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Abstract: In this work, we consider the ill-posed Boussi-
nesq equation which arises in shallow water waves and
non-linear lattices. We prove that the ill-posed Boussinesq
equation is nonlinearly self-adjoint. Using this property
and Lie point symmetries, we construct conservation laws
for the underlying equation. In addition, the generalized
solitonary, periodic and compact-like solutions are con-
structed by the exp-function method.
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1 Introduction
Thenonlinear evolution equations (NLEEs) are extensively
used as models to describe physical phenomena in vari-
ous disciplines of the sciences, especially in �uidmechan-
ics, solid state physics, plasma physics, plasmawaves and
chemical physics. When a NLEE is analysed, one of the
most important question is the construction of the exact
solutions for equation [1]. In the open literature, quite a
few methods for obtaining explicit travelling and solitary
wave solutions to NLEEs have been suggested such as the
inverse scattering method [2], the bilinear transformation
method [3], the tanh–sech method [4, 5], the extended
tanhmethod [6, 7], the sine–cosinemethod [8–10], the ho-
mogeneous balance method [11, 12], the pseudo spectral
method [13], the

(
G′/G

)
-expansion method [14–16], exp-
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function method [17], variational iteration method [18],
homotopy perturbation method [19], the Jacobi elliptic
function method [20], Lie group analysis method [21] and
so on.

It is well known that, conservation laws are very im-
portant tools in the study of di�erential equations from
a mathematical as well as a physical point of view. A
variety of powerful methods, such as Noether’s method
[22], themultiplier approach [21], [23–25], symmetry condi-
tions method on the conserved quantities [26], partial La-
grangian method [27, 28], nonlocal conservation method
[29–31] have been used to investigate conservation laws of
PDEs.

The well known and celebrated Korteweg-de Vries
equation

ut + 6uux + uxxx = 0 (1)

was derived by Korteweg and de Vries in 1895, and which
described weakly nonlinear shallow water waves.

The ill posed Boussinesq (sometimes also called as
bad Boussinesq) equation

utt = uxx + (u2)xx + uxxxx (2)

was described in 1870 by the French scientist J. Boussi-
nesq, for the propagation of long waves on the surface
of water with a small amplitude in one-dimensional non-
linear lattices and in non-linear strings [33–35]. The well
posed Boussinesq equationwas also described in this con-
text. It di�ers only in the sign of the last dispersive term of
the Equation (2). The Equation (2) is used to describe two-
dimensional �ow of shallow-water waves having small
amplitudes [36]. In the weakly nonlinear limit, the shal-
lowwaterwave equation for longwaves reduces to theKdV
equation. The main di�erence between the KdV equation
and Boussinesq equations are the shape of the waves. The
Boussinesq equations allows bidirectional waves while
KdV only unidirectional waves.

Very recently, the analytical and numerical solutions
of the ill posed Boussinesq equation were examined in-
tensively in the literature. In [36], the authors studied
the explicit homoclinic orbits solutions for Equation (2)
with periodic boundary condition and even constraint.
In [37], Jafari et al. obtained the solitary wave solutions
of Equation (2) by sine-cosine and extended tanh func-
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tion method. In [35] and [38], the authors used the the-
ory of Lie groups and obtained the symmetry reductions
and group invariant traveling wave solutions. In [39], �l-
tering and regularization techniques were applied for ob-
taining the approximate solutions and to control growth of
the errors. Gomes and Valls in [40] shows that the dynam-
ics in the centre manifold of the ill-posed equation tracks
the dynamics of thewell-posed equation. Their results give
partial justi�cation to the long-wave perturbation theory.
There exist also some literatures around thenumerical and
analytical studies for the singulaly perturbed Boussinesq
equation [41, 42]. Meanwhile, we observe some important
studies on the local fractional Boussineq equations (see,
[43] and also [44]).

In the present study, we �rst intended to study the ex-
act traveling wave solutions including periodic, solitonary
and compact-like solutions of Equation (2). For this aim,
we implemented the exp-function method which was de-
veloped by He and Wu [17]. Then we investigated nonlin-
ear self-adjointness and local conservation laws of Equa-
tion (2) by Ibragimov’s nonlocal conservation method.

The plan of the paper is organized as follows : In Sec-
tion 2, we give brie�y the description of the exp-function
method.Then, we apply this method to Equation (2). Sec-
tion 3 is devoted to the nonlinear self adjointness, multi-
plier functions and conservation laws of Equation (2). In
Section ??, some concluding remarks are given.

2 Nonlinear self-adjointness and
conservation laws for
Equation (2)

We brie�y present notation to be used and recall basic
de�nitons and theorems that appear in [29, 30] (see also
[25]).

Consider the kth order system of PDEs of n indepen-
dent variables x = (x1, x2, ..., xn) and m dependent vari-
ables u = (u1, u2, ..., um)

Eα
(
x, u, u(1), ..., u(k)

)
= 0, α = 1, ...,m, (3)

where u(i) is the collection of ith-order partial derivatives
and the total di�erentiation operator with respect to xi

given by

Di =
∂
∂xi + u

α
i
∂
∂uα + u

α
ij
∂
∂uαj

+ ..., i = 1, ..., n (4)

in which the summation convention is used. The adjoint
equations to Equation (3) are given by

Eα*(x, u, w, u(1), w(1), ..., u(k), w(k)) = 0, α = 1, ...,m
(5)

with

Eα*(x, u, w, u(1), w(1), ..., u(k), w(k)) =
δL
δuα , (6)

where L is the formal Lagrangian for Equation (3) de�ned
by

L = wαEα ≡
m∑
α=1
wαEα (7)

Here w = (w1, ..., wm) are adjoint variables and
w(1), ..., w(k) are their derivatives. Here δ

δu is the Euler-
Lagrange operator and de�ned by

δ
δuα = ∂

∂uα +
∞∑
k≥1

(−1)k Di1 . . . Dik
∂

∂uαi1 ...ik
, α = 1, ...,m.

(8)
so that

δL
δuα = δ(wαEα)

δuα = ∂(w
αEα)

∂uα

− Di
(
∂(wαEα)
∂uαi

)
+ DiDk

(
∂(wαEα)
∂uαik

)
− ...

De�nition 1. [30] Equation (3) is said to be strictly self-
adjoint if the adjoint Equation (5) becomes equivalent to the
original Equation (3) by the substitution w = u.

De�nition 2. [30] Equation (3) is said to be nonlinearly
self-adjoint if its adjoint equation (5) becomes equivalent to
the original equation after the substitution

w = ϕ (9)

where ϕ is a nonzero function depending on the indepen-
dent variables, the dependent variable as well as the partial
derivatives of the dependent variable. In other words the fol-
lowing identities holding for undetermined coe�cients λβα ,

Eα*(x, u, w, u(1), w(1), ..., u(k), w(k))

= λβαEβ(x, u, u(1), ..., u(s)), α, β = 1, ...,m (10)

which will be applicable in the computations.

Theorem 3. [29] Every Lie point, Lie-Bäcklund and non-
local symmetry

X = ξ i(x, u, u(1), ...)∂xi + ηα(x, u, u(1), ...)∂uα (11)
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of Equation (3) leads to a conservation law Di(T i) = 0 con-
structed by the formula

T i = ξ iL

+ Wα
[
∂L
∂ui − Dj

(
∂L
∂uij

)
+ DjDk

(
∂L
∂uijk

)
− DjDkDm

(
∂L

∂uijkm

)]
+ Dj

(
Wα) [ ∂L

∂uij − Dk(
∂L
∂uijk ) + DkDm

(
∂L

∂uijkm

)]
+ DjDk

(
Wα) [ ∂L

∂uijk
− Dm

(
∂L

∂uijkm

)]
+ DjDkDm

(
Wα) [( ∂L

∂uijkm

)]
, (12)

where Wα = ηα − ξ iuαi and ξ i , ηα are the coe�cient func-
tions of the associated generator (11).

Theorem 4. The ill posed Boussinesq Equation (2) be-
comes nonlinearly self-adjoint if and only if there exists a
di�erentiable function

w = c1xt + c2x + c3t + c4,

where ci are arbitrary constants.

Proof. The formal Lagrangian for the ill posed Boussinesq
Equation (2)

L = w(utt − uxx − (u2)xx − uxxxx), (13)

where w is a new dependent variable. The adjoint Equa-
tion to (2) has the form

F* ≡ δL
δu = 0,

where the variational derivative of the Lagrangian in our
case is

δL
δu = ∂(wF)

∂u − Dx
(
∂(wF)
∂ux

)
+ D2

x

(
∂(wF)
∂uxx

)
+ D2

t

(
∂(wF)
∂utt

)
+ D4

x

(
∂(wF)
∂uxxxx

)
(14)

and the operators Dt and Dx denote the total derivatives in
t, x. From the (14) equation we �nd the adjoint equation.

F* ≡ wtt − (1 + 2u)wxx − wxxxx = 0. (15)

If one substitutes u instead of w in Equation (15), Equa-
tion (2) is not recoverd. Consequently, Equation (2) is not
strictly self-adjoint. According to De�nition 2, Equation (2)
is nonlinearly self-adjoint if the identity

F* |w=ϕ(x,t,u)= λ
[
utt − uxx − (u2)xx − uxxxx

]
,

holds the following conditions and λ is a regular unde-
termined coe�cient. The required derivatives of adjoint
Equation (15),

wx = ϕx + ϕuux , wt = ϕt + ϕuut ,

wxx = ϕxx + 2ϕxuux + ϕuuu2x + ϕuuxx ,

wtt = ϕtt + 2ϕtuut + ϕuuu2t + ϕuutt ,

wxxxx = 12uxuxxϕxuu + 6u2xuxxϕuuu + 4uxuxxxϕuu
+ϕxxxx + 4uxϕxxxu + 6uxxϕxxu + 4uxxxϕxu + 4u3xϕxuuu
+u4xϕuuuu + uxxxxϕu + 6u2xϕxxuu + 3u2xxϕuu

then the condition (10) is written as follows:

ϕtt + 2ϕtuut + ϕuuu2t + ϕuutt
−(1 + 2u)(ϕxx + 2ϕxuux + ϕuuu2x + ϕuuxx) − 12uxuxxϕxuu
−6u2xuxxϕuuu − 4uxuxxxϕuu − ϕxxxx − 4uxϕxxxu
−6uxxϕxxu − 4uxxxϕxu − uxxxxϕu − 6u2xϕxxuu
−4u3xϕxuuu − u4xϕuuuu − 3u2xxϕuu
= λ
[
utt − uxx − (u2)xx − uxxxx

]
Comparing the coe�cients of derivatives u, we construct
determining equations system and solving this system we
obtain the adjoint variable as

w = c1xt + c2x + c3t + c4, (16)

with c1, c2, c3,c4 arbitrary constants.

Taking into account the form of the substitution (16), we
have a four parameter family of the substitution

ϕ1 = xt, ϕ2 = x, ϕ3 = t, ϕ4 = 1

which allows us to get local conservation laws.
We note that the Lie point symmetry generators of

Equation (2)

X1 =
∂
∂x , X2 =

∂
∂t , X3 =

x
2
∂
∂x + t

∂
∂t +

(
−12 − u

)
∂
∂u

obtained in [35] and [38]. We now construct the corre-
sponding local conserved vectors:

Case 5. For symmetry operator X = ∂
∂x , the components

of the conserved vector T = (T t , Tx) are given by
– Substitution ϕ1 = xt :

T t = xux − xtutx , Tx = xtutt − tux − 2tuux − tuxxx .

– Substitution ϕ2 = x :

T t = −xutx , Tx = xutt − ux − 2uxu − uxxx .
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– Substitution ϕ3 = t :

T t = ux − tutx , Tx = tutt .

– Substitution ϕ4 = 1 :

T t = −utx , Tx = utt .

It is readily seen that using the divergence condition we ob-
tain the null conserved vectors corresponding to the substi-
tutions ϕ3 = t and ϕ4 = 1.

Case 6. For symmetry operator X = ∂
∂t , the components of

the conserved vector T = (T t , Tx) are given by
– Substitution ϕ1 = xt :

T t = −xtuxx − 2xtu2x − 2txuuxx − xtuxxxx ,
Tx = 2xtuxut − tut − 2tuut + xtutx + 2txuutx

− tuxxt + xtuxxxt .

– Substitution ϕ2 = x :

T t = −xuxx − 2xu2x − 2xuuxx − xuxxxx ,

Tx = 2xutux − ut − 2uut + xutx + 2xuutx
− utxx + xutxxx .

– Substitution ϕ3 = t

T t = −tuxx − 2tu2x − 2tuuxx − tuxxxx + ut ,
Tx = 2tuxut + tutx + 2tuutx + tutxxx .

– Substitution ϕ4 = 1 :

T t = −uxx − 2u2x − 2uuxx − uxxxx ,
Tx = 2utux + utx + 2utxu + utxxx .

It is readily seen that using the divergence condition we ob-
tain the null conserved vectors corresponding to the substi-
tutions ϕ1 = xt, ϕ2 = x and ϕ4 = 1.

Case 7. For symmetry operator X = x
2
∂
∂x + t ∂∂t +(

−12 − u
)
∂
∂u , the components of the conserved vector T =

(T t , Tx) are given by
– Substitution ϕ1 = xt :

T t = −12 x
(
2t2uxx + 4t2u2x + 4t2uuxx + 2t2uxxx − 1

− 2u − xux + 2tut + xtutx
)
,

Tx = 1
2 t(

−1 + 4xux + x2utt − 4tutu + 2txutx + 4xuxxx + 2txuxxxt
+8uxux + 4txutux + 4txutxu − 4u − 4u2 − 2tut − 4uxx − 2ttxx

)
.

– Substitution ϕ2 = x :

T t = − 1
2 x
(
2tuxx + 4tu2x + 4tuuxx + 2uxxx + 4ut + xutx

)
,

Tx = 2xux − tut + 2xuxxx − tutxx + 1
2 x

2utt − 2u2

−2tutu + xtutx − 1
2 − 2u − 2uxx + 2txuxut

+2xtutxu + 4uxux .

– Substitution ϕ3 = t :

T t = −t2uxx − 2t2u2x − 2t2uuxx − 2tuxxx +
1
2 + u

+ 1
2 xux − tut −

1
2 txutx ,

Tx = 1
2 t
(
xutt + 5ux + 10uxu + 4tuxut + 2tutx

+ 4tutxu + 5uxxx
)
.

– Substitution ϕ4 = 1 :

T t = −tuxx − 2tu2x − 2tuuxx − uxxx − 2ut − 1
2 xutx ,

Tx = 1
2 xutt +

5
2ux + 5uxu + 2tutux + tutx + 2tutxu

+ 5
2uxxx .

It is readily seen that using the divergence condition we ob-
tain the null conserved vector corresponding to the substi-
tution ϕ1 = xt.

Remark 8. With the aid of package program Maple14, we
have checked that the above vectors (T t , Tx) are the conser-
vation vector of Equation (2).

3 Exact solutions of Equation (2)
with exp function method

Let us consider the Equation (2). Introducing a wave vari-
able ξ de�ned as

ξ = kx + wt, (17)

where k and w are nonzero constants. Replacing (17) into
(2), we have the following ordinary di�erential equation
(ODE):(

w2 − k2
)
u
′′
− 2k2

(
u
′)2
− 2k2u

′′
u − k4u(4) = 0, (18)

where prime denotes the di�erential with respect to ξ .
The Exp-function method which was developed by

He and Wu [17] is very simple and straightforward. The
method systematically studied for a plenty of NLEEs. It is
based on the assumption that travelingwave solutions can
be expressed in the following form

u (ξ ) =
∑d

n=−c an exp (nξ )∑q
n=−p bm exp (mξ )

, (19)
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where c, d, p and q are positive integers which are un-
known to be further determined, an and bm are unknown
constants.

We suppose that the solution of Equation (18) can be
expressed as

u (ξ ) = ac exp (cξ ) + ... + a−d exp (−dξ )
bp exp (pξ ) + ... + b−q exp (−qξ )

. (20)

This well-matched formulation plays a important and ba-
sic part for obtaining the exact solution of mathematical
problems. To determine values of c and p, we balance term
of highest order in Equation (18) with the highest order
nonlinear term. By simple calculation, we have

u(4) = c1 exp [(c + 15p) ξ ] + ...c2 exp [16pξ ] + ...
(21)

and

u
′′
u = c3 exp [(2c + 3p) ξ ] + ...

c4 exp [5pξ ] + ...

= c3 exp [(2c + 14p) ξ ] + ...
c4 exp [16pξ ] + ...

, (22)

where ci are determined coe�cients only for simplicity.
Balancing highest order of Exp-function in Equa-

tions (21) and (22), we have

2c + 14p = c + 15p, (23)

which leads to the result

p = c. (24)

Similarly to determine values of d and q, we balance the
linear term of lowest order in Equation (18)

u(4) = ... + d1 exp [− (d + 15q) ξ ]
... + d2 exp [−16qξ ]

(25)

and

u
′′
u = ... + d3 exp [− (2d + 3q) ξ ]

... + d4 exp [−5qξ ]

= ... + d3 exp [− (2d + 14q) ξ ]
... + d4 exp [−16qξ ]

(26)

where di are determined coe�cients only for simplicity.
Balancing highest order of Exp-function in Equa-

tions (25) and (26), we have

− (d + 15q) = − (2d + 14q) , (27)

which leads to the result

q = d. (28)

For simplicity, we set p = c = 1 and q = d = 1, so Equa-
tion (20) reduces to

u (ξ ) = a1 exp (ξ ) + a0 + a−1 exp (−ξ )b1 exp (ξ ) + b0 + b−1 exp (−ξ )
. (29)

Substituting Equation (29) into Equation (18), and by the
help of Maple, we have

0 = 1
A

[
(R4 exp (4ξ ) + R3 exp (3ξ ) + R2 exp (2ξ )

+ R1 exp (ξ ) + R0 + R−1 exp (−ξ ) + R−2 exp (−2ξ )

+R−3 exp (−3ξ ) + R−4 exp (−4ξ )
]
, (30)

where

R4 = −k2a0b41 − k4a0b41 − w2a1b31b0 + k2a1b31b0
+ 2k2a21b21b0 − 2k2a1a0b31 + k4a1b31b0 + w2a0b41

R3 = 6k2a1b0a0b21 − w2a1b20b21 − k2a0b31b0
− 4w2a1b31b−1 + 4k2a1b31b−1 + 8k2a21b21b−1
− 8k2a1a−1b31 + 16k4a1b31b−1 + w2a0b31b0
+ k2a1b20b21 − 2k2a21b20b1 − 11k4a1b21b20
+ 11k4a0b31b0 − 16k4a−1b41 − 4k2a−1b41
− 4k2a20b31 + 4w2a−1b41

R2 = 7k2a1b21b−1b0 + 26k2a1b−1a0b21
− 4k2a1b0a−1b21 − 4k2a21b0b−1b1
− 77k4a1b21b0b−1 − 7w2a1b21b−1b0
+ 6k2a1b20a0b1 − w2a0b21b20 − k2a1b30b1
+ 11w2a−1b31b0 − 4w2a0b31b−1 − 11k2a−1b31b0
+ 4k2a0b31b−1 − 18k2a−1b31a0 + 76k4a0b31b−1
+ w2a1b30b1 + k2a0b21b20 − 2k2a20b21b0 + 11k4a1b1b30
− 11k4a0b21b20 + k4a−1b31b0 − 4k2a21b30

R1 = −w2a0b1b30 + k2a0b1b30 − 8k2a21b2−1b1
− 2k2a0a1b30 + 2k2a20b1b20 + k4a0b1b30 − 18k2a21b20b−1
+ w2a1b40 − k2a1b40 − 16k2a2−1b31 − k4a1b40
+ 24k2a1b−1a−1b21 − 26k2a−1b21a0b0
+ 4k2a1b20a−1b1 + 28k2a1b−1a0b1b0
− 13w2a0b21b−1b0 − 2k2a1b1b−1b20 + 13k2a0b21b−1b0
+ 58k4a1b1b20b−1 − 47k4a0b21b−1b0
+ 2w2a1b1b−1b20 − 4w2a1b21b2−1 + 11w2a−1b21b20
+ 4w2a−1b31b−1 + 4k2a1b21b2−1 − 11k2a−1b21b20
− 4k2a−1b31b−1 + 12k2a20b21b−1 − 176k4a1b21b2−1
− 11k4a−1b21b20 + 176k4a−1b31b−1

R0 = 40k2a1b−1a−1b1b0 − 30k2a2−1b21b0
− 30k2a21b2−1b0 + 5w2a1b30b−1 + 5w2a−1b1b30
− 10w2a0b21b2−1 − 5k2a1b30b−1 − 5k2a−1b1b30
+ 10k2a0b21b2−1 − 230k4a0b21b2−1
− 5k4a1b30b−1 − 5k4a−1b1b30 − 10w2a0b1b−1b20
− 5k2a1b1b2−1b0 − 5k2a−1b21b0b−1
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+ 10k2a0b1b−1b20 − 10k2a1b20a0b−1
− 10k2a−1b20a0b1 + 20k2a20b1b−1b0
+ 10k2a1a0b1b2−1 + 10k2a0a−1b21b−1
+ 115k4a1b1b0b2−1 + 115k4a−1b21b0b−1
+ 10k4a0b1b−1b20 + 5w2a−1b21b0b−1
+ 5w2a1b1b2−1b0

R−1 = 28k2a−1b1a0b−1b0 − k2a−1b40 + w2a−1b40
− 16k2a21b3−1 − k4a−1b40 + 24k2a1b2−1a−1b1
− 26k2a1b2−1a0b0 + 4k2a1b−1a−1b20
+ 2w2a−1b1b20b−1 − 13w2a0b1b2−1b0
− 2k2a−1b1b20b−1 + 13k2a0b1b2−1b0
+ 58k4a−1b1b20b−1 − 47k4a0b1b2−1b0
− w2a0b−1b30 + k2a0b−1b30
− 18k2a2−1b1b20 − 8k2a2−1b21b−1
− 2k2a0a−1b30 + 2k2a20b−1b20 + k4a0b−1b30
+ 4w2a1b1b3−1 + 11w2a1b20b2−1 − 4w2a−1b21b2−1
− 4k2a1b1b3−1 − 11k2a1b20b2−1 + 4k2a−1b21b2−1
+ 12k2a20b2−1b1 − 11k4a1b20b2−1 + 176k4a1b1b3−1
− 176k4a−1b21b2−1

R−2 = −7w2a−1b1b0b2−1 + 7k2a−1b1b0b2−1
− 4k2a1a−1b0b2−1 + 26k2a0a−1b1b2−1
− 4k2a2−1b0b−1b1 − 77k4a−1b1b0b2−1
+ 6k2a−1b20a0b−1 − w2a0b2−1b20 − k2a−1b30b−1
+ 11w2a1b0b3−1 − 4w2a0b1b3−1 − 11k2a1b0b3−1
+ 4k2a0b1b3−1 − 18k2a1a0b3−1 + 76k4a0b1b3−1
+ w2a−1b30b−1 + k2a0b2−1b20 − 2k2a20b2−1b0
+ 11k4a−1b30b−1 − 11k4a0b2−1b20 + k4a1b0b3−1
− 4k2a2−1b30

R−3 = 6k2a−1b0a0b2−1 − w2a−1b20b2−1 − k2a0b3−1b0
− 4w2a−1b1b3−1 + 4k2a−1b1b3−1 + 8k2a2−1b1b2−1
− 8k2a−1a1b3−1 + 16k4a−1b1b3−1 + w2a0b3−1b0
+ k2a−1b20b2−1 − 2k2a2−1b20b−1 − 11k4a−1b20b2−1
+ 11k4a0b3−1b0 − 16k4a1b4−1 − 4k2a20b3−1
+ 4w2a1b4−1 − 4k2a1b4−1

R−4 = −k4a0b4−1 − k2a0b4−1 − w2a−1b0b3−1
+ k2a−1b0b3−1 − 2k2a−1a0b3−1 + 2k2a2−1b0b2−1
+ k4a−1b0b3−1 + w2a0b4−1.

Equating the coe�cients of exp (nξ ) to be zero, we have
R4 = 0, R3 = 0, R2 = 0, R1 = 0

R0 = 0,
R−1 = 0, R−2 = 0, R−3 = 0, R−4 = 0.

(31)

Solving the system, Equation (31), simultaneously, we ob-
tain

a0 = 1
2
b0
(
−k2 + 5k4 + w2)

k2

a1 = −12

(
k2 + k4 − w2) b1

k2 , (32)

a−1 = −18
b20
(
k2 + k4 − w2)
k2b1

,

b0 = b0 , b1 = b1, k = k, w = w.

Therefore, we obtain the following solution :

u (x, t) = − 1
2k2

(
k4 + k2 − w2

)
(33)

+ 12b0b1k2
4b21 exp (kx + wt) + 4b0b1 + b20 exp (−kx − wt)

.

Generally b0, b1, k and w are real numbers, and the ob-
tained solution is a generalized solitonary solution.

In case k and w are imaginary number, the obtained
solitonary solution can be transformed into periodic so-
lution or compact-like solution. If we write k = iK and
w = iW and use the following equality

exp (kx + wt) = exp (i (Kx +Wt)) = cos (Kx +Wt)
+ i sin ((Kx +Wt))

and

exp (−kx − wt) = exp (−i (Kx +Wt)) = cos (Kx +Wt)
− i sin ((Kx +Wt)) .

Equation (33) becomes

u (x, t) = 1
2K2

(
K4 − K2 +W2

)
(34)

+ (−12) b0b1K2(
4b21 + b20

)
cos (Kx +Wt) + 4b0b1

.

+i
(
4b21 − b20

)
sin (Kx +Wt)

(35)

If we search for a periodic solution or compact-like solu-
tion, the imaginary part in the denomitor of Equation (34)
must be zero, that requires that

4b21 − b20 = 0. (36)

Solving b0 from Equation (36), we have

b0 = ±2b1. (37)
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Substituting Equation (37) into Equation (34) results in a
compact-like solution, which reads.

u (x, t) = 1
2K2

(
K4 − K2 +W2

)
± 3K2

cos (Kx +Wt)∓ 1 . (38)

Remark 9. Comparing our results and Jafari et al. results
[38] then it can be seen that the results are same.

Remark 10. We have veri�ed obtained the solutions of
Equation (33), Equation (34) and Equation (38) with the aid
of Maple.

4 Conclusion
In this studywe considered the ill posed Boussinesq equa-
tion. We �rst discussed the exact travelling wave solutions
with the exp functionmethod.We have constructed gener-
alized solitonary, periodic and compact-like solutions.The
obtained exact solutions should be very useful in vari-
ous areas of applied mathematics and they can interpret
some physical phenomena. The Exp-function method has
more advantages: it is direct and concise. In addition, this
method clearly avoids some linearization processes, un-
realistic assumptions and consequently it provides exact
solutions e�ciently.Then we considered a nonlocal con-
servation method. We constructed an adjoint equation by
applying the formal Lagrangian to the variational deriva-
tive. We showed that the ill posed Boussinesq equation is
not self-adjoint. Using the notion of nonlinear self-adjoint
we obtained numerous local conservation laws. The con-
servedvectors obtainedhere canbeused in reductions and
solutions of the underlying equation [45].
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