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ABSTRACT
In this study, we consider the third order nonlinear Schrödinger equation (TONSE) that models
thewave pulse transmission in a time period less than one-trillionth of a second.With the help of
the extendedmodifiedmethod, we obtain numerous exact travellingwave solutions containing
sets of generalized hyperbolic, trigonometric and rational solutions that are more general than
classical ones. Secondly, we construct the transformation groups which left the equations invari-
ant and vector fieldswith the Lie symmetry groups approach.With the help of these vector fields,
we obtain the symmetry reductions and exact solutions of the equation. The obtained group-
invariant solutions are Jacobi elliptic function and exponential type. We discuss the dynamic
behaviour and structure of the exact solutions for distinct solutions of arbitrary constants. Lastly,
we obtain conservation laws of the considered equation by construing the complex equation as
a system of two real partial differential equations (PDEs).
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1. Introduction

It is observed that most of the physical phenomena
occurring in nature are mathematically modelled by
the evolution equations. However, we know from the
empirical results that many important physical pro-
cesses are the type of nonlinear evolution equations
(NLEEs)

F(x, t, u, ut , ux , uxx , . . .) = 0 (1)

[1–7]. Well-known Korteweg-de Vries equation

ut + 6uux + uxxx = 0 (2)

represents shallow water waves. Soliton which is a spe-
cial solitary travelling wave -unchanged wave veloc-
ity and shape after interaction- is a generalized wave
packet. For these reasons, a travelling wave solution is
used not only in water wave theory, but also in optical
communication. Solitons are derived from the sensitive
interaction between nonlinear and dispersive terms.

It is desirable that travelling wave solution transmis-
sion in communication systems should be high speed
[8,9]. For example, the (1 + 1)-dimensional nonlinear
Schrödinger equation (NLSE)

iqt + 2|q|2q + qxx = 0 (3)

can be used to represent the transmission of optical
pulses in optical fibres in the picosecond [10]. It has

beenobserved inbothexperimental andnumerical sim-
ulations that higher order nonlinear terms and effects
should be taken into consideration in order tomake the
transmission in Equation (3) faster (sub-picosecond or
femtosecond). In this study, we will consider the third
order equations

iqx + α2(qtt + 2q |q|2) − iα3(qttt + 6qt |q|2) = 0 (4)

from the hierarchy of the higher order NLSE given in
[8,11–13]. Our main goal is to obtain exact analytical
solutions of this equation. There are many methods
in the literature to obtain the solutions of the nonlin-
ear Schrödinger equations (NLSEs) and NLEEs. Some of
them are listed in [14–27].

Recently, the modified sub-equation extended
method are introduced in [28]. What makes this
method interesting is that, unlike other methods, solu-
tions include the generalized type of hyperbolic and
trigonometric functions. This method has a finite series
expansion form based on the balancing principle.
Higher order NLSEs were taken into consideration by
researchers in recent years [11,29–32]. However, to the
best of our knowledge, the exact solutions that contain
generalized hyperbolic and trigonometric functions of
third-order NLS equations have not been studied. The
lack of studies in the literature on the exact solutions
of Equation (4) motivated us. In order to overcome
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this deficiency, this method, which is very effective and
practical for solving nonlinear differential equations in
mathematical physics, was used to obtain the solutions
of the equation under consideration. Another approach
discussed in this study is Lie technique. In this algo-
rithmic method based on the finding of transformation
groups that leave the equation invariant, reduced equa-
tions and group invariant solutions can be obtained. In
this study, the wave and group invariant solutions of
Equation (4) will be investigated with the help of these
two methods.

In the second section of the article, the reduction of
Equation (4) to the ordinary differential equation will
be discussed. In the third section, the modified sub-
equation extended method is presented and its appli-
cation to Equation (4) is given. In Section 4, Lie groups
method is employed to study Equation (4). Lie point
symmetries and invariant solutions are obtained in Sec-
tions 5 and 6, respectively. In Section 7, the conserva-
tion laws are computed. The results and discussion are
presented in the Section 8.

2. Mathematical model

In spite of the fact that Equation (3) is successful in
describing a great number of nonlinear effects, it may
be necessary to modify the experimental conditions.
Therefore, higher-order effects should be considered
for the transmission of pulses to sub-picoseconds and
femtoseconds which has a better performance on the
transmitting information. The higher-order integrable
NLS hierarchy can be presented as

iqx + α2(qtt + 2q |q|2) − iα3(qttt + 6qt |q|2)
+ α4

(
qtttt + 6q∗q2t + 4q |qt|2

+ 8 |q|2 qtt + 2q2q∗
tt + 6 |q|4 q)

− iα5
(
qttttt + 10 |q|2 qttt + 30 |q|4 qt + 10qqtq∗

tt

+ 10qq∗
t qtt + 10q2t q

∗
t + 20q∗qtqtt

)+ · · · = 0, (5)

where q(x, t) represents the normalized complex ampli-
tude of the optical pulse envelope, asterisk repre-
sents the conjugation, αl (l = 2, 3, 4, . . .) are real con-
stant parameters, x denotes the propagation variable
and, t denotes the transverse variable (time in a mov-
ing frame) [11–13]. In this study, we will investigate
the Equation (4) which we have obtained by taking
αm = 0, m = 4, 5, . . .. In this section, we aim to simplify
the Equation (4). Thus, we are seeking solutions of (4)
with the following structure

q(x, t) = P(ξ) eiϕ(x,t), ϕ(x, t) = −κx + � t + θ , (6)

where ξ = x − vt is the wave variable and P(ξ) is an
amplitude component of the soliton solution. Here v
and κ are the velocity and frequency of the soliton,
respectively. � is the soliton wave number and, θ is

the phase constant. If we use the transformation given
by (6) in the Equation (4) and separate the real and imag-
inary parts, a pair of relations emerges. The real part
equation gives

(2α2 + 6α3�) P3

+ (
κ − α3�

3 − α2�
2) P + (α2 + 3α3�) v2P′′ = 0,

(7)

and imaginary part equation reads

α3P
′′′v3 + P′ + (

6α3P
2P′ − 2α2�P′ − 3α3�

2P′) v = 0.
(8)

Integrating Equation (8) once and setting the integra-
tion constant to zero, we obtain

2vα3P
3 + (

1 + v
(−2α2� − 3α3�

2)) P + α3v
3P′′ = 0.

(9)

Equation (7) and (9) will be equivalent, provided that

2vα3

(2α2 + 6α3�)
= 1 + v

(−2α2� − 3α3�
2
)

κ − α3� 3 − α2� 2

= α3v3

(α2 + 3α3�) v2
.

Hence, one can find the following parametric con-
straints,

α3 = α2

−3� + v
, κ

= −−4vα2�
2 + 2v2α2� + 2α2�

3 + 3� − v

−3� + v
.

(10)

Eventually, Equations (7) and (9) can be rearranged to
be in the form

P′′ + 2
v2

P3 +
(
1 + v

(−2α2� − 3α3�
2
))

α3v3
P = 0. (11)

In the next sections, solutions of the Equation (11)
will be examined using the extended modified sub-
equation method.

3. Basic ideas of the extendedmodified
sub-equationmethod

Here, we present briefly themain steps of the extended
modified sub-equation method for finding travelling
wave solutions to NLEEs [28]. Firstly, we consider the
general NLEE of the type

P(u, ut , ux , utt , uxx , . . .) = 0. (12)

Using the wave transformation

u(x, t) = U(ξ), ξ = x − vt,

we can rewrite Equation (12) as the following nonlinear
ordinary differential equation (NLODE):

Q(U,U′,U′′,U′′′, . . .) = 0. (13)
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Let us assume that the solution of ordinary differential
equation (ODE) (13) can be written as a polynomial of
R(ξ) as follows:

U(ξ) =
n∑

j=−n

bjR
j(ξ), bj �= 0, (14)

wherebj (−n ≤ j ≤ n)are constantswhichwill bedeter-
mined later. R(ξ) in (14) satisfies the NLODE in the form

R′(ξ) = ln (A)
(
S0 + S1R (ξ) + S2R

2(ξ)
)
, A �= 0, 1.

(15)

The coefficient classifications and corresponding solu-
tion forms of (15) are as follows:

Case 1: If � = S21 − 4S0S2 < 0, S2 �= 0, then

R1 (ξ) = − S1
2S2

+
√−� tanA

(√−�
2 ξ

)
2S2

,

R2 (ξ) = − S1
2S2

−
√−� cotA

(√−�
2 ξ

)
2S2

,

R3 (ξ) = − S1
2S2

+
√−�

(
tanA

(√−�ξ
)±√

rp secA
(√−�ξ

))
2S2

,

R4 (ξ) = − S1
2S2

−
√−�

(
cotA

(√−�ξ
)± √

rpA
(√−�ξ

))
2S2

,

R5 (ξ) = − S1
2S2

+
√−�

(
tanA

(√−�
4 ξ

)
− cotA

(√−�
4 ξ

))
4S2

.

Case 2: If � = S21 − 4S0S2 > 0, S2 �= 0, then

R6 (ξ) = − S1
2S2

−
√

�tanhA
(√

�
2 ξ

)
2S2

,

R7 (ξ) = − S1
2S2

−
√

� cothA
(√

�
2 ξ

)
2S2

,

R8 (ξ) = − S1
2S2

−
√

� tanhA
(√

�ξ
)√

rpsechA
(√

�ξ
)

2S2
,

R9 (ξ) = − S1
2S2

−
√

�
(
cothA

(√
�ξ
)

± √
rpcschA

(√
�ξ
))

2S2
,

R10 (ξ) = − S1
2S2

−
√

�
(
tanhA

(√
�
4 ξ

)
+ cothA

(√
�
4 ξ

))
4S2

.

Case 3: If S0 = S2, S1 = 0, then

R11 (ξ) = tanA (S0ξ) , R12 (ξ) = − cotA (S0ξ) ,

R13 (ξ) = tanA (2S0ξ) ± √
rp secA (2S0ξ) ,

R14 (ξ) = − cotA (2S0ξ) ± √
rpA (2S0ξ) ,

R15 (ξ) = 1
2
tanA

(
S0
2

ξ

)
− 1

2
cotA

(
S0
2

ξ

)
.

Case 4: If S0 = −S2, S1 = 0, then

R16 (ξ) = −tanhA (S0ξ) , R17 (ξ) = − cothA (S0ξ) ,

R18 (ξ) = −tanhA (2S0ξ) ± √
rpsechA (2S0ξ) ,

R19 (ξ) = − cothA (2S0ξ) ± √
rpcschA (2S0ξ) ,

R20 (ξ) = −1
2
tanhA

(
S0
2

ξ

)
− 1

2
cothA

(
S0
2

ξ

)
.

Case 5: If S21 − 4S0S2 = 0 then

R21 (ξ) = −2
S0 (S1ξ ln (A) + 2)

S12ξ ln (A)
.

Case 6: If S1 = λ, S0 = mλ,m �= 0 and S2 = 0 then

R22 (ξ) = Aλξ − m.

Case 7: If S1 = 0, S2 = 0 then

R23 (ξ) = S0ξ ln(A).

Case 8: If S0 = 0, S1 = 0 then

R24 (ξ) = − 1
S2 ln (A) ξ

.

Case 9: If S0 = 0, S1 �= 0 then

R25 (ξ) = − rS1
S2 (coshA (S1ξ) − sinhA (S1ξ) + r)

,

R26 (ξ) = − (coshA (S1ξ) + sinhA (S1ξ)) S1
S2 (coshA (S1ξ) + sinhA (S1ξ) + p)

.

Case 10: If S1 = λ, S2 = mλ,m �= 0 and S0 = 0 then

R27 (ξ) = rAλξ

p − mrAλξ
.

The generalized trigonometric and hyperbolic func-
tions used in the families given above are defined as
follows:

tanA (ς) = −i
(
rAiς − pA−iς

)
rAiς + pA−iς ,

tanhA (ς) = rAς − pA−ς

rAς + pA−ς
,

cotA (ς) = i
(
rAiς + pA−iς

)
rAiς − pA−iς ,

cothA (ς) = rAς + pA−ς

rAς − pA−ς
,
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cosA (ς) = rAiς + pA−iς

2
,

coshA (ς) = rAς + pA−ς

2
,

sinA (ς) = −i
(
rAiς − pA−iς

)
2

,

sinhA (ς) = rAς − pA−ς

2
,

cscA (ς) = 2 i
rAiς − pA−iς ,

cschA (ς) = 2
rAς − pA−ς

,

secA (ς) = 2
rAiς + pA−iς ,

sechA (ς) = 2
rAς + pA−ς

. (16)

In Equation (16), ς is an independent variable, r, p>0
constants are deformation parameters. n in (14) is a pos-
itive integer that can be determined by the balancing
procedure constructed taking into account the high-
est order nonlinear terms and the highest order linear
terms in the resulting equation. By using Equation (14)
and Equation (15) into Equation (13), an equation con-
sisting of the powers of R(ξ) is obtained. With the
determination of n, the coefficients of the equation
rearranged according to the powers of R(ξ) has to
be equal to zero. Hence, we obtain an algebraic sys-
temof equations in terms of b−n, . . . , b−1, b0, b1, . . . , bn.
By determining these parameters and rewriting the
Equation (14) using determined parameters, an analytic
solution u(x, t) is obtained, in a closed form.

4. Exact travelling wave solutions

In this section, wewill obtain the analytical solutions for
the amplitude of the travelling wave solutions by using
the extended modified sub-equation method. Substi-
tuting P(ξ) = ∑n

j=−n bjR
j(ξ) into Equation (11) and bal-

ancing P′′ with P3 yields n = 1. Therefore Equation (11)
admits the use of

P(ξ) = b−1R(ξ)−1 + b0 + b1R(ξ). (17)

Substituting Equation (17) into Equation (11) through
Equation (15) and, collecting the coefficients of different
powers of R(ξ), setting each coefficient to zero, we get
the system of algebraic equations. By solving the result-
ing systemwith the help of Maple, the following results
are achieved:
Set 1

After the huge calculations, we deduce the follow-
ing relations between parameters appearing algebraic

equations:

� =
2v2α2+3+

√
4v4α2

2 + 9−24v4α2
2(ln(A))2

S2S0 + 6v4α2
2 (ln (A))2 S12

6vα2
,

b−1 = iS0 ln (A) v, b0 = iv ln (A) S1
2

, b1 = 0,

where α2,α3, v, κ are arbitrary constants. We now can
construct the exact solutions of Equation (4) easily for
these parameters set through the classification cases
which is given in Section 3.

Case 1: If � = S21 − 4S0S2 < 0, S2 �= 0, then we have

q1(x, t) =
(
iS1 ln (A) v

2
+ iv ln (A) S0

×
⎛
⎝−S1

2S2
+

√−�tanA
(√−�(x−vt)

2

)
2S2

⎞
⎠

−1⎞⎟⎠
× ei(−κx+� t+θ),

q2(x, t) =
(
iS1 ln (A) v

2
+ iv ln (A) S0

×
⎛
⎝−S1

2S2
−

√−�cotA
(√−�(x−vt)

2

)
2S2

⎞
⎠

−1⎞⎟⎠
× ei(−κx+� t+θ),

q3(x, t) =
(
iS1 ln (A) v

2
+ iv ln (A) S0

×

⎛
⎜⎜⎜⎝− S1

2S2
+

√−�
(
tanA

(√−�(x − vt)
)±√

rpsecA
(√−�(x − vt)

))
2S2

⎞
⎟⎟⎟⎠

−1
⎞
⎟⎟⎟⎟⎠

× ei(−κx+� t+θ),

q4(x, t) =
(
iS1 ln (A) v

2
+ iv ln (A) S0

×

⎛
⎜⎜⎜⎝−S1

2S2
−

√−�
(
cotA

(√−�(x − vt)
)

±√
rpA

(√−�(x − vt)
))

2S2

⎞
⎟⎟⎟⎠

−1
⎞
⎟⎟⎟⎟⎠

× ei(−κx+� t+θ),

q5(x, t) =
(
iS1 ln (A) v

2
+ iv ln (A) S0

×

⎛
⎜⎜⎜⎜⎜⎜⎝

− S1
2S2

+

√−�
(
tanA

(√−�(x−vt)
4

)
− cotA

(√−�(x−vt)
4

))
4S2

⎞
⎟⎟⎟⎟⎟⎟⎠

−1⎞⎟⎟⎟⎟⎟⎟⎟⎠
× ei(−κx+� t+θ). (18)
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Case2: If� = S21 − 4S0S2 > 0, S2 �= 0, thenweobtain

q6(x, t) =
(
iS1 ln (A) v

2
+ iv ln (A) S0

×
⎛
⎝− S1

2S2
−

√
�tanhA

(√
�(x−vt)

2

)
2S2

⎞
⎠

−1⎞⎟⎠
× ei(−κx+� t+θ),

q7(x, t) =
(
iS1 ln (A) v

2
+ iv ln (A) S0

×
⎛
⎝− S1

2S2
−

√
�cothA

(√
�(x−vt)

2

)
2S2

⎞
⎠

−1⎞⎟⎠
× ei(−κx+� t+θ),

q8(x, t) =
(
iS1 ln (A) v

2
+ iv ln (A) S0

×

⎛
⎜⎜⎜⎜⎜⎜⎝

− S1
2S2

−

√
�
(
cothA

(√
�(x − vt)

)
±

√
rpcschA

(√
�(x − vt)

))
2S2

⎞
⎟⎟⎟⎟⎟⎟⎠

−1⎞⎟⎟⎟⎟⎟⎟⎟⎠
× ei(−κx+� t+θ),

q9(x, t) =
(
iS1 ln (A) v

2
+ iv ln (A) S0

×

⎛
⎜⎜⎜⎜⎜⎜⎝

− S1
2S2

−

√
�
(
tanhA

(√
�(x−vt)

4

)
+ cothA

(√
�(x−vt)

4

))
4S2

⎞
⎟⎟⎟⎟⎟⎟⎠

−1⎞⎟⎟⎟⎟⎟⎟⎟⎠
× ei(−κx+� t+θ).

Case 3: If S0 = S2, S1 = 0, then we yield

q10(x, t) = iv ln (A) S0 ei(−κx+� t+θ)

tanA (S0(x − vt))
,

q11(x, t) = − iv ln (A) S0 ei(−κx+� t+θ)

cotA (S0(x − vt))
,

q12(x, t) = iv ln (A) S0 ei(−κx+� t+θ)

tanA (2S0(x − vt)) ± √
rtsecA (2S0(x − vt))

,

q13(x, t) = iv ln (A) S0 ei(−κx+� t+θ)

−cotA (2S0(x − vt)) ± √
rpA (2S0(x − vt))

,

q14(x, t) = 2iv ln (A) S0 ei(−κx+� t+θ)

tanA
(
S0(x−vt)

2

)
− cotA

(
S0(x−vt)

2

) .
Case 4: If S0 = −S2, S1 = 0, then one obtains

q15(x, t) = −iv ln (A) S0 ei(−κx+� t+θ)

tanhA (S0(x − vt))
,

q16(x, t) = −iv ln (A) S0 ei(−κx+� t+θ)

cothA (S0(x − vt))
,

q17(x, t) = iv ln (A) S0 ei(−κx+� t+θ)

−cothA (2S0(x − vt))
±√

rpcschA (2S0(x − vt))

.

Case 5: If S21 − 4S0S2 = 0 then we attain

q18(x, t) =
(
iS1 ln (A) v

2
− iv (ln (A))2 S12(x − vt)

2(S1(x − vt) ln (A) + 2)

)

× ei(−κx+� t+θ). (19)

Case 6: If S1 = λ, S0 = mλ,m �= 0 and S2 = 0 thenwe
derive

q19(x, t) =
(
iS1 ln (A) v

2
+ iv ln (A) S0

Aλ(x−vt) − m

)
ei(−κx+� t+θ).

Case 9: If S0 = 0, S1 �= 0 then we construct

q20(x, t) = (iS1 ln (A) v) 2−1 ei(−κx+θ+� t).

Case 10: If S1 = λ, S2 = mλ,m �= 0 and S0 = 0 then
we get

q21(x, t) = (iλ ln (A) v) 2−1 ei(−κx+� t+θ).

Set 2
After some calculations, the following relations are

obtainedbetween theparameters in the systemof alge-
braic equations:

� =
2v2α2+3 +

√
4 v4α2

2+9−24 v4α2
2 (ln (A))

2 S2S0+6 v4α2
2 (ln (A))

2 S12

6vα2
,

b−1 = 0, b0 = iv ln (A) S1
2

, b1 = iS2 ln (A) v,

where α2,α3, v, κ are arbitrary constants. According to
classification cases for these parameters in Section 3,
we can construct the exact solutions of Equation (4) as
follows:

Case 1: If � = S21 − 4S0S2 < 0, S2 �= 0, then

q22(x, t) =
(
1
2
i ln (A) v

√−�tanA

(√−�(x − vt)

2

))

× ei(−κx+� t+θ),

q23(x, t) =
(
1
2
i ln (A) v

√−�cotA

(√−�(x − vt)

2

))

× ei(−κx+� t+θ),

q24(x, t) =

⎛
⎜⎜⎜⎝
i ln (A) v

√−�
(
tanA

(√−�(x − vt)
)

± √
rpsecA

(√−�(x − vt)
))

2

⎞
⎟⎟⎟⎠

× ei(−κx+� t+θ),
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q25(x, t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−

i ln (A) v
√−�

(
cotA

(√−�(x−vt)
2

)
± √

rpA
(√−�(x−vt)

2

))
2

⎞
⎟⎟⎟⎟⎟⎟⎠

× ei(−κx+� t+θ),

q26(x, t) =

⎛
⎜⎜⎜⎝
i ln (A) v

√−�
(
tanA

(√−�(x − vt)
)

− cotA
(√−�(x − vt)

))
4

⎞
⎟⎟⎟⎠

× ei(−κx+� t+θ).

Case 2: If � = S21 − 4S0S2 > 0, S2 �= 0, then

q27(x, t) =
(

−i ln (A) v
√

�tanhA

(√
�(x − vt)

2

))
2−1

× ei(−κx+θ+� t),

q28(x, t) =
(

−i ln (A) v
√

�cothA

(√
�(x − vt)

2

))
2−1

× ei(−κx+� t+θ),

q29(x, t) =

⎛
⎜⎜⎜⎝−

i ln (A) v
√

�
(
cothA

(√−�(x − vt)
)

±√
rpcschA

(√−�(x − vt)
))

S2

⎞
⎟⎟⎟⎠

× ei(−κx+� t+θ),

q30(x, t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−i ln (A) v
√

�
(
tanhA

(√−�
4 (x − vt)

)
+cothA

(√−�
4 (x − vt)

))
4

⎞
⎟⎟⎟⎟⎟⎟⎠

× ei(−κx+� t+θ). (20)

Case 3: If S0 = S2, S1 = 0, then

q31(x, t) = iS0 ln (A) vtanA (S0(x − vt))

× ei(−κx+� t+θ),

q32(x, t) = −iS0 ln (A) vcotA (S0(x − vt))

× ei(−κx+� t+θ),

q33(x, t) = iS0 ln (A) v (tanA (2S0(x − vt))

± √
rpsecA (2S0(x − vt))

)
ei(−κx+� t+θ),

q34(x, t) = iS0 ln (A) v (−cotA (2S0(x − vt))

± √
rpA (2S0(x − vt))

)
ei(−κx+� t+θ),

q35(x, t) = iS0 ln (A) v

2

(
tanA

(
S0(x − vt)

2

)

−cotA

(
S0(x − vt)

2

))
ei(−κx+� t+θ).

Case 4: If S0 = −S2, S1 = 0, then

q36(x, t) = (−iS2 ln (A) vtanhA (S0(x − vt)))

× ei(−κx+� t+θ),

q37(x, t) = (iS2 ln (A) v (−cothA (2S0(x − vt))

± √
rpcschA (2 S0(x − vt))

))
ei(−κx+� t+θ).

Case 5: If S21 − 4S0S2 = 0 then

q38(x, t) =
(−2 iS2vS0 (S1(x − vt) ln (A) + 2)

S12(x − vt)

+ iv ln (A) S1
2

)
ei(−κx+� t+θ).

Case 6: If S1 = λ, S0 = mλ,m �= 0 and S2 = 0 then

q39(x, t) = iv ln (A) λ

2
ei(−κx+� t+θ).

Case 8: If S0 = 0, S1 = 0 then

q40(x, t) = −iv

(x − vt)
ei(−κx+� t+θ).

Case 9: If S0 = 0, S1 �= 0 then

q41(x, t) =
( −i ln (A) vrS1
coshA (S1(x − vt)) − sinhA (S1(x−vt))+r

+ iv ln (A) S1
2

)
ei(−κx+� t+θ). (21)

5. Lie symmetries

We will apply Lie symmetry analysis for Equation (4)
[33–38]. Firstly, we assume

q(x, t) = u(x, t) eiv(x,t), (22)

where u and v are real valued functions. If we substi-
tute (22) into (4) and split up real and imaginary parts,
we obtain

− vxu + α2utt − α2uv
2
t + 2α2u

3 + 3α3uttvt

+ 3α3utvtt + α3uvttt − α3uv
3
t + 6α3u

3vt = 0,

2α2utvt + α2uvtt + 3α3utv
2
t − α3uttt

− 6α3u
2ut + ux + 3α3uvttvt = 0. (23)

For the system of the above equations, let us consider
infinitesimal transformations which contain the essen-
tial information determining a one-parameter Lie group
of transformations:

x → x̃ = x + εξ (x, t, u, v) + O(ε2),

t → t̃ = t + ετ (x, t, u, v) + O(ε2),

u → ũ = u + εη (x, t, u, v) + O(ε2),

v → ṽ = v + εφ (x, t, u, v) + O(ε2), (24)
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with a small parameter (ε). The corresponding vector
field for these transformations is

X = ξ(x, t, u, v)
∂

∂x
+ τ(x, t, u, v)

∂

∂t

+ η(x, t, u, v)
∂

∂u
+ φ(x, t, u, v)

∂

∂v
. (25)

When (25) vector field (or generator) is found, the trans-
formation group of the equation or system considered
is

dx̃
dε

= ξ
(
x̄, t̄, ū, v̄

)
, x̃|ε=0 = x,

dt̃
dε

= τ
(
x̄, t̄, ū, v̄

)
, t̃|ε=0 = t,

dũ
dε

= η
(
x̄, t̄, ū, v̄

)
, ũ|ε=0 = u,

dṽ
dε

= φ
(
x̄, t̄, ū, v̄

)
, ṽ|ε=0 = v.

The third prolongations formula pr(3)X is

pr(3)X = X + φx ∂

∂vx
+ φt ∂

∂vt
+ ηt

∂

∂ut
+ ηtt

∂

∂utt

+ φtt ∂

∂vtt
+ φttt ∂

∂vttt
+ ηx

∂

∂ux

+ φt ∂

∂vt
+ ηt

∂

∂ut
+ φtt ∂

∂vtt
+ ηttt

∂

∂uttt
, (26)

where ηx ,φx ,φt , ηt ,φtt ,φttt , ηtt , ηttt are extended
infinitesimal. Hence, system of equations (23) has fol-
lowing invariance conditions:

η
(−vx − α2v

2
t + 6α2u

2 + α3vttt − α3v
3
t + 18α3vtu

2)
− φxu + ηtt (α2 + 3α3vt)

+ φt (−2α2uvt + 3α3utt − 3α3uv
2
t + 6α3u

3)
+ α3(3ηtvtt + 3φttut + φtttu) = 0,

η (α2vtt − 12α3utu + 3α3vtvtt)

+ ηt
(
2α2vt + 3α3v

2
t − 6α3u

2)
+ φt (2α2vt + 6α3utvt + 3α3uvtt)

+ φtt (α2u + 3α3uvt) − ηtttα3 + ηx = 0.

With the help of the obtained equation pair and the
values of extended infinitesimals, we get an overdeter-
mined system of PDEs. Solving overdetermined system
of PDEs, one can obtain

ξ = −3c1x + c3,

τ = −c1t + 2α2
2c1

3α3
x + c4,

η = c1u,

φ = α2c1
3α3

t + c2, (27)

Table 1. Commutator table of the vector fields of (23).

[Xi , Xj] X1 X2 X3 X4

X1 0 0 0 0

X2 0 0 0 −3X2 + 2α2
2

3α3
X3

X3 0 0 0 −X3 + α2
3α3

X1

X4 0 3X2 − 2α2
2

3α3
X3 X3 − α2

3α3
X1 0

where c1, c2, c3 and c4 are arbitrary constants. Thus, the
Lie algebra of infinitesimal symmetries of equations (23)
is said to be spanned by the vector field

X1 = ∂

∂v
,

X2 = ∂

∂x
,

X3 = ∂

∂t
,

X4 = u
∂

∂u
+ α2

3α3
t

∂

∂v
+ 2α2

2x − 3α3t

3α3

∂

∂t
− 3x

∂

∂x
. (28)

It is easy to verify that X1,X2,X3,X4 is closed under the
Lie bracket. In fact, we have The commutator table is
anti-symmetricwith its diagonal elements all being zero
as we have [Xα ,Xβ ] = −[Xβ ,Xα] (Table 1) [39,40].

6. Symmetry reduction and invariant
solutions

In this section, we will get the invariant solutions of sys-
tem of Equation (23). The corresponding characteristic
equations are

dx
ξ

= dt
τ

= du
η

= dv
φ
, (29)

where ξ , τ , η and φ are given by (27). Solving
characteristic Equation (29), we will consider four cases
of vector fields:

(i) X2,
(ii) X3,
(iii) X1 + λX2 + μX3,
(iv) X4,

where λ,μ are arbitrary real numbers different from
zero.

Case (i) X2

By solving the characteristic equation (29) for the
generator X2, similarity variables are obtained as fol-
lows:

ρ = t,

u (x, t) = F (ρ) ,

v (x, t) = G (ρ) , (30)

where ρ and F, G are new independent and dependent
variables, respectively. Substituting (30) into (23), the
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following similarity reduction can be obtained:

α2F
′′ − α2F

(
G′)2 + 2α2F

3 + 3α3F
′′G′ + 3α3F

′G′′

+ α3F
′G′′′ − α3F

(
G′)3 + 6α3F

3G′ = 0, (31)

− 6α3F
2F′ + 2α2F

′G′ + α2FG
′′ + 3α3F

′ (G′)2
− α3F

′′′ + 3α3G
′′G′F = 0, (32)

where (′) denotes derivative with respect to ρ. Hence,
solution of Equation (4) can be written as

q (x, t) = F (ρ) eiG(ρ), (33)

where F(ρ),G(ρ) are solutions of (31) and (32).
Specially, let us chooseG(ρ) = 1 in Equation (31) and

Equation (32). By solving the equation obtained by tak-
ing the integral of the Equation (32) and the equation
obtained from the Equation (31), we obtain

F(ρ) = C2JacobiSN((ρ + C1)C2, i),

where JacobiSN is the Jacobi elliptic function. In this
case, solution of (4) can be obtained as

q(x, t) = C2JacobiSN((t + C1)C2, i) ei.

Case (ii) X3

If the characteristic equation is generated according
to X3 and solved, similarity variables are obtained as
follows

γ = x,

u (x, t) = J (γ ) ,

v (x, t) = K (γ ) , (34)

where γ and J, K are new variables. Using the expres-
sions given in (34) in the system of Equations (23), simi-
larity reduction can be obtained as follows

(−K ′ + 2α2J
2) J = 0, (35)

J′ = 0, (36)

where a primedenotes differentiationwith respect to γ .
Equation (36) has the solution

J (γ ) = c1, (37)

where c1 is arbitrary constant. Substituting (36) into (35)
and solving, we get

K (γ ) = 2α2c
2
1γ + c2, (38)

where c2 is arbitrary constant. From (22), (34), (37)
and (38), the solution of Equation (4) is

q (x, t) = c1 ei(2α2c
2
1x+c2).

Case (iii) X1 + λX2 + μX3

In this case, we deal with the linear combination of
X1,X2 and X3. Solving the corresponding characteristic
equation, we have

ζ = μx − λt,

u(x, t) = P(ζ ),

v(x, t) = x

λ
+ Q(ζ ), (39)

where P and Q are new independent variables of new
independent variable ζ . According to new variables
given in (39), we have following reduced equations:

− μλPQ′ − P + α2λ
3P′′ − α2λ

3P
(
Q′)2

+ 2α2λP
3 − 3α3λ

4P′′Q′ − 3α3λ
4P′Q′′ − α3λ

4PQ′′′

+ α3λ
4P
(
Q′)3 − 6α3λ

2P3Q′ = 0, (40)

6α3λP
2P′ + 2α2λ

2P′Q′ + α2λ
2PQ′′ − 3α3λ

3P′ (Q′)2
+ μP′ + α3λ

3P′′′ − 3α3λ
3PQ′′Q′ = 0, (41)

where (′) denotes differentiation with respect to ζ . Cor-
responding solution of Equation (4) can be presented
as

q (x, t) = P (ζ ) ei(
x
λ
+Q(ζ )), (42)

where ζ is given by (39) and P(ρ),Q(ρ) is solutions
of (40) and (41) equations.

Specially, let us chooseQ(ζ ) = 1 and α2 = −α3/μ in
Equation (40) andEquation (41), by solving theequation
obtained by taking the integral of the Equation (41)
and the equation obtained from the Equation (40), we
obtain

P(ζ ) = C2

√
−μ

−α3λ − μ + α3λC22
JacobiSN

×
((√

α3λ(α3λ + μ)ζ

α3λ2
+ C1

)

×
√

−μ

−α3λ − μ + α3λC22
,

× C2
√−α3λ(α3λ + μ)

α3λ + μ

)
,

where JacobiSN is the Jacobi elliptic function. In this
case, solution of the Equation (4) can be expressed in
term of original variables as

q(x, t) = C2

√
−μ

−α3λ − μ + α3λC22
JacobiSN

×
((√

α3λ(α3λ + μ)(μx − λt)

α3λ2
+ C1

)

×
√

−μ

−α3λ − μ + α3λC22
,

× C2
√−α3λ(α3λ + μ)

α3λ + μ

)
ei(x/λ+1).
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Case (iv) X4

Solving the characteristic equation (29) for the gen-
erator X4, we obtain following similarity variables:

σ = t

x
1
3

+ α2
2

3α3
x2/3,

u (x, t) = H (σ ) x−1/3,

v(x, t) = W (σ ) − 2α3
2

27α2
3

x − α2

3α3
t, (43)

where σ and H, W are new variables. Substituting (43)
into (23), we get the reduced equations as follows

− 9α3
2H
(
W ′)3 + 27α3

2H′′W ′ + 27α3
2H′W ′′

+ 9α3
2HW ′′′ + 54α3

2H3W ′ + 3α3σHW
′ = 0, (44)

54α3
2H2H′ − 27α3

2H′ (W ′)2 + 3α3H + 9α3
2H′′′

− 27α3
2HW ′′W ′ + 3α3σW

′ = 0, (45)

where (′)denotesdifferentiationwith respect toσ . Thus
the solution of Equation (4) can be given as

q (x, t) = H (σ ) x−1/3ei(W(σ )−(2α3
2/27α

2
3)x−(α2/3α3)t), (46)

where σ is given by (43) and H(σ ),W(σ ) is solutions
of (44) and (45) equations.

The one parameter groups Gi generated by the
Xi (i = 1, 2, 3, 4) are given in the following table. The
entries give the transformed point exp(εXi)(x, t, u, v) =
(x̃, t̃, ũ, ṽ):

G1 : (x, t, u, v + ε),

G2 : (x + ε, t, u, v),

G3 : (x, t + ε, u, v),

G4 :

(
e−3εx,

−α2
2

3α3
x e−3ε +

(
t + α2

2

3α3
x

)
e−ε , eεu, v

+ α3
2

27α2
3

x(e−3ε − 1)− α2

3α3

(
t+ α2

2

3α3
x

)
(e−ε−1)

)
.

We observe that the Lie groups G1,G2 and G3 corre-
sponds to thedependent variable, spaceand time trans-
lation,respectively. If u = f (x, t) and v = g(x, t) are any
functions, then their transform by G4 is

ũ = eε · u = eε · f (x, t),

ṽ = v + α3
2

27α2
3

x(e−3ε − 1) − α2

3α3
(t + α2

2

3α3
x)(e−ε − 1)

= g(x, t) + α3
2

27α2
3

x(e−3ε − 1)

− α2

3α3

(
t + α2

2

3α3
x

)
(e−ε − 1)

which should be expressed in terms of (x̃, t̃) = G4 ·
(x, t) = (e−3εx, (−α2

2/3α3)x e−3ε + (t + (α2
2/

3α3)x) e−ε). Therefore

ũ = eε f

(
eε x̃,

(
t̃ + α2

2

3α3
x̃

)
eε − α3

2

3α3
x̃ eε

)
,

ṽ = g

(
eε x̃,

(
t̃ + α2

2

3α3
x̃

)
eε − α3

2

3α3
x̃ eε

)

− α2
2

3α3
t̃(1 − eε) − 2α3

2

27α2
3

x̃ + 2α3
2

27α2
3

x̃ eε

(
1 − 1

3
e2ε
)

are transformed functions in this particular case.

7. Conservation laws

Consider a kth-order system of PDEs

Eα

(
x, t, u, v,w(1), . . . ,w(k)

) = 0, α = 1, 2, (47)

with two independent variables s = (x, t) and two
dependent variables w = (u, v). Let w(l), l = 1, 2, . . . , k,
denote the collections of lth-order partial derivatives
givenwithwα

i = Di(wα),wα
ij = DjDi(wα), . . ., in termsof

total derivative operator

Di = ∂

∂si
+ wα

i
∂

∂wα
+ wα

ij
∂

∂wα
j

+ . . . , i = 1, 2. (48)

Using the familiar consequence that the Euler-Lagrange
operator eliminates a total divergence, we employ the
invariance and multiplier approach for determining
conserved densities and fluxes. Firstly, if (Tx , Tt) is a
conserved vector corresponding to a conservation law,
then a total space-time divergence expression vanishes
on the solutions of the system (47),

DxT
x + DtT

t = 0. (49)

A multiplierM = (M1,M2) has the property that

Mα(x, t, u, v,w(1), . . . ,w(k))E
α(s, u(1), . . . , u(k))

= DxT
x + DtT

t (50)

or

M(x, t, u, v,w(1), . . . ,w(k))E(s, u(1), . . . , u(k))

= DxT
x + DtT

t (51)

hold identically for some conserved vector (Tx , Tt). The
determining equation for the multiplierM is[33]

Ξ [M(x, t, u, v,w(1), . . . ,w(k))E(s, u(1), . . . , u(k))] = 0,
(52)

where � is the Euler operator. Thus, the multipliers can
be determined by using (52). Then the corresponding
conserved vectors can be constructed. There are several
approaches to this, where the better-known approach
is the homotopy formula [41–43]. If the real and imag-
inary parts of the equation obtained by substituting
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q = u+ iv into (4) are separated, the following equation
pair is obtained:

− vx + α2utt + 2α2u
3 + 2α2uv

2

+ α3vttt + 6α3vtu
2 + 6α3vtv

2 = 0,

ux + α2vtt + 2α2v
3 + 2α2vu

2 − α3uttt − 6α3utu
2

− 6α3utv
2 = 0. (53)

As a result of detailed calculations, it can be seen that if
M(x, t, u, v, ux , vx , ut , vt) = (M1,M2) with

Ξ [M1(−vx + α2utt + 2α2u
3 + 2α2uv

2 + α3vttt

+ 6α3vtu
2 + 6α3vtv

2)

+ M2(ux + α2vtt + 2α2v
3 + 2α2vu

2 − α3uttt

− 6α3utu
2 − 6α3utv

2)] = 0,

themultipliersMwith the corresponding densities Tt of
the above system with �t being the densities of (4) can
be obtained.

• Ma = (ux , vx),

Tt = 3α3

2

(
u2vux + uxv

3 − u3vx − uv2vx
)

− α2

2
(uutx − utux + vvtx − vtvx)

+ α3

2
(vuttx − vtutx + uxvtt

− uvttx + utvtx − uttvx) .

The conserved density is

�a
t = −α2

2
Re (q̄qtx + q̄tqx)

+ α3

2
Im ((q̄qt)tx + q̄tqtx) − 3α3

2
|q|2Im (q̄qx) .

• Mb = (v,−u),

Tt = α3
(
3u2v2 + 3

2v
4 + 3

2u
4 + vvtt

+ uutt − 1
2v

2
t − 1

2u
2
t

)+ α2 (vut − uvt) .

The conserved density is

�b
t = −α2Im (q̄qt) + 3α3

2
|q|4

+ α3

2

(
2Re (q̄qtt) − |qt|2

)
.

According to the conserved densities obtained
above, it is seen that linearmomentum, power orHamil-
tonian are not conserved. Here, we avoid any physical
interpretation because the densities we obtain above
are unusual [44].

8. Conclusion

In this work, we considered the TONSE which enables
studies and advances in the speed of information
transmission that plays a major role in fields such as
ultrashort pulses, optical fibre, applied physics, commu-
nication system, etc . . . To contribute to the studies of
the higher order Schrödinger equation and the special
cases of this equation in the literature [31,32,45–47], we
considered Equation (4). This equation was considered
in [29,30] for α2 = 1

2 and the authors studied the non
autonomous characteristics of the W-shaped solitons
andhavemodified theDarboux transformationmethod
to find rational solutions of the equation of the first and
secondorders, respectively. As far aswe know, the exact
solutions of this equation, which include generalized
hyperbolic and trigonometric functions, were investi-
gated for the first time in this research. We believe that
the solutions we have obtained are new. One of the
advantages of the applied method is that it contains
more general solutions than most of the methods in
the literature. The results obtained by the application of
this method have shown that this method is effective,
strong and applicable to other problems in mathemati-
cal physics.

Moreover, for better understanding the dynamics
of these results, we demonstrated graphs of real-
imaginary parts and modulus of some of them by
giving appropriate values to the parameters which
facilitate to recognize the physical phenomena of this
nonlinear mode in Figure 1–4. The solution domain
was chosen as (x, t) ∈ (−5, 5) × (−5, 5) in all illustra-
tions. The modulus of q1 demonstrated periodic solu-
tion in Figure 1. The modulus of q18 and q27 describe
rational soliton and optical dark travelling wave solu-
tions in Figure 2 and 3, respectively. The modulus
part of q41 demonstrated singular periodic solution in
Figure 4. In Section 5, we applied Lie classicalmethod to
considered equation toobtain thegroup-invariant solu-
tions. The vector fields, symmetry reductions, transfor-
mation groups, and group-invariant solutions based on
the Lie group approach were obtained. Finally, we con-
structed conservation laws of Equation (4) andobtained
two conserved densities. The conservation laws that we
obtain can be used in the stability analysis of solutions
and in numerical schemes. In future studies, the con-
formable fractional derivative and the fractional modi-
fied sub-equation extendedmethod for the generalized
hyperbolic and trigonometric functions can be consid-
ered to obtain new solutions for the NLSEs. We believe
that this study might be important for researchers spe-
cializing in the construction of the transmission media
andmore specifically optical fibresmay have the oppor-
tunity to build new optical fibres, including waves, that
adapt to the types of signals we want to propagate. We
hope that these results are going to be very useful in
future research.
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Figure 1. Profile of solution q1(x, t) for Set 1 when S1 = 2, S0 = 1, S2 = 2, v = 1, A = 2, r = 3/2, p = 1/2, θ = 1,α2 = 1 in
Equation (18).

Figure 2. Profile of solution q18(x, t) for Set 1 when S1 = 2, S0 = 1, S2 = 1, v = 1, A = 2, r = 3/2, p = 1/2, θ = 1,α2 = 1 in
Equation (19).

Figure 3. Profile of solution q27(x, t) for Set 2 when S1 = 3, S0 = 1, S2 = 1, v = 1, A = 2, r = 3/2, p = 1/2, θ = 1,α2 = 1 in
Equation (20).

Figure 4. Profile of solution q41(x, t) for Set 2 when S1 = 1, S0 = 0, S2 = 3, v = 1, A = 2, r = 3/2, p = 1/2, θ = 3,α2 = 1 in
Equation (21).
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