles in aqueous dispersions were deter-
mined using a Malvern zeta sizer (Malvern Instrumen-
tation Co, MA, USA). One milliliter of the nanoparticle 
solution was pipetted into a 3 ml,  four-sided, clear 
 plastic cuvette and measured directly.

Transmission electron microscopy
The size and morphology of nanoparticles (void, 
NDAT, and NDAT-cisplatin) were examined with 
TEM using a JEOL JEM-100CX transmission elec-
tron microscope (JEOL, Inc., MA, USA). One drop 
of the corresponding nanoformulation solution was 
mounted on a thin film of amorphous carbon depos-
ited on a copper grid (300 mesh). The solution was 
air-dried and the sample was examined directly.

Determination of the amount of cisplatin 
encapsulated in the nanoparticles
First, the nanoparticles were disintegrated. Then cispl-
atin was complexed with ortho-phenylenediamine, and 
the absorbance at 706 nm was measured with UV-Vis 
spectroscopy on a Nanodrop 2000C spectrophotom-
eter (Thermo Fisher Scientific, MA, USA) as described 
in the literature [20,21]. The entrapment efficiency was 
determined using the following formula:

where [cisplatin]
f
 is the concentration of cisplatin in 

the nanoparticles and [cisplatin]
t
 is the theoretical 

concentration of cisplatin (= total amount of cisplatin 
added initially).

( )

([ ] ) / ([ ] )

Entraptment efficiency loading

cisplatin cisplatin 100×f t

=
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Cell culture
Human urinary bladder cancer 253JBV cells (ATCC, 
VA, USA) were grown in DMEM supplemented with 
10% FBS, 1% penicillin and 1% streptomycin. Cells 
were cultured at 37°C to subconfluence and treated 
with 0.25% (w/v) trypsin/EDTA to induce cell release 
from culture flasks. Cells for grafting were washed 
with culture medium, suspended in DMEM that was 
free of phenol red and FBS and subjected to counting.

Animals & xenografts
Immunodeficient female NCr nude homozygous mice 
aged 5–6 weeks and weighing 18–20 g were purchased 
from Harlan Laboratories (NJ, USA). All animal stud-
ies were conducted at the animal facility of the Vet-
eran Affairs Medical Center, NY, USA in accordance 
with and approved by current institutional guidelines 
for humane animal treatment. Mice were maintained 
under specific pathogen free conditions and housed 
under controlled conditions of temperature (20–24°C) 
and humidity (60–70%) and 12 h light/dark cycle 
with ad libitum access to water and food. Mice were 
allowed to acclimatize for 5 days before the study.

Urinary bladder cancer xenografts
For the subcutaneous bladder cancer tumor model, 
253JBV cells were harvested, suspended in 100 μl of 
DMEM with 50% Matrigel® and 1 × 106 cells were 
implanted subcutaneously dorsally in each flank, to 
achieve two independent tumors per animal. Imme-
diately prior to initiation of treatments, animals were 
randomized into treatment groups (five animals/
group) by tumor volume measured with Vernier cali-
pers. Treatments were begun after detection of a pal-
pable tumor mass (4–5 days postimplantation). The 
six treatments were control (PBS), cisplatin (1 mg/
kg bw), void PLGA nanoparticles, PLGA-cisplatin (1 
mg/kg bw), NDAT (0.3 mg/kg bw tetrac equivalent) 
and NDAT-cisplatin (0.3 mg/kg bw tetrac equivalent 
NDAT with a payload of 1 mg/kg bw cisplatin). The 
agents were administered daily, subcutaneously on the 
ventral side of the animal, for 14 days, and tumor vol-
ume was measured twice a week with calipers. The ani-
mals were terminated after 14 days because the NDAT-
cisplatin treated tumors had reached about 50% of the 
size of control tumor, an optimum point at which to 
quantitate the cisplatin payload; longer treatment time 
might result in treated tumors being too small to facili-
tate measurement.

Measurement of tumor content of cisplatin 
with LC–MS/MS
Full details of sample preparation and LC–MS/MS 
operating parameters can be found in the Supple-

mentary material. In brief, a stock solution of cis-
platin and an internal standard solution, together 
with tissue samples from the treated mice were pre-
pared. The internal standard for cisplatin was trans-
diamminedichloropalladium(II). LC–MS/MS analy-
sis was performed on an API 4000 triple quad mass 
spectrometer (Applied Biosystem MDS Sciex, Toronto, 
Canada) using Analyst 1.62 control software and con-
figured with a Shimadzu LC-20AD pumping system, 
a SIL-20AC auto sampler and CTO-20AC column 
oven. The instrument was operated in a positive ion 
mode with a turbo V electrospray source. All calibra-
tion curves were plotted using linear regression with a 
weight factor of 1/×.

Luciferase assay
HeLa-NF-κB luciferase cells were purchased from 
Signosis Inc. (CA, USA) and grown in DMEM sup-
plemented with 10% FBS, 1% penicillin, 1% strepto-
mycin and 50 μg/ml hygromycin B and maintained at 
37°C in a 5% CO

2
 humidified incubator. Cells were 

seeded at 1 × 105 cells in 2 ml/well in six-well plates at 
37°C for 24 h. Test compounds were diamino-tetrac 
(DAT), NDAT and QNZ (an NF-κB inhibitor), and 
doses used were based on pilot studies to determine 
optimal responses. Test compounds were added at 
the appropriate concentrations to the plate with fresh 
medium including 0.5% FBS and incubated at 37°C 
in 5% CO

2
 for an additional 3 h. For induction of 

transcription and to test the biological response of the 
promoters, the cell line was stimulated with cisplatin, 
and the cells were incubated at 37°C in 5% CO

2
 for 

24 h. The luciferase activity was determined with a 
Luciferase Assay System (Promega, WI, USA). Briefly, 
cells were harvested by scraping in 200 μl of 1× lysis 
buffer into a microcentrifuge tube, vortexing for 15 s, 
and then centrifuging at 20,000 × g for 5 min. The 
supernatant cell lysates were collected. The luciferase 
activity was measured with 5 μl of cell lysate and 50 
μl of luciferase reagent, using a Glomax 20/20 Lumi-
nometer (Promega). Luciferase expression of each test 
compound was quantified as the relative light units, 
normalized to readings of control wells and expressed 
as relative NF-κB reporter activity. The mean% inhib-
itory effects of DAT, NDAT and QNZ at 1 μM in the 
presence of 10 μM cisplatin were calculated.

Statistical analysis
Statistical analysis was performed using one-way 
analysis of variance and comparing the mean ± stan-
dard error of the mean from each experimental group 
with its respective control group. Statistical differences 
approaching p < 0.05 were considered statistically 
 significant.
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Results
Nanoparticle characterization & cisplatin 
entrapment & loading efficiency
The average nanoparticle sizes are listed in Table 1 and 
ranged from 141 to 187 nm; the DLS data for each 
kind of nanoparticle is shown in Figure 2A–C. Surface 
charges of the nanoparticles are also listed in Table 1. 
The TEM images (Figure 2D–E) support the DLS data. 
The entrapment efficiency of cisplatin in the nanopar-
ticles was around 70–75%, and the loading efficiency 
was around 8% w/w in the nanoformulation (Figure 3).

Anticancer efficacy & tumor uptake of cisplatin
Urinary bladder cancer xenografts & PLGA-
cisplatin or NDAT-cisplatin
Progressive increase in volume of control tumors 
(253JBV cells + void PLGA) over the 2 weeks of the 
protocol is shown in Figure 4A, in which all six treat-
ments are compared. Tumor weights at animal sacri-
fice (Figure 4B) in this short-term study revealed that 
NDAT-cisplatin was significantly more effective than 
PLGA-cisplatin (50% reduction in weight, p < 0.01). As 
expected, cisplatin alone had a modest effect on tumor 
weight. Use of NDAT as a delivery vehicle involves 
suboptimal anticancer concentrations of the drug (0.3 
mg/kg), but there was nonetheless a significant anti-
tumor effect seen with NDAT alone. Figure 4C shows 
the tumor content of cisplatin achieved with cisplatin 
alone, with PLGA-cisplatin, and with NDAT-cispl-
atin. Here, the level of cisplatin achieved in bladder 
tumors with cisplatin loaded into NDAT (NDAT-cis-
platin) was fivefold that obtained with cisplatin alone, 
and 2.5-fold that achieved with PLGA-cisplatin. Both 
results were significant at p < 0.001. Also observed was 
back limb spasticity with unmodified cisplatin com-
pared with NDAT-cisplatin treated animals at the end 
of treatment (Supplementary Figure 1).

Body weights of intact animals
There were no changes in body weights of the xeno-
grafted animals, controls or drug-exposed.

In vitro luciferase assay for NF-κB inhibition
Cisplatin at different concentrations ranging from 
1–10 μM demonstrated a concentration-dependent 

increase in NF-κB activity in HeLa cells, and DAT 
at 3 μM inhibited cisplatin-induced NF-κB activity 
(Figure 5A). The inhibition by DAT was shown to be a 
function of the cisplatin concentration used. Cisplatin 
at 10 μM induced NF-κB activity in HeLa cells, which 
was inhibited in the presence of the standard NF-κB 
inhibitor, QNZ, at 1 μM by 42.4%, DAT at 1 μM by 
27.0% or NDAT at 1 μM by 66.8% (Figure 5B).

Discussion
Existence of a receptor for thyroid hormone on the 
extracellular domain of integrin αvβ3 [22] was dis-
closed more than a decade ago. This integrin is gen-
erously expressed in the plasma membrane of cancer 
cells and of dividing endothelial cells. Studies of the 
thyroid hormone receptor on αvβ3 have enabled 
recognition of the existence of multiple thyroid 
hormone-regulated molecular control mechanisms 
for cancer cell proliferation, survival pathways and 
for angiogenesis [23,24]. Tetrac is a naturally occur-
ring deaminated analog of L-thyroxine (T

4
) that has 

been shown to block actions of thyroxine at the inte-
grin, as well as actions of the principal intracellular 
agonist thyroid hormone, 3,3′,5-triiodo-L-thyronine 
(T

3
) [23]. In order to limit cellular uptake of tetrac 

and to focus its actions primarily on its receptor 
on integrin αvβ3, we covalently bound tetrac via a 
diaminopropane linker to nanoparticulate PLGA. 
This tetrac formulation (NDAT, Nano-diamino-
tetrac, Nanotetrac) has been shown to be an effective 
antitumor drug in vitro and in xenografts [25–29]. The 
reformulation has greater anticancer potency than 
tetrac and has a panel of antitumor and antiangio-
genic properties beyond those due to inhibition of the 
binding of T

4
 and T

3
 at the integrin [23,24]. We chose 

to use urinary bladder cell xenografts because a prin-
cipal clinical indication for cisplatin is for this type of 
carcinoma – there are 16,000 deaths annually in the 
USA due to this cancer.

We observed a size difference between void and 
drug-loaded PLGA nanoparticles, and this has also 
been reported by others [30]. It has been discussed in 
the literature that it might be indirect proof that the 
drug, in our case cisplatin, has been incorporated in 
the nanoparticles.

Table 1. Size and surface charge of the nanoparticles.

Nanoparticle Size (nm) PDI ζ potential (mV)

Void 141 0.169 -5.64

NDAT 127 0.120 -8.29

NDAT-cisplatin 187 0.104 -6.32

NDAT: Nano-diamino-tetrac; PDI: Polydispersity index.
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Figure 2. Size measurement of nanoparticles using dynamic light scattering. (A) Void poly(lactic-co-glycolic acid) nanoparticles. 
(B) Nano-diamino-tetrac (nanoparticulate tetraiodothyroacetic acid). (C) Nano-diamino-tetrac encapsulated with cisplatin. 
Transmission electron microscopy images showing the size of (D) Nano-diamino-tetrac and (E) Nano-diamino-tetrac encapsulated with 
cisplatin. The scale bar is 200 nm.
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The tissue distribution of the integrin supported 
development of the concept that NDAT – with its 
attendant large PLGA nanoparticle – may be a system 
for delivery of existing, widely used cancer chemother-
apeutic agents to αvβ3 and thus to tumors and their 
supporting vasculature [19]. The intent of the delivery 
system is to achieve increased intratumoral content of 
anticancer drug and reduce systemic toxicity. We pres-
ent evidence in the current paper to validate this con-
cept. Based on the description of NDAT and its PLGA 
nanoparticle – a payload delivery system described in 
2010 patents [31] – Lee et al. [32] constructed a tetrac-
liposome by which to deliver a lipid-soluble antican-
cer agent, edelfosine, to cancer xenografts. These 
authors reported increased antitumor activity of 
the combination but did not measure intratumoral 
 chemotherapeutic concentration.

We show here that the loading with cisplatin of the 
PLGA nanoparticle covalently linked to tetrac resulted 

in a fivefold or greater increase in tumor content of the 
chemotherapeutic agent compared with conventional 
drug administration. We also found that encapsulating 
cisplatin in unmodified PLGA, in other words, PLGA 
that is not attached to tetrac and thus is not a tumor-
targeting system, did provide an increase in tumor 
uptake of drug. There was, as expected, improvement in 
tumor response to the chemotherapeutic drug payload 
 delivered by NDAT to bladder carcinoma xenografts.

Administered conventionally, cisplatin has an 
appreciable risk of neurotoxicity. In the current stud-
ies, we observed hind limb spasticity with unmodi-
fied cisplatin administration for 2 weeks but no loss 
of function in animals receiving NDAT-cisplatin 
(Supplementary Figure 1). The multifold increase in 
tumor content of cisplatin is consistent with our conten-
tion of the  cancer-targeting property of NDAT [23,24].

The dose of NDAT (0.3 mg/kg tetrac equivalent 
daily) that was used in our studies as a delivery vehi-
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Figure 3. Cisplatin entrapment and loading efficiency for nanoparticles encapsulated with cisplatin. (A) UV-Vis spectra used 
to construct the standard curve (B), with concentrations of cisplatin from 0.062 μg/ml to 1.0 μg/ml. (C) UV-Vis spectra for the 
nanoparticles (NDAT-cisplatin and PLGA-cisplatin). 
NDAT: Nano-diamino-tetrac; PLGA: Poly(lactic-co-glycolic acid).
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cle is suboptimal in terms of chemotherapeutic effi-
cacy when compared with administration of NDAT, 
alone at 1.0 mg/kg tetrac equivalent, in management 
of tumor xenografts [33]. Thus, as we intended, the 

antitumor effectiveness measured here examines pri-
marily the efficiency of NDAT in delivery of cisplatin, 
not additive or synergistic antitumor effects of NDAT 
with the other agents. However, such additive effects 
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Figure 4. Effects on tumors of urinary bladder 253JBV cancer cell xenografts of daily subcutaneous administration of control (PBS), 
cisplatin, void poly(lactic-co-glycolic acid), poly(lactic-co-glycolic acid)-cisplatin (1 mg/kg bw cisplatin encapsulated in poly(lactic-
co-glycolic acid) nanoparticles, without tetrac), low dose nano-diamino-tetrac (0.3 mg/kg bw tetrac equivalent, with empty payload 
compartment) and nano-diamino-tetrac-cisplatin (0.3 mg/kg bw tetrac equivalent nano-diamino-tetrac with a payload of cisplatin at 
1 mg/kg bw). Treatments were administered daily for 14 days, subcutaneously on the side of the animal away from the tumors, and 
tumor volume was measured twice a week with calipers. (A) Tumor volumes. Volumes were estimated from caliper measurements. 
(B) Tumor weights. Weights were measured of harvested grafts at animal sacrifice. NDAT-cisplatin treatment effect was significantly 
greater than effects of all other agents. *p < 0.05 versus void PLGA, **p < 0.01 versus void PLGA, PLGA-cisplatin or NDAT. (C) Cisplatin 
uptake by bladder tumors in response to administration of control (PBS), cisplatin, PLGA-cisplatin and NDAT-cisplatin measured with 
LC-MS/MS. NDAT-cisplatin resulted in tumor drug content fivefold that of cisplatin alone and 2.5-fold that of PLGA-cisplatin. *p < 0.05 
versus cisplatin; **p < 0.0001 versus cisplatin or PLGA-cisplatin. 
NDAT: Nano-diamino-tetrac; PLGA: Poly(lactic-co-glycolic acid); SEM: Standard error of the mean.

0.5

0.6

0.3

0.4

0.0

0.1

0.2

0.9

0.7

0.8

Day 1 Day 3 Day 5 Day 7 Day 9 Day 11 Day 14

T
u

m
o

r 
vo

lu
m

e 
(c

m
3 )

 ±
 S

E
M

0.3

0.2

0.1

0.0

0.5

0.4

Control PLGA-
cisplatin

NDAT NDAT-
cisplatin

Cisplatin Void
PLGA

T
u

m
o

r 
w

ei
g

h
t 

(g
m

) 
± 

S
E

M
 

*

**

80

100

40

60

20

0

120

Control PLGA-
cisplatin

NDAT-
cisplatin

Cisplatin

C
is

p
la

ti
n

 (
n

g
/g

m
) 

± 
S

E
M

 

**

*

Control

PLGA-cisplatin
NDAT
NDAT-cisplatin

Cisplatin
Void PLGA

future science group

Nano-diamino-tetrac delivery of cisplatin    Research Article

may exist [33]. Antitumor effectiveness of the drug for-
mulation was verified in the current studies by tumor 
shrinkage in subcutaneous xenografts of urinary 
 bladder cancer.

Cisplatin is known to induce oxidative stress and 
inflammatory response via NF-κB pathways, which are 

implicated in cisplatin-associated adverse effects [34,35]. 
Thus, the absence of lower limb neuropathy in animals 
treated with NDAT-cisplatin may reflect the reduced 
exposure of nerves to cisplatin – which was delivered 
primarily to the tumors – and the capacity of NDAT, 
itself, to block any action of cisplatin on NF-κB that 
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Figure 5. In vitro luciferase assay, showing cisplatin induces NF-κB and its inhibition by diamino-tetrac or nano-
diamino-tetrac. Luciferase expression induced by cisplatin at different concentrations ranging from 1.0 to 10 μM 
was quantified as the relative light units normalized to readings of control wells and expressed as relative NF-κB 
reporter activity. The mean% inhibitory effects of the test compounds (QNZ, DAT or NDAT) were calculated. 
(A) DAT at 3.0 μM inhibited cisplatin-induced NF-κB activity in a dose-dependent manner that is dependent on the 
cisplatin concentration used. (B) QNZ, DAT and NDAT at 1.0 μM inhibited cisplatin (10 μM)-induced NF-κB activity 
in HeLa cells. Data represent mean ± standard error of the mean, n = 3, *p < 0.05; **p < 0.01 compared with 10 μM 
cisplatin. 
DAT: Diamino-tetrac; NDAT: Nano-diamino-tetrac; QNZ: Quinazolinediamine; RLU: Relative light unit; 
SEM: Standard error of the mean.
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might have occurred via the systemic circulation. We 
demonstrated this action of NDAT in the current 
paper. Our studies demonstrated that DAT or NDAT 
suppressed NF-κB induced by cisplatin in contrast to 
the NF-κB inhibitor, QNZ. This NDAT effect in lim-
iting cisplatin-induced NF-κB activity is in addition to 
its tumor-targeting capabilities in delivering a greater 
load of cisplatin into bladder tumor. These data sug-
gest a greater impact of NDAT on the adverse effects 
mediated by cisplatin via different pathways.

Conclusion
In this preclinical study, we report that cancer xeno-
graft uptake of cisplatin is up to fivefold greater with 
nanoparticulate NDAT delivery than with conven-
tional drug administration. Correspondingly greater 
antitumor effect of the chemotherapeutic agent was 
achieved with NDAT delivery. Neurotoxicity was 
avoided with NDAT-coupled administration of cis-
platin, indicating reduction in risk of systemic toxicity 
with this method of drug delivery.
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Executive summary

Background
•	 Tumor-targeted nano-carriers can be designed to deliver chemotherapy payloads to tumor sites with improved 

efficacy and safety of cancer therapy.
•	 Nano-diamino-tetrac (NDAT; Nanotetrac, nanoparticulate tetraiodothyroacetic acid) is a nanoparticulate 

formulation in which a cancer cell-targeting moiety, tetrac, is covalently linked to a nanoparticle.
•	 NDAT can be loaded with cisplatin that is released in the tumor microenvironment when the tetrac binds 

specifically to integrin αvβ3 expressed by tumor cells. Nonmalignant cells bear substantially less αvβ3 than do 
tumor cells.

Materials & methods
•	 We examined the delivery efficacy of NDAT with a payload of cisplatin for targeted delivery to 253JBV urinary 

bladder cancer xenografts in nude mice.
Results
•	 In this preclinical study, we show that cancer tumor uptake of cisplatin is up to fivefold greater with NDAT 

delivery than with conventional drug administration; there is correspondingly greater antitumor effect of the 
chemotherapeutic agent.

•	 Neurotoxicity was also avoided with NDAT drug delivery, thus achieving the goals of enhanced drug uptake by 
tumor and reduced risk of toxicity.

•	 We found that encapsulating cisplatin in unmodified poly(lactic-co-glycolic acid) nanoparticle, in other words, 
poly(lactic-co-glycolic acid) that is not attached to tetrac and thus is not a tumor-targeting system, provided 
modest increases in tumor uptake of drug.

Conclusion
•	 We report a nanoparticulate model system for cisplatin chemotherapy delivery that specifically targets urinary 

bladder tumors and their attendant vascularization, both of which express plasma membrane integrin αvβ3. 
The integrin bears a receptor for tetrac, enabling tumor-targeted delivery of drug payload.

•	 Local release at cancer xenograft site of cisplatin resulted in significant improvement in tumor uptake of drug 
compared with standard systemic administration of this agent.
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