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a b s t r a c t

Diaminopyrimidine derivatives are frequently used as inhibitors of human dihydrofolate reductase,
for example in treatment of patients whose immune system is affected by human immunodeficiency
virus. Forty-seven dicyclic and tricyclic potential inhibitors of human dihydrofolate reductase were ana-
lyzed using the quantitative structure-activity analysis supported by DFT-based and DRAGON-based
descriptors. The developed model yielded an RMSE deviation of 1.1 a correlation coefficient of 0.81. The
prediction set was characterized by R2 = 0.60 and RMSE = 3.59. Factors responsible for inhibition process
were identified and discussed. The resulting model was validated via cross validation and Y-scrambling
iaminopyrimidine
FT
escriptors
SAR
SARins

procedure.
From the best model, we found several mass-related descriptors and Sanderson electronegativity-

related descriptors that have the best correlations with the investigated inhibitory concentration. These
descriptors reflect results from QSAR studies based on characteristics of human dihydrofolate reductase
inhibitors.

© 2016 Published by Elsevier Inc.
. Introduction

Among various chemical compounds responsible for biochemi-
al processes folates are different by their unique metabolism. They
ave been recognized as an attractive and effective chemothera-
eutic targets. Folate metabolism plays an essential role in nucleic
cid synthesis, methionine regeneration, shuttling and redox
eactions of one carbon units required for normal metabolism,
egulation and organization [2]. Several antifolates have been
eveloped to attack the key enzymes in the folate cycle. The folates,
hich are included into the group of B vitamins family are com-
osed of an aromatic pteridine ring attached through a methylene
roup to p-aminobenzoate and a glutamate residue [1]. In this
mportant group of enzymes, the enzyme dihydrofolate reduc-
ase was identified in 1958 as the target for methotrexate and

lso trimethoprim (TMP), which is a potent synthetic antibacte-
ial agent [3]. Its essential function is to induce dihydrofolate to
etrahydrofolate within the thymidylate synthesis cycle. Dihydro-
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folate reductase (DHFR) along with thymidylate synthase (TS) is
included in the part of the cycle responsible for the synthesis of
thymidylate monophosphate (dTMP), which is involved in DNA
biosynthesis and cell replication [4]. The first DHFR inhibitors were
methotrexate, trimethoprim and pyrimethamine [5].

Inhibitory effects have been at the forefront of many quanti-
tative structure-activity relationship (QSAR) and pharmacophore
studies [6–14]. Back to early 80s, well-known Corwin Hansch
analyzed the structure-activity relation of triazines inhibiting
DHFR [6]. In 20 years King et al. published article about
trimethoprim analogues binding to DHFR [7]. Andrea and Kalayeh
used neural networks to investigate DHFR inhibition by 256
5-phenyl-3,4-diamino-6,6-dimethyldihydrotriazines [8]. So and
Richards also applied the neural networks to find structure-activity
relationships between structural features of the 2,4-diamino-
5-(substituted- benzyl)pyrimidines with inhibitory activity of
towards DHFR [9]. Later, pharmacophore mapping of a series of
2,4-diamino-5-deazapteridine inhibitors was aimed to create suit-
able pharmacophore hypothesis [10]. Hist published two papers in
this area: he investigated the inhibition of dihyd DHFR by pyrim-

idines [11] and by triazines [12]. Scientists still have a keen interest
to computational analysis of DHFR inhibitors. Recently (in 2016),
Singla et al. applied QSAR approach to study the DHFR inhibition by
triazine–benzimidazoles with 4-fluoroaniline substitution [13].

dx.doi.org/10.1016/j.jmgm.2016.09.005
http://www.sciencedirect.com/science/journal/10933263
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Fig. 1. Molecular structures of trimethoprim (

Diaminopyrimidine inhibitors of DHFR such as trimethoprim,
yrimethamine, trimetrexate and piritrexim (Fig. 1) represent fre-
uently used drugs in treatment of patients whose immune system
re affected by human immunodeficiency virus (HIV) [15,16] .

Several scientific groups have been performed synthetic studies
o develop new inhibitors of P. carinii and T. gondii DHFR inhibitors,
hich could work without additional sulfa- drugs or leucovorin

as it works usually) [17] . Hundreds of diaminopyrimidine antifo-
ates were tested as inhibitors of DHFR [18,19]. In 2001, R. G. Nelson
t al. published one of the largest databases on lipophilic polycyclic
iaminopyrimidines as inhibitors of C. parvum and human DHFR
nzymes [17].

Despite the fact, that the inhibition activity of diaminopyrimi-
ine derivatives has been widely studied, there are no QSAR studies
resented in literature. To fill this gap, in the present study a QSAR
odel for 47 dicyclic and tricyclic diaminopyrimidine derivatives
human DHFR inhibitors has been developed and used to describe

nvestigated phenomena.

. Materials and methods

.1. Dataset

A dataset of 47 potential inhibitors of human DHFR was gath-
red from literature [17]. In Table 1 and Fig. 2 chemical structures
nd experimental data are presented. The inhibitory concentra-
ion values were expressed as micromolar (�M) units (Table 1).
ach titration was performed twice, and the mean DHFR inhibitory
ctivity was plotted against the inhibitor concentration.

.2. DFT modeling

Quantum chemical techniques are widely used in combination
ith QSAR modeling [20]. Density functional theory (DFT)-

elated techniques have been advocated to be quite useful for
uch purposes. The quantum chemical calculations were per-
ormed using the molecular modeling package GAUSSIAN 09 [21].
he 3D structures of all molecules were constructed using the
aussView 5.0. Structural energy minimizations were performed
t b3lyp/6–31 + g(d,p) level. An energy scan for all considered com-

ounds has been performed by rotation of the selected single bonds.
tep sizes were selected as 60◦ and energy calculation has been per-
ormed for five steps at AM1 level for all molecular structures to
ain the best input geometry before geometry optimization using
rimethamine, trimetrexate and pritrexim (d).

DFT approach. No imaginary frequencies were observed for opti-
mized structures of all 47 molecules.

The extracted DFT descriptors are as follows: free Gibbs energy
(E(RB3LYP)), dipole moment (Dip), sum of electronic and zero-point
energies (ZPE), sum of electronic and thermal Energies (TE), sum
of electronic and thermal enthalpies (TEnt), sum of electronic and
thermal free energies (TFE), HOMO energy (HOMO), LUMO energy
(LUMO), hardness, softness, electronegativity and electrophilicity.
Hardness, softness, electronegativity and electrophilicity have been
calculated by known calculation schema. All energy values were
defined in atomic unit, without any conversion.

2.3. DRAGON descriptors

E-DRAGON package was applied to calculate more than 1600
descriptors [22]. Highly correlated descriptors have been elimi-
nated and more than 600 remaining descriptors were combined
with DFT descriptors. DRAGON software has calculated a variety
of molecular descriptors derived from different types molecu-
lar representations (from 0D to 3D) [23,24]. It allows choosing
the molecular descriptors which are more suitable for each spe-
cific study. Descriptors, selected to generate QSAR model will be
described more specifically.

2.4. QSAR model development and validation

There are several steps in QSAR analysis [25]. The datasets
used in such process is a combination of characteristics (so-called
descriptors) that should be correlated with the experimental activ-
ities. Aforementioned descriptors are calculated using different
quantum chemical, mathematical, or physical method. At the next
step, a big pool of descriptors obtained during the first step is
reduced using specific procedures of descriptor selection. Then,
initial pool of target species is split between training and predic-
tion sets to ensure the quality of developed model. Using statistical
techniques and measures, the QSAR model is built, validated, and
interpreted.

The initial dataset was divided into training and test sets
[26]. These sets were selected manually (every 5th selected as
test molecule while ascending activity), and structurally diverse
molecules covering a wide range of activities were included in both

sets [27]. Therefore, we had 38 compounds in training set and 9
compounds in prediction set (Table 1). We utilized the training set
to generate QSAR model, and then validated our results using the
test set.
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Table 1
IUPAC names, modeling status and IC50 values of 47 molecules.

# Name Status IC50 (�M)

1 6,7-bis(4-chlorobenzyl)pteridine-2,4-diamine Prediction 5.7
2 6,7-bis(3,4-dichlorobenzyl)pteridine-2,4-diamine Training 3.5
3 6-(acridin-10(9H)-ylmethyl)pteridine-2,4-diamine Training 0.56
4 6-(10H-phenoxazin-10-ylmethyl)pteridine-2,4-diamine Training 0.23
5 6-(10H-phenothiazin-10-ylmethyl)pteridine-2,4-diamine Training 0.81
6 6-(5H-dibenzo[b,f]azepin-5-ylmethyl)pyrido[2,3-d] pyrimidine-2,4-diamine Training 1.4
7 6-{[(2,5-dimethoxyphenyl)amino]methyl}pyrido[3,2-d] pyrimidine-2,4-diamine Prediction 0.83
8 6-{[(3,4,5-trimethoxyphenyl)amino]methyl}pyrido[3,2-d] pyrimidine-2,4-diamine Prediction 0.49
9 6-{[methyl(3,4,5-trimethoxyphenyl)amino]methyl}pyrido[3,2- d]pyrimidine-2,4-diamine Training 0.0089
10 6-{[(4-chlorophenyl)(methyl)amino]methyl}pyrido[3,2-d] pyrimidine-2,4-diamine Training 0.31
11 6-{[(3-chlorophenyl)(methyl)amino]methyl}pyrido[3,2-d] pyrimidine-2,4-diamine Training 0.027
12 6-{[(3,4-dichlorophenyl)(methyl)amino]methyl}pyrido[3,2-d] pyrimidine-2,4-diamine Training 0.0004
13 5-methoxyquinazoline-2,4-diamine Training 2.8
14 5-ethoxyquinazoline-2,4-diamine Training 0.75
15 5-chloro-N6-(2,5-dimethoxybenzyl)quinazoline-2,4,6- triamine Training 0.0039
16 5-chloro-N6-(3,4,5-trimethoxybenzyl)quinazoline-2,4,6- triamine Training 0.0013
17 5-chloro-N6-methyl-N6-(3,4,5- trimethoxybenzyl)quinazoline-2,4,6-triamine Prediction 0.01
18 5-chloro-6-{[(2,5-dimethoxyphenyl)amino]methyl}quinazoline-2,4- diamine Training 0.01
19 6-ethyl-5,6,7,8-tetrahydroquinazoline-2,4-diamine Training 9.4
20 6-tert-butyl-5,6,7,8-tetrahydroquinazoline-2,4-diamine Training 0.022
21 6-(3-Thienylmethyl)-5,6,7,8-tetrahydroquinazoline-2,4-diamine Training 0.59
22 6-(2-methoxybenzyl)-5,6,7,8-tetrahydroquinazoline-2,4-diamine Training 0.094
23 6-(3-methoxybenzyl)-5,6,7,8-tetrahydroquinazoline-2,4-diamine Prediction 0.23
24 6-(4-methoxybenzyl)-5,6,7,8-tetrahydroquinazoline-2,4-diamine Training 0.29
25 6-(2,5-dimethoxybenzyl)-5,6,7,8-tetrahydroquinazoline-2,4- diamine Prediction 0.074
26 6-(3,4-dimethoxybenzyl)-5,6,7,8-tetrahydroquinazoline-2,4- diamine Training 0.19
27 6-(3,4,5-trimethoxybenzyl)-5,6,7,8-tetrahydroquinazoline-2,4- diamine Prediction 0.16
28 6-(2-methylbenzyl)-5,6,7,8-tetrahydroquinazoline-2,4-diamine Training 0.094
29 6-(3-methylbenzyl)-5,6,7,8-tetrahydroquinazoline-2,4-diamine Training 0.38
30 6-[3-(trifluoromethyl)benzyl]-5,6,7,8-tetrahydroquinazoline-2,4- diamine Training 0.19
31 6-[3-(trifluoromethoxy)benzyl]-5,6,7,8-tetrahydroquinazoline-2,4- diamine Training 0.15
32 6-[4-(trifluoromethoxy)benzyl]-5,6,7,8-tetrahydroquinazoline-2,4- diamine Training 0.31
33 6-(3,4-dichlorobenzyl)-5,6,7,8-tetrahydroquinazoline-2,4-diamine Training 0.094
34 6-(2,5-dimethoxyphenyl)-5-methylthieno[2,3-d]pyrimidine- 2,4-diamine Training 0.98
35 6-(2,5-dimethoxybenzyl)-5-methylthieno[2,3-d]pyrimidine- 2,4-diamine Prediction 0.64
36 5-methyl-6-(3,4,5-trimethoxybenzyl)thieno[2,3-d] pyrimidine-2,4-diamine Training 3
37 6-(2-bromo-3,4,5-trimethoxybenzyl)-5-methylthieno[2,3-d] pyrimidine-2,4-diamine Training 1.6
38 6-[2-(2-bromo-3,4,5-trimethoxyphenyl)ethyl]thieno[2,3-d] pyrimidine-2,4-diamine Training 7.3
39 6-(2-bromo-3,4,5-trimethoxybenzyl)-5,6,7,8-tetrahydropyrido [4,3-d]pyrimidine-2,4-diamine Training 2.8
40 9-chlorobenzo[f]quinazoline-1,3-diamine Training 0.012
41 9-methoxybenzo[f]quinazoline-1,3-diamine Training 0.17
42 4-[[(2,4-diaminopteridin-6-yl)methyl](methyl)amino]-N-(-1- methylbutyl)benzamide Training 0.6
43 4-[[(2,4-diaminopteridin-6-yl)methyl](methyl)amino]-N-[3- hydroxy-1-(hydroxymethyl)propyl]benzamide Training 1.9
44 N-1-adamantyl-4-[[(2,4-diaminopteridin-6-yl)methyl](methyl)amino] benzamide Training 0.77
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45 6-({methyl[4-(morpholin-4-ylcarbonyl)phenyl]amino}methyl)pte
46 N-cyclohexyl-4-[[(2,4-diaminopteridin-6-yl)methyl](methyl)amin
47 4-{4-[[(2,4-diaminopteridin-6-yl)methyl](methyl)amino]benzoyl}

QSAR models were calculated in QSARINS by means of the mul-
iple linear regression (MLR) method [28]. MLR is a multivariate
echnique that generates a multiple linear combination of descrip-
ors [29]. The model fitting was evaluated using the coefficient of
etermination R2, and a modified form R2

adj, root-mean square
rror RMSE, and Q2

loo – validation coefficient of leave-one out
or both training and prediction sets [30]. Y- randomization (R2

y)
rocedure was performed for training set [31]. All these criteria
escribe how well the model reproduces the data used.

Y-scrambling procedure was performed to check the descriptors
sed in the model [31]. To perform Y-scrambling, the bioactivi-
ies are randomized and the new model is created. In this way one
ould test the validity of developed QSAR model and ensure that
he selected descriptors are not random. Y-scrambling models are
uilt using the same descriptors as the original model. Statistical
arameters – R2 and Q2 values – are also calculated for scrambled
odels. This process is performed from 5 to 500 times to ensure

hat random model is truly random. The statistical parameters for

uch type of model should be as low as possible.

PCA modeling is the widely used multivariate exploratory tech-
iques [32]. Each Principal Components (PCs) detects the internal
elations inside the set of objects (chemical structures), decreasing
- 2,4-diamine Prediction 1.9
zamide Training 0.58
azine-1-carboxylate Training 0.81

the original dimensionality of the data. This reduction transformed
the original matrix to a new one, composed by PCs orthogonal to
each other.

The last eveluated parameter was the applicability domain [33].
Activity of the entire universe of chemicals cannot be predicted
even by a robust and validated QSAR model. Therefore, each com-
pound should be checked using space of accessible descriptors. The
prediction is valid only if the compound is within the applicabil-
ity domain of the model. To visualize the applicability domain of
a QSAR model, the Williams plot—the plot of standardized cross-
validated residuals versus leverage values was used [33].

3. Results and discussion

The best model performance for training set was: R2 = 0.81,
R2

adj = 0.78, RMSE = 0.83, R2
y = 0.18, while results for internal val-

idation were: Q2
loo = 0.68 RMSE = 1.1 Q2

y = 0.35. The test set was
characterized by following statistics: R2 = 0.60, RMSE = 3.59. Plot of

experimentally determined (observed) versus predicted values of
developed model is presented in Fig. 3. Black line represents per-
fect agreement between observed and predicted values. Selected
descriptors are presented in Table 2.
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Fig. 2. Molecular structures of investigated inhibitors.
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Fig. 3. Experimental versus p

The plot of the two PC scores (Supplementary information, plot
1) showed, that the data are well clustered. The two principal com-
onents (PC1 and PC2) explained 55.81% (25.29% + 30.52%) of the
otal variance in the data. The score plot of PC1 versus PC2 (SI, plot
2) is expected to provide a reasonably accurate representation of

he whole space defined by the descriptors.

The results of Y-scrambling procedure shown that all scrambled
odels had statistically less significant values that the developed
ed data from MLR modeling.

model (SI, plot S3). Plot of domain applicability demonstrates
the relationship between the leverages and standardized residu-
als (Fig. 4). As one can see, all studied compounds lie within the
allowed boundary.

Let us discuss the mechanistic interpretation of the developed

QSAR model. The selected descriptors allow providing eluci-
dation of the studied phenomena. For instance, aromatic ratio
(ARR) is related to �-� stacking during interactions between
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Fig. 4. Williams plots

Table 2
Descriptors from developed QSAR model.

Descriptor Type Value

Intercept – 26.1768
ARR aromatic ratio −11.7825
GATS5m Geary autocorrelation of lag 5

weighted by mass
2.0467

G3m 3rd component symmetry
directional WHIM index/weighted
by mass

−50.4002

P2e 2nd component shape directional
WHIM index/weighted by
electronegativity

10.2443

E2e 2nd component accessibility
directional WHIM index/weighted
by electronegativity

4.0286

HATS7u leverage-weighted autocorrelation
of lag 7/unweighted

17.1069
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R6e R autocorrelation of lag 6/weighted
by electronegativity

−19.8151

iaminopyrimidine derivatives with target protein. GATS5m
escriptor represents the Geary 2D-autocorrelation descriptor,
hich describe the topology of the peptide in association with

tomic masses. G3m is the component symmetry directional
eighted holistic invariant molecular descriptor weighted by mass.

2e encodes information on atomic symmetry weighted by elec-
ronegativity; whereas E2e encodes information on atomic shape
eighted by Sanderson electronegativity. HATS7u and R6e are GET-
WAY descriptors, which are calculated from the leverage matrix
btained by the centered atomic coordinates (molecular influence
atrix). HATS7u represents the leverage-weighted autocorrela-

ion GETAWAY descriptor. R6e is the autocorrelation descriptor
eighted by electronegativity.

Overall, interestingly enough, the generated model employs
ost of descriptors (Table 2) that are related to mass or elec-

ronegativity. Mass-related descriptors seem to be important
ecause of similarity of chemical compounds within the initial
ataset. Electronegativity-related descriptors are also related to

ntermolecular interactions between diaminopyrimidine deriva-
ives with DHFR. Summarizing our results, one can conclude that

RAGON descriptors are suitable for reliable modeling of human
HFR.

The molecular structures of the best (12, 16, 15 and 9) and worst
19, 38, 1 and 2) human DHFR inhibitors were summarized respec-
of QSAR model.

tively in Fig. 5. One can conclude, that the best inhibitors possess
aromatic rings which have polar substituents (chlorine or methoxy)
and are connected to the diaminopyrimidine ring with a –CH2-NH-
or –NCH3-CH2- linkage. The lack of these structural properties on
the worst inhibitors gives clues, that the linkage type of two ring
systems (substituted benzene and diaminopyrimidine) may have
an important role on inhibition activity of mentioned molecules.

The two sp3 hybridized bridge atoms (carbon and nitrogen) may
facilitate rotation around three single bonds which allows reach to
the best geometry to drive through the active site of the enzyme.
The compound 38 also has two atoms between two ring systems
but there is a thienyl ring and this may be one of the factors which
reduce inhibition capacity. Aforementioned findings are in agree-
ment with developed QSAR model.

As we can see from Table 1, compounds with lipophilic sub-
stituents demonstrate higher inhibitoty potential than compounds
with polar substituents. In seems that the alkyl chain of the
substituent interacts with the enzyme active site. Our resolts
demonstrated that this interaction appears for a chain length of
4–6 carbon atoms. This conclusion raised from descriptors related
to topology of the peptide in association with atomic masses.

The electrostatic potential energy maps of two best (12 and
16) and two worst (19 and 38) compounds have been calculated
(Fig. 6). While the three dimensional structure is an important
driving factor for the docking of the substrates to the active site
of the enzymes, distribution of electrons affects the reactivity. A
strongly localized negative charge can be seen on the � nitrogen
of diaminopyrimidine ring of compound 12 and 16. This localized
negative charge may allow the molecule to attack an electrophilic
center from � nitrogen of diaminopyrimidine ring.

The negative charge has been delocalized on diaminopyrimi-
dine ring and whole molecule in compound 19 and 38 respectively
(Fig. 6). This delocalization may reduce chance of nucleophilic
attack from the � nitrogen of diaminopyrimidine ring and this phe-
nomenon can be another reason for inhibition capacity of related
molecules.

4. Conclusion
We have employed a QSAR approach to generate model for
47 chemically diverse dicyclic and tricyclic diaminopyrimidine
derivatives tested for their inhibitory activity against human dihy-
drofolate reductase. Multiple linear QSAR model was used in
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Fig. 5. Optimized molecular structures of best (first line) and worst (second line) human DHFR inhibitors.

t (12 a

c
W
t
r
w
r
o
s
d

Fig. 6. Calculated electrostatic potential energy maps of bes

ombination with DFT modeling and DRAGON-based descriptors.
e have found, that majority of important descriptors are related

o mass or to electronegativity of investigated compounds. Mass-
elated descriptors could reflect the similarity of chemical species
ithin the initial dataset. Electronegativity-related descriptors are

elated to intermolecular interactions. Summarizing our results,

ne can conclude that DRAGON descriptors, encompassed into a
uitable QSAR model are suitable for reliable modeling of human
ihydrofolate reductase.
nd 16) and worst (19 and 38) compounds (isovalue = 0.02).

We found that the best inhibitors possess aromatic rings which
have polar substituents (chlorine or methoxy) and are connected
to the diaminopyrimidine ring with a –CH2-NH- or –NCH3-CH2-
linkage. We suggested that linkage type of two ring systems (substi-
tuted benzene and diaminopyrimidine) may have an important role
on inhibition activity. Our results are in agreement with literature

sources. These encouraging results could be used for comprehen-
sive search of other potential dicyclic and tricyclic inhibitors of
human dihydrofolate reductase.
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