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ABSTRACT

In this study, we consider the third order nonlinear Schrodinger equation (TONSE) that models
the wave pulse transmission in a time period less than one-trillionth of a second. With the help of
the extended modified method, we obtain numerous exact travelling wave solutions containing
sets of generalized hyperbolic, trigonometric and rational solutions that are more general than
classical ones. Secondly, we construct the transformation groups which left the equations invari-
ant and vector fields with the Lie symmetry groups approach. With the help of these vector fields,
we obtain the symmetry reductions and exact solutions of the equation. The obtained group-
invariant solutions are Jacobi elliptic function and exponential type. We discuss the dynamic
behaviour and structure of the exact solutions for distinct solutions of arbitrary constants. Lastly,
we obtain conservation laws of the considered equation by construing the complex equation as

a system of two real partial differential equations (PDEs).

1. Introduction

It is observed that most of the physical phenomena
occurring in nature are mathematically modelled by
the evolution equations. However, we know from the
empirical results that many important physical pro-
cesses are the type of nonlinear evolution equations
(NLEEs)

)=0 (1)

F(XI tr u, utr uXr UXXI .
[1-7]. Well-known Korteweg-de Vries equation
Ur + 6qu + UXXX = 0 (2)

represents shallow water waves. Soliton which is a spe-
cial solitary travelling wave -unchanged wave veloc-
ity and shape after interaction- is a generalized wave
packet. For these reasons, a travelling wave solution is
used not only in water wave theory, but also in optical
communication. Solitons are derived from the sensitive
interaction between nonlinear and dispersive terms.

It is desirable that travelling wave solution transmis-
sion in communication systems should be high speed
[8,9]. For example, the (1 + 1)-dimensional nonlinear
Schrodinger equation (NLSE)

ige +2191°q + gx = 0 (3)

can be used to represent the transmission of optical
pulses in optical fibres in the picosecond [10]. It has
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been observed in both experimental and numerical sim-
ulations that higher order nonlinear terms and effects
should be taken into consideration in order to make the
transmission in Equation (3) faster (sub-picosecond or
femtosecond). In this study, we will consider the third
order equations

igx 4+ a2(qee + 29 191%) — ia3(que + 69 191°) =0 (4)

from the hierarchy of the higher order NLSE given in
[8,11-13]. Our main goal is to obtain exact analytical
solutions of this equation. There are many methods
in the literature to obtain the solutions of the nonlin-
ear Schrodinger equations (NLSEs) and NLEEs. Some of
them are listed in [14-27].

Recently, the modified sub-equation extended
method are introduced in [28]. What makes this
method interesting is that, unlike other methods, solu-
tions include the generalized type of hyperbolic and
trigonometric functions. This method has a finite series
expansion form based on the balancing principle.
Higher order NLSEs were taken into consideration by
researchers in recent years [11,29-32]. However, to the
best of our knowledge, the exact solutions that contain
generalized hyperbolic and trigonometric functions of
third-order NLS equations have not been studied. The
lack of studies in the literature on the exact solutions
of Equation (4) motivated us. In order to overcome
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this deficiency, this method, which is very effective and
practical for solving nonlinear differential equations in
mathematical physics, was used to obtain the solutions
of the equation under consideration. Another approach
discussed in this study is Lie technique. In this algo-
rithmic method based on the finding of transformation
groups that leave the equation invariant, reduced equa-
tions and group invariant solutions can be obtained. In
this study, the wave and group invariant solutions of
Equation (4) will be investigated with the help of these
two methods.

In the second section of the article, the reduction of
Equation (4) to the ordinary differential equation will
be discussed. In the third section, the modified sub-
equation extended method is presented and its appli-
cation to Equation (4) is given. In Section 4, Lie groups
method is employed to study Equation (4). Lie point
symmetries and invariant solutions are obtained in Sec-
tions 5 and 6, respectively. In Section 7, the conserva-
tion laws are computed. The results and discussion are
presented in the Section 8.

2. Mathematical model

In spite of the fact that Equation (3) is successful in
describing a great number of nonlinear effects, it may
be necessary to modify the experimental conditions.
Therefore, higher-order effects should be considered
for the transmission of pulses to sub-picoseconds and
femtoseconds which has a better performance on the
transmitting information. The higher-order integrable
NLS hierarchy can be presented as

i9x + 2(qst + 29 191%) — io3(Gue + 641 |q1%)
+ a4 (Getee + 69*a; + 4qq:|?
+ 81ql® gee + 29°q5; + 61al* q)
— fors (Geeeee + 10191 Geee + 30191* ge + 109qeq7;
+ 109G} g + 10G7G; +209*qeqee) + - =0, (5)

where g(x, t) represents the normalized complex ampli-
tude of the optical pulse envelope, asterisk repre-
sents the conjugation, oy (I = 2,3,4,...) are real con-
stant parameters, x denotes the propagation variable
and, t denotes the transverse variable (time in a mov-
ing frame) [11-13]. In this study, we will investigate
the Equation (4) which we have obtained by taking
am =0, m=4,5,....In this section, we aim to simplify
the Equation (4). Thus, we are seeking solutions of (4)
with the following structure

qx,t) = P(£)e¥™D  o(x,t) = —kx + @t +0, (6)

where & = x — vt is the wave variable and P(§) is an
amplitude component of the soliton solution. Here v
and « are the velocity and frequency of the soliton,
respectively. @ is the soliton wave number and, 6 is

the phase constant. If we use the transformation given
by (6) in the Equation (4) and separate the real and imag-
inary parts, a pair of relations emerges. The real part
equation gives

(2ay + 603W) p3

+ (k — azw’ — azwz) P+ (a2 + 3azm) V2P =0,

)
and imaginary part equation reads

azP"Vv + P + (6a3P2P/ — 20 P — 3a3w2P’) v=0.
(8)

Integrating Equation (8) once and setting the integra-
tion constant to zero, we obtain

2vasP? + (1+v (2w — 3a3w2)) P+ as3viP’ =0.
9)

Equation (7) and (9) will be equivalent, provided that

2vos
(2o + 6a3m)

. T+v (—Zazw — 3a3w2)
2

K —oa3w3 —orw
Ol3V3
- (a2 + 3a3m) v2'
Hence, one can find the following parametric con-
straints,
o)

T 3w+ v

—4dvarw? + WVl w + 20w3 + 3w — v
B —3w +v ’

o3

(10)

Eventually, Equations (7) and (9) can be rearranged to
be in the form
2 (1 +v (—2012&7 — 3a3w2))

P// _P3
+ v2 + azv3

P=0. (11)

In the next sections, solutions of the Equation (11)
will be examined using the extended modified sub-
equation method.

3. Basicideas of the extended modified
sub-equation method

Here, we present briefly the main steps of the extended
modified sub-equation method for finding travelling
wave solutions to NLEEs [28]. Firstly, we consider the
general NLEE of the type

P(ul Ut, Ux, Utt, Uxx, - - ) =0. (1 2)
Using the wave transformation
ux,t)y =UE), &=x-wt,

we can rewrite Equation (12) as the following nonlinear
ordinary differential equation (NLODE):

Qu,uuu”, ..y =o. (13)



Let us assume that the solution of ordinary differential
equation (ODE) (13) can be written as a polynomial of
R(§) as follows:

U@ =y bR, b#0, (14)

j=—n

where b; (—n < j < n) are constants which will be deter-
mined later. R(£) in (14) satisfies the NLODE in the form

R(E) =1In(A) (So+ SIR(E) + S2R%(E)), A#0,1.
(15)

The coefficient classifications and corresponding solu-
tion forms of (15) are as follows:
Case I: If A = S3 — 4505, < 0,5, # O, then

I3 J—Atany (@é)

Ri(§) = ~3s, + %5, ,
S v/ —A coty (@é)
Ry (§) = 25, 2, ,
S
Ry (€)= 3
N V—=A (tang (V—AE) £ /1pseca (V—AE))
25 '
S
Re ®) = 3
V7B (cou (VRE) £ P (VAE))
25 '
S
R (€)= 3
V—A <tanA (@&‘) — coty (@5))
+ .
4S5,

Case2:If A = S2 — 45,5, > 0,5, # 0, then

VA
S v Atanhy ( =&
Re (§) = —>2- — (%)

’

A 25,
° B S \/ZCOthA (%é)
7() = T35, 2, ,
S
Rs (§) = ~35,
V/Atanhy (x/Ké ) Jrpsecha (x/&f )
Bl 25, '
S
Ro6) =
VA (cothA (ﬂs) + /Tpcschy (JK&))
B 25, '
S
Rio (6) = —2—512

VA (tanhA (%é) + cothpy (*/TZ.;%»
45, )
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Case 3:1f Sg = 55,51 = 0, then

R11 (§) = tana (So) ,R12 (§) = — cota (S50%),
R13 (§) = tany (250&) & /rp seca (2508),
Ria (§) = — cota (250€) £ \/TPa (2508),

1 So 1 So
Ris (§) = 5 tana (35) —3 coty (35)
Case 4:1f Sg = —S5,51 = 0, then

Ri6 (§) = —tanha (So&), R17 (§) = — cothya (S0%),
Rig (§) = —tanhy (250%) & /rpsecha (250%),
Rig (§) = — cothy (250€) £ /rpcscha (2508),

1 So 1 So
Rao (€) = —= tanha [ 22& ) — = cothy ( 22¢ ).
20 (§) 5 tan A(ZS) 5 A(Zéf)
Case 5:1f $2 — 4S50S, = O then

So (51€1In (A) + 2)
S2In(A)

Ra1 (§) = =2

Case6:1f S = 1, Sp = mi,m # 0and S; = 0 then
Rz (§) = A* —m.

Case7:1fS1 = 0,5, = O then
Ra3 (§) = So& In(A).

Case 8:1f Sg = 0,57 = O then

1

R (§) = TSN AE

Case 9:1f Sg = 0,51 # 0 then

I’51
Sy (cosha (S1&) — sinha (S1&) + 1)’
__ (cosha (518) + sinha (51€)) 51
S (cosha (S1€) + sinha ($1£) +p)

Ras (§) =

Ras (§) =

Case 10:1f Sy = A, 5, = mA, m # 0and So = 0 then

rA*S
R = —\.
27 (§) P~ mrAE
The generalized trigonometric and hyperbolic func-
tions used in the families given above are defined as
follows:

—i (rAiS — pATis
tana (¢) = (‘ = ),
rAis 4+ pA~is
AS — pA~—S
tanhs (¢) = i,
rAS + pA—¢s
i (rA'S + pA~'s
coty (g) = (.—_.),
rA’s — pA—Ils
AS A—S
cothy (¢) = l,
rAS — pA—¢s
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rAis + pA~is
cosa (g) = +,
rAS A~S
cosha (¢) = %,
] —i (rAls — pATis
sina (¢) = ( ),
2
rAS — pA—¢
sinha (¢) = —— P~
2
B 2i
csca(s) = m,
2
csch = —_—,
4 (S) AT — pA-<
seca (¢) = 2
AL = Tals ¢ pais!
2
sech = 16
A (S) A<+ pA—< (16)

In Equation (16), ¢ is an independent variable, r, p >0
constants are deformation parameters. nin (14) is a pos-
itive integer that can be determined by the balancing
procedure constructed taking into account the high-
est order nonlinear terms and the highest order linear
terms in the resulting equation. By using Equation (14)
and Equation (15) into Equation (13), an equation con-
sisting of the powers of R(¢) is obtained. With the
determination of n, the coefficients of the equation
rearranged according to the powers of R(¢) has to
be equal to zero. Hence, we obtain an algebraic sys-
tem of equationsintermsof b_p,...,b_1,bg, b1, ..., bp.
By determining these parameters and rewriting the
Equation (14) using determined parameters, an analytic
solution u(x, t) is obtained, in a closed form.

4. Exact travelling wave solutions

In this section, we will obtain the analytical solutions for
the amplitude of the travelling wave solutions by using
the extended modified sub-equation method. Substi-
tuting P(§) = > 1L, bjR/(£) into Equation (11) and bal-
ancing P” with P3 yields n = 1. Therefore Equation (11)
admits the use of

P(E) = b_1RE) " + by + b1R(E). (17)

Substituting Equation (17) into Equation (11) through
Equation (15) and, collecting the coefficients of different
powers of R(&), setting each coefficient to zero, we get
the system of algebraic equations. By solving the result-
ing system with the help of Maple, the following results
are achieved:
Set 1

After the huge calculations, we deduce the follow-
ing relations between parameters appearing algebraic

equations:

4v*ar? + 9-24v*ar%(In(A))?
2v2ar+3
vt +\/ 5250 4+ 6v*ar2 (In (A))? 512

o = ’
6VO£2
ivin (A)S

b 1 =iSoIn(A)v, by = %,tn =0,

where a3, a3, Vv, k are arbitrary constants. We now can
construct the exact solutions of Equation (4) easily for
these parameters set through the classification cases
which is given in Section 3.

Case 1:If A = S2 — 4505, < 0,5, # 0, then we have

iSiin(Ayv
qr1(x,t) = — +ivin (A) So
-1
_s, ~—Atany (—V _Ag"_‘”))
25, " 25,
% ei(—xx-i—wt-i—@)
iS1In (A
G200, ) = <M +ivin(A)So
-1
s, /—Acoty (—V _Aéx_"t)>
25, 25,
% ei(—KX+wt+9)
iS11In (A
g3(x,t) = (—I ! n2( )V +ivin (A) So
V=A (tana (V=Ax —vt) £\
S N Jpseca (vV—Ax — vt)))
252 252
% el’(*KX‘l’lUtJrG)
iS11n (A
gs(x,t) = <w +ivin (A) So
V=A (cota (V=AKx—vD)\
5 B, (V=B = w))
25, 25,
x ef(*KX‘Fw‘tJrH)
iSiin(Ayv
gs(x,t) = — +ivin (A) So
-1
V=A (tanA (—V —a—v)
5, —oou ()
25, 4S,
X ei(—KX-‘,—ZD’t-"-@)' (1 8)



Case2:If A = S? — 45,5, > 0,S; # 0, then we obtain

+ivin (A) So

G t) <i51 In2(A) v

—1
3 /Atanh, (M)

25, 25

el(f/cx+wt+0)’

iS1In (A
G706 1) = (w +ivin(4)So
—1
I3 /Acothy (—‘/K(;*"U
2S5, 25,
ei(—/cx+wt+6)
iS11In (A
gs(x, 1) = (w +ivin (A) So
JZ(cothA (JK(X— Vo)) +
5, Jrpescha <\/Z(X —vt) )
T2, 25,

el(—xx+wt+0)l

Go(x, t) = <w +ivin (A) So

VAs-v |\
JZ(tanhA (#
-+ coty (43m))
_E B 4S5,

el(—/cx-i-wt-i-@)'

Case 3:1f Sg = S2,57 = 0, then we yield

ivin (A) SO ei(*KX‘HD'tJrQ)

X, t) = ,
qrolx. 1) tang (So(x — vt))
ivin (A) SO ei(ka+wt+9)
gnxt) =— ,
coty (So(x — vt))

ivin (A) So ei(flcx+wt+9)
D2 ) = o 5t — D)) £ iTsecs (2S0(x — v1))’

ivin (A) So el(—KX+wt+9)
qiz(x, t) = ,

—cota (2So(x — vt)) = \/rpa (250(x — vi))
2ivIn (A) Sg ef—Kx+@ttt)

Gia(x, t) =

tana (So(xz—vt)) — coty (So(xz—vr))
Case 4:1f So = —S,,51 = 0, then one obtains

—ivin (A) Sg e/(—xt@t+0)
tanhy (So(x — vt))

’

qi5(x, t) =
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—ivIn (A) S el(—rx+mt+0)

It = ’
G160, 1) coths (So(x — v))
ivin (A) SO ei(—KX+w‘t+9)
qi7(x, t) =
—cothp (25p(x — vt))
+./rpcschy (250(x — vt))
Case 5:1f S3 — 4S50S, = 0 then we attain

iS1In (A v iv(n(A)%S12(x — vt)
qig(x, t) = 3 5
S1x—vt)In(A) + 2)

ei(—KX-FwH—Q)‘ (-I 9)

Case6:1fS; = A, S0 = mA,m # 0and S; = 0thenwe
derive

iS1In(Av  ivin(A)So )ei(—f(x+wt+(9)

qro(x,t) = < 3 VI p——

Case 9:If So = 0,57 # 0 then we construct

g20(x, 1) = (iS1 In (A) v) 271 e/(-ex+0+@D

Case 10: If S = A, S,
we get

=mA,m # 0 and Sp = 0 then

g2 (x,t) = (ixIn (A)v) 271 (-x+@tH0)

Set2

After some calculations, the following relations are
obtained between the parameters in the system of alge-
braic equations:

2v20+3 + \/4 VAa,249-24v4a,2 (In (A))? 555046 viaz2 (In (A))? 512

6va;y

b_1 =0,by =

ivin (A
’vn;)s1,b1:iszln(A)v,

where a3, a3, Vv, k are arbitrary constants. According to
classification cases for these parameters in Section 3,
we can construct the exact solutions of Equation (4) as
follows:

Case I:If A = $2 — 45,5, < 0,5, # 0, then

922(%, 1) = (%iln (A) vi/—Atany < A(ZX_ Vt)))
ei(—xx+wt+0)l
9a3(x, 1) = (%iln (A) v/—Acoty ( A(ZX _ Vt)))

% ei(—xx+wt+(9)l

iln (A) v/=A (tana (V=A(x — v))
+ J/1pseca (V—=A(x — vt)))
2

Gaa(x, t) =

el(—/cx+zz7t+0)l
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i1n (A) vy/=24 (coty (Y250
+ /Pa (@))

qu(X, t) = >
x ei(—KX+wt+9),
in (A) va/—A (tang (V=A(x — vt))
— cota (vV=Ax —vb)))
G (x, t) =

4
x ei(—KX+wt+9)‘
Case2:If A = S? — 4505, > 0,5, # 0, then

G27(x,1) = (—nn (A) vv/Btanh (M)) -

% el(f/(x+9+wt),

Gas(x,1) = (—nn (A) vv/Bcothy (M)) -

% el(f/cx+wt+0)l

iln (A) v/A (cotha (v=A(x — v1))
+./pcschy (V—Ax — vt)))

It -
q29(x, 1) 55

% ei(—/(X+wt+9),

—iln(A) vwA (tanhA (—‘/;A(x - vt))
+cothy (@(x — vt)))
Gzo(x, t) =
4
X ef(—KX+w't+0). (20)

Case 3:1f Sg = 55,51 = 0, then
q31(x,t) = iSoIn (A) vtana (So(x — vt))
x ei(—KX+wt+9)
g32(x, t) = —iSg In (A) vcota (So(x — vt))
% ei(—KX+wr+9)
q33(x,t) = iSoIn (A) v (tana (2So(x — vt))
£ J/Ipseca (2So(x — vt))) e/ KX TP,
q3a(x,t) = iSo In (A) v (—cota (25o(x — vt))
+ /1Pa (2S0(x — vt))) e/ HHTHD),

g3s(x, t) = w (tanA (M)

_coty (SO(Xz_ Vt))) Qi (KXt t0)

Case 4:1f Sg = —S,,51 = 0, then

G36(x, t) = (—iSz In (A) vtanhy (So(x — vt)))
% ei(—Kx+wt+9)l
g37(x, 1) = (iS2 In (A) v (—cothy (2So(x — vi))
£ /rpescha (2So(x — vi)))) e TRx @),

Case 5:If $3 — 4S50S, = 0 then

—2i5vSo (S1(x — vt) In (A) + 2)
$12(x — vt)

+ ivin ;A) 51 ) gl (—kx+wt+6)

g3s(x,t) = <

Case6:1fS; = A, So = mi, m # 0and S; = O then

ivin (A) A ei(ka+wt+9)
—2 .

gza(x,t) =
Case 8:1f Sg = 0,517 = 0 then

el(—KX-HUH-@)_

Gao(x, t) = x—vD)

Case 9:1f Sg = 0,57 # O then

1) = —iln (A) vr$;
Xt = coshy (51(x — vt)) — sinhg (51 (x—Vvt)) +r
4 Vin@® 5 ;A) > ) el(xtmtto), (21)

5. Lie symmetries
We will apply Lie symmetry analysis for Equation (4)
[33-38]. Firstly, we assume

qix, t) = u(x, t) eV, (22)

where u and v are real valued functions. If we substi-
tute (22) into (4) and split up real and imaginary parts,
we obtain
— VxU + apUy — azuvf + 2a2u3 + 3azugve

+ 3a3UeVer + a3UVie — a3uvf + 6a3u3vt =0,

20[2UtVt —+ ouVy + 30[3U1V$ — Q3U¢tt

— 6a3U2Ur + Uy + 3azuvieve = 0. (23)
For the system of the above equations, let us consider
infinitesimal transformations which contain the essen-

tial information determining a one-parameter Lie group
of transformations:

X = X =x+ €& (X, t,u,v) + 0(e?),
t—>t=t+et (x tuv)+ 0,
u— =u+enxtuv) + O0(?),
Vo V=v+ep (xtuv)+ O@?), (24)



with a small parameter (¢). The corresponding vector
field for these transformations is

a d
x = S(Xl tl u, V)_ + T(Xltl ulv)_
Py %

d a
+n(xltlulv)a_+¢(Xltlulv)a_' (25)

u v

When (25) vector field (or generator) is found, the trans-
formation group of the equation or system considered
is

dx

T =E®ELBY), Ko =x
j—i =t(Xt0,V), ftle=o=t
o ®E69), Hleo=u
:—‘: =¢ (X1,0,V), Vle—o=v.

The third prolongations formula pr®X is

ol ol el ol
pr(3)x:X+¢XaT+¢t_+nl’_+ntt_

X V¢ out Uyt
+¢”%”+¢m%m+nxaiux
+¢taivt+ntaiw+¢ﬂ§“+nﬂt%m’ (26)

where 1%, 0%, o' 0t o, oM, ', n"  are  extended

infinitesimal. Hence, system of equations (23) has fol-
lowing invariance conditions:

n(—vx — V2 4 6au® 4 azvi — a3VE + 18a3vtu2)
— ¢*u+ " (a2 + 303v)
+ @' (—20uvt + 3asus — 3a3uvy + 6asu’)
+a3(3n'vee + 3¢"ur + ¢™u) = 0,
1 (azvee — 120300 + 33V Vir)
+ 1" (202ve + 303v¢ — 6a3u?)
+ ¢ 202Vt + 63UVt + 3a3Uvee)
+ ¢ (au + 3azuve) — n™az + 17 = 0.
With the help of the obtained equation pair and the
values of extended infinitesimals, we get an overdeter-

mined system of PDEs. Solving overdetermined system
of PDEs, one can obtain

a3c
T=—-—Ot+ X + Cq,
o3
n=aduy,
asC
=2lito, (27)
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Table 1. Commutator table of the vector fields of (23).

[X;, X1 X; Xz X3 X
X; 0 0 0 0
202
X, 0 0 0 —-3X2 + ﬁx.g
X3 0 0 0 —X3 + ;ng)ﬁ
2
X4 0 3y — 22X XKy - 22X, 0

303 3a3

where ¢1, ¢3, c3 and ¢4 are arbitrary constants. Thus, the
Lie algebra of infinitesimal symmetries of equations (23)
is said to be spanned by the vector field

9
X1=_l
ov
9
X5 = —,
2 0x
9
X3 = —,
3T ot
9 9 202x —3ast 9 9
Xe—u— 4 22,0 2077009 5,9 gg)
ou 3az Jv 3o3 at ox

It is easy to verify that X;, X3, X3, X4 is closed under the
Lie bracket. In fact, we have The commutator table is
anti-symmetric with its diagonal elements all being zero
as we have [Xy, Xg] = —[X3, X,] (Table 1) [39,40].

6. Symmetry reduction and invariant
solutions

In this section, we will get the invariant solutions of sys-
tem of Equation (23). The corresponding characteristic
equations are

dx dt du dv
—=—=—=—, (29)
& t© n ¢
where &,7,7 and ¢ are given by (27). Solving
characteristic Equation (29), we will consider four cases
of vector fields:

X

2r

x
w

7

1+ AXo + uXs,

xX X
Sy

where A, u are arbitrary real numbers different from
zero.

Case (i) Xa

By solving the characteristic equation (29) for the
generator Xy, similarity variables are obtained as fol-
lows:

p =t
uxt)y=F(p),
vix,t) =G(p), (30)

where p and F, G are new independent and dependent
variables, respectively. Substituting (30) into (23), the
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following similarity reduction can be obtained:

arF" — aF (G)° + 202F% + 303F"G' + 3a3F'G”
+a3F'G" — asF (G)° + 6a3F3G =0, 31)

— 603F2F + 202F'G + 02F G + 3asF' (G)°
—a3F" + 3a3G"GF =0, (32)

where (/) denotes derivative with respect to p. Hence,
solution of Equation (4) can be written as

q(x,t) = F(p) e, (33)

where F(p), G(p) are solutions of (31) and (32).

Specially, let us choose G(p) = 1in Equation (31) and
Equation (32). By solving the equation obtained by tak-
ing the integral of the Equation (32) and the equation
obtained from the Equation (31), we obtain

F(p) = CoJacobiSN((p + C1)Ca,i),

where JacobiSN is the Jacobi elliptic function. In this
case, solution of (4) can be obtained as

q(x, t) = CaJacobiSN((t 4 C1)Cy, i) €'.

Case (ii) X3

If the characteristic equation is generated according
to X3 and solved, similarity variables are obtained as
follows

y :XI
ux,t =J(y),
V(X, t) = K()/) ’ (34)

where y and J, K are new variables. Using the expres-
sions given in (34) in the system of Equations (23), simi-
larity reduction can be obtained as follows

(=K' +202%) J =0, (35)
J =0, (36)

where a prime denotes differentiation with respectto y.
Equation (36) has the solution

J(y)=q, (37)

where ¢y is arbitrary constant. Substituting (36) into (35)
and solving, we get

K(y) =2acy + 2, (38)

where ¢; is arbitrary constant. From (22), (34), (37)
and (38), the solution of Equation (4) is
q(x,t) = ¢ elcixra),

Case (iii) X1 + A Xy + uX3

In this case, we deal with the linear combination of
Xj, X3 and X3. Solving the corresponding characteristic
equation, we have

C = ux — )"tl
ux, t)y = P(g),
Vix,t) = ; +Q(©), (39)

where P and Q are new independent variables of new
independent variable ¢. According to new variables
given in (39), we have following reduced equations:

— uhPQ — P+ az13P" — a23P (Q)°

+ 2000P3 = 3030%P"Q — 3030 P’ Q" — w32 *PQ”
+a32*P(Q)° — 6322P°Q =0, (40)
603hP?P +20;02P'Q + a2 2PQ" — 3333P Q)
+ uP + a3r3P” —3a323PQ"Q =0, (41)
where (/) denotes differentiation with respect to ¢. Cor-

responding solution of Equation (4) can be presented
as

q(x,1) = P(¢) 10, (42)

where ¢ is given by (39) and P(p), Q(p) is solutions
of (40) and (41) equations.

Specially, let us choose Q(¢) = Tand @y = —a3/pin
Equation (40) and Equation (41), by solving the equation
obtained by taking the integral of the Equation (41)
and the equation obtained from the Equation (40), we
obtain

— .
P(t) =C JacobiSN
©) 2\/—053A -+ C\{3)\.C§

((«/ask(ask + e )
X + G

a3A?

X K ’
—o3A — U+ 013)»C§

5 Cov/—azh(azh + M))
osh+ 1 ’

where JacobiSN is the Jacobi elliptic function. In this
case, solution of the Equation (4) can be expressed in
term of original variables as

— .
x,t) = C JacobiSN
9.0 2\/—0{3A —u+ a3kC§

((«/013)»(013A + w)(ux — At) )
X + G

a3A?

X K 5
—a3h — 1+ a3iC

" G/ —a3i(azr + M)> Sl O/241)

azh +




Case (iv) X4
Solving the characteristic equation (29) for the gen-
erator X4, we obtain following similarity variables:

2
t o

2 ,2/3
—1+—X/:
X3 30[3

ux,t)=H@)x 3,

o =

3

Voot = W (o) — 222 4 t (43)
’ = o) — - 5 b
270{% 3as3

where o and H, W are new variables. Substituting (43)
into (23), we get the reduced equations as follows
— 9a32H (W)’ + 27a3’H'W' + 2732 H'W"
+ 9a32HW" + 54a3°H*W' + 3030 HW' =0, (44)
S4a3?H?H — 27a3%H (W')? + 3a3H + 9a3’H”
— 27a3’HW'W' + 3a30 W' =0, (45)

where (/) denotes differentiation with respectto o. Thus
the solution of Equation (4) can be given as

qxt) = H(0)X*1/3ei(W(J)7(2a§‘/27a§)xf(a2/3a3)t)’ (46)

where o is given by (43) and H(o), W(o) is solutions
of (44) and (45) equations.

The one parameter groups G; generated by the
X; (i=1,2,3,4) are given in the following table. The
entries give the transformed point exp(eX;)(x, t,u,v) =
*x,t,0,v):

Gi:(x, tuv+e),
Gy: (x+ ¢, tu,v),

G3: (x, t+¢€,u,v),

2 2
—o o
Ga : <e3€x, 3—2)( e3¢ 4+ (t + 3—2x) e ¢ euv
a3 a3

3 2
*2 —3¢ *2 *2 —€
+ —=x(e —D——|t+=—x) (e =1 ).
270t§ ( ) 303 < 303 ) ( )>

We observe that the Lie groups G;, G, and Gs corre-
sponds to the dependent variable, space and time trans-
lation,respectively. If u = f(x,t) and v = g(x, t) are any
functions, then their transform by G4 is

U=e-u=e-f(xt),
3 2

- % —3¢ @2 ) —¢
v=v+ X(e —1)— —({+ —=x)( -1
27()[_,2J ( ) 30[3( 3a3 X )
O‘g 3
=gx, t) + —=x(e7> —1
g, t) 27a§( )

2
o) az —e
—— |t —X ] (e —1
30(3 ( +30l3 )( )

which should be expressed in terms of (X,t) = Gy -
(x,t) = (e 3x, (—03/3a3)x e3¢ + (t + (a3/
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3ua3)x) e~ €). Therefore

2 3
0=ef ek [T+ —2x)ef — 2256,
30[3 30[3

are transformed functions in this particular case.

7. Conservation laws

Consider a kth-order system of PDEs

Eo (X, t,u,v,way, ..., Wg) =0, a=1,2, (47)

with two independent variables s = (x,t) and two
dependent variables w = (u,v). Let wy, I = 1,2,...,k,
denote the collections of /th-order partial derivatives
givenwithw{ = D;(w*), W;}l = DjDi(w®),. . .,interms of
total derivative operator

0 0 0

— o o
J

- _ i=1,2. (48)
as! ow

+...,

Using the familiar consequence that the Euler-Lagrange
operator eliminates a total divergence, we employ the
invariance and multiplier approach for determining
conserved densities and fluxes. Firstly, if (TX,T%) is a
conserved vector corresponding to a conservation law,
then a total space-time divergence expression vanishes
on the solutions of the system (47),

D, T + DTt = 0. (49)

A multiplier M = (M', M?) has the property that

M*(x,t,u,v, Wy, ev s W(k))Ea(S, UTyreves U(k))
= Dy T* + D;T* (50)
or
M, t,u,v,way, ..., W(k))E(S, Uy, -« -, Ugky)
= DyT* + D;T' (51)

hold identically for some conserved vector (T*, T"). The
determining equation for the multiplier M is[33]
E[Mx, tu,v, way, - -

"W(k))E(S, Uy, .. .,U(k))] =0,

(52)

where E is the Euler operator. Thus, the multipliers can
be determined by using (52). Then the corresponding
conserved vectors can be constructed. There are several
approaches to this, where the better-known approach
is the homotopy formula [41-43]. If the real and imag-
inary parts of the equation obtained by substituting
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g = u+ivinto (4) are separated, the following equation
pair is obtained:

— Vx + aaUy + 2a2u3 + 20{2uv2

+ a3vie + 6a3veu? + 6azvv? = 0,

Uy + Vi + 20{2v3 + 2042vu2 — a3l — 6043utu2

— 6azuv? = 0. (53)
As a result of detailed calculations, it can be seen that if
M(Xr tl u, Vv, uyx, Vx, Ut, Vf) = (M1 ’ Mz) Wlth

EJ[M1 (—Vvy + oaus + 2a2u3 + Zazuv2 + a3Vt

+ 6053V1-U2 + 60[3VtV2)

+ Mz(ux + v + 2a2v3 + 2a2vu2 — o3Ustt

— 6oe3utu2 — 6a3utv2)] =0,

the multipliers M with the corresponding densities T! of

the above system with ®f being the densities of (4) can
be obtained.

o M= (ux, vx),

3a3
Tt = - (UPvuy + uev® — Pvg — uv?vy)
a2
-5 (UUg — Utly + VWi — ViVx)

o3
+ 5 (VUtx — Vilex + UxVi

— UVitx + UgVix — UgtVy)

The conserved density is

o

7 = —{Re (@ex + Gt dx)

o3 - - 303 2 -
+ ?Im ((@9t)tx + QG — T|Q| Im (qqx) -
o MP = (v,—u),

T =03 Buv? + 3v* + 3u* + vy
1.2 1,2
+ Uty — 3V — SUf) + a2 (Vup — uvy) .

The conserved density is

_ 303
®f = —alm Gq0) + = lq/*
a3 -
+ = (2Re (@aw) — larl?)

According to the conserved densities obtained
above, itis seen that linear momentum, power or Hamil-
tonian are not conserved. Here, we avoid any physical
interpretation because the densities we obtain above
are unusual [44].

8. Conclusion

In this work, we considered the TONSE which enables
studies and advances in the speed of information
transmission that plays a major role in fields such as
ultrashort pulses, optical fibre, applied physics, commu-
nication system, etc... To contribute to the studies of
the higher order Schrodinger equation and the special
cases of this equation in the literature [31,32,45-47], we
considered Equation (4). This equation was considered
in [29,30] for ay = % and the authors studied the non
autonomous characteristics of the W-shaped solitons
and have modified the Darboux transformation method
to find rational solutions of the equation of the first and
second orders, respectively. As far as we know, the exact
solutions of this equation, which include generalized
hyperbolic and trigonometric functions, were investi-
gated for the first time in this research. We believe that
the solutions we have obtained are new. One of the
advantages of the applied method is that it contains
more general solutions than most of the methods in
the literature. The results obtained by the application of
this method have shown that this method is effective,
strong and applicable to other problems in mathemati-
cal physics.

Moreover, for better understanding the dynamics
of these results, we demonstrated graphs of real-
imaginary parts and modulus of some of them by
giving appropriate values to the parameters which
facilitate to recognize the physical phenomena of this
nonlinear mode in Figure 1-4. The solution domain
was chosen as (x,t) € (—5,5) x (—5,5) in all illustra-
tions. The modulus of g; demonstrated periodic solu-
tion in Figure 1. The modulus of g3 and g7 describe
rational soliton and optical dark travelling wave solu-
tions in Figure 2 and 3, respectively. The modulus
part of g47 demonstrated singular periodic solution in
Figure 4.1n Section 5, we applied Lie classical method to
considered equation to obtain the group-invariant solu-
tions. The vector fields, symmetry reductions, transfor-
mation groups, and group-invariant solutions based on
the Lie group approach were obtained. Finally, we con-
structed conservation laws of Equation (4) and obtained
two conserved densities. The conservation laws that we
obtain can be used in the stability analysis of solutions
and in numerical schemes. In future studies, the con-
formable fractional derivative and the fractional modi-
fied sub-equation extended method for the generalized
hyperbolic and trigonometric functions can be consid-
ered to obtain new solutions for the NLSEs. We believe
that this study might be important for researchers spe-
cializing in the construction of the transmission media
and more specifically optical fibres may have the oppor-
tunity to build new optical fibres, including waves, that
adapt to the types of signals we want to propagate. We
hope that these results are going to be very useful in
future research.
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Figure 1. Profile of solution gq1(x,t) for Set 1 when S; =2,5 =1,

Equation (18).

S;=2v=1A=2r=3/2p=1/206 =1,a5=1in

Re(qis(x,t)) Im(qis(z,t))

Figure 2. Profile of solution gqg(x,t) for Set 1
Equation (19).

Re(gar(x,t))

Figure 3. Profile of solution gy7(x,t) for Set 2 when §; =3,5 =1,

Equation (20).

Ss=1v=1A=2r=3/2p=1/2,0 =1,a; =1 in

Re(qai(z,t)) Im(qa(z,t))

|qaz (2, t)[?

Figure 4. Profile of solution g47(x,t) for Set 2 when §; = 1,5 =0,

Equation (21).
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