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Abstract
The role of fractional integral operators can be found as one of the best ways to
generalize classical inequalities. In this paper, we use different fractional integral
operators to produce some inequalities for the weighted and the extended
Chebyshev functionals. The results are more general than the available classical
results in the literature.
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1 Introduction and preliminaries
Fractional calculus, which is calculus of integrals and derivatives of any arbitrary real or
complex order, has gained remarkable popularity and importance during the last four
decades or so, due mainly to its demonstrated applications in diverse and widespread
fields ranging from natural sciences to social sciences (see, e.g., [1, 3, 17, 19, 20, 23, 24] and
the references therein). Beginning with the classical Riemann–Liouville fractional integral
and derivative operators, a large number of fractional integral and derivative operators and
their generalizations have been presented. Also, many authors have established a variety
of inequalities for those fractional integral and derivative operators, some of which have
turned out to be useful in analyzing solutions of certain fractional integral and differential
equations.

Definition 1.1 Let [a, b] (–∞ < a < b < ∞) be a finite interval on the real axis R. The
Riemann–Liouville fractional integrals Jα

a+f and Jα
b–f of order α ∈ C (�(α) > 0) with a ≥ 0

and b > 0 are defined, respectively, by

(
Jα
a+f

)
(x) :=

1
�(α)

∫ x

a
(x – t)α–1f (t) dt

(
x > a;�(α) > 0

)
(1.1)

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13660-020-02512-8
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-020-02512-8&domain=pdf
http://orcid.org/0000-0001-5372-7543
mailto:bariscelik15@hotmail.com


Çelik et al. Journal of Inequalities and Applications        (2020) 2020:246 Page 2 of 10

and

(
Jα
b–f

)
(x) :=

1
�(α)

∫ b

x
(t – x)α–1f (t) dt

(
x < b;�(α) > 0

)
. (1.2)

Here, �(α) is the familiar gamma function (see, e.g., [28, Sect. 1.1]). For more details and
properties concerning the fractional integral operators (1.1) and (1.2), we refer the reader,
for example, to the works [6, 13, 15, 18, 19, 24, 25, 27, 29, 30] and the references therein.

In [5], the Chebyshev functional for two integrable functions f and g on [a, b] is defined
as follows:

T(f , g) =
1

b – a

∫ b

a
f (x)g(x) dx –

1
b – a

(∫ b

a
f (x) dx

)
1

b – a

(∫ b

a
g(x) dx

)
. (1.3)

In [3, 11, 12] the applications and several inequalities related to (1.3) are found. In [5],
the weighted Chebyshev functional is defined by

T(f , g, p) =
1

b – a

∫ b

a
p(x) dx

∫ b

a
f (x)g(x)p(x) dx

–
∫ b

a
f (x)p(x) dx

∫ b

a
g(x)p(x) dx, (1.4)

where f and g are integrable on [a, b] and p is a positive and integrable function on [a, b].
In [14], Elezovic et al. proved that

∣
∣T(f , g, p)

∣
∣ ≤ 1

2

(∫ b

a

∫ b

a
p(x)p(y)|x – y| 1

α′ + 1
β′

∣∣
∣∣

∫ x

y

∣
∣f ′(t)

∣
∣α dt

∣∣
∣∣

γ
α

dx dy
) 1

γ

×
(∫ b

a

∫ b

a
p(x)p(y)|x – y| 1

α′ + 1
β′

∣∣∣
∣

∫ x

y

∣∣g ′(t)
∣∣β dt

∣∣∣
∣

γ ′
β

dx dy
) 1

γ ′

≤ 1
2
∥∥f ′∥∥

α

∥∥g ′∥∥
β

(∫ b

a

∫ b

a
p(x)p(y)|x – y| 1

α′ + 1
β′ dx dy

)
,

where f ′ ∈ Lα([a, b]) and g ′ ∈ Lβ ([a, b]), α,β ,γ > 1, 1
α

+ 1
α′ = 1, 1

β
+ 1

β ′ = 1, and 1
γ

+ 1
γ ′ = 1.

In [10], Dahmani et al. proved the following fractional integral inequality for Chebyhev
functionals:

2
∣
∣Jδp(t)Jδpfg(t) – Jδpf (t)Jδpg(t)

∣
∣

≤ ‖f ′‖α‖g ′‖β

�2(δ)

∫ t

0

∫ t

0
(t – x)δ–1(t – y)δ–1|x – y|p(x)p(y) dx dy,

where f ′ ∈ Lα([0,∞)) and g ′ ∈ Lβ ([0,∞)), α,β > 1 and 1
α

+ 1
β

= 1.
Additionally, taking a positive and integrable function q on [a, b], we consider the ex-

tended Chebyshev functional [7, 22]

T̃(f , g, p, q) =
∫ b

a
q(x) dx

∫ b

a
f (x)g(x)p(x) dx +

∫ b

a
p(x) dx

∫ b

a
f (x)g(x)q(x) dx

–
∫ b

a
f (x)p(x) dx

∫ b

a
g(x)q(x) dx –

∫ b

a
f (x)q(x) dx

∫ b

a
g(x)p(x) dx. (1.5)



Çelik et al. Journal of Inequalities and Applications        (2020) 2020:246 Page 3 of 10

Many researchers have given valuable attention to functionals (1.4) and (1.5). For more
details, we refer the reader to [3, 8, 21] and the references therein.

Dahmani et al. [9], established some inequalities for the weighted and the extended
Chebyshev functionals with certain conditions via Riemann–Liouville fractional integrals,
which are recalled in the following two theorems.

Theorem 1.1 Let f and g be two differentiable functions on [0,∞) and p be a positive and
integrable function on [0,∞). If f ′ ∈ Lα([0,∞)), g ′ ∈ Lβ ([0,∞)), α,β ,γ > 1 with 1

α
+ 1

α′ = 1,
1
β

+ 1
β ′ = 1, and 1

γ
+ 1

γ ′ = 1, then for all t > 0, δ > 0, we have the inequality

2
∣∣Jδp(t)Jδpfg(t) – Jδpg(t)Jδpf (t)

∣∣

≤
(‖f ′‖γ

α

�(δ)

∫ t

0

∫ t

0
(t – x)δ–1(t – y)δ–1p(x)p(y)|x – y| 1

α′ + 1
β′ dx dy

) 1
γ

×
(‖g ′‖γ ′

β

�(α)

∫ t

0

∫ t

0
(t – x)δ–1(t – y)δ–1p(x)p(y)|x – y| 1

α′ + 1
β′ dx dy

) 1
γ ′

≤ ‖f ′‖α‖g ′‖β

�(δ)2

(∫ t

0

∫ t

0
(t – x)δ–1(t – y)δ–1|x – y| 1

α′ + 1
β′ p(x)p(y) dx dy

)
.

Theorem 1.2 Let f and g be two differentiable functions on [0,∞) and p, q be two positive
and integrable functions on [0,∞). If f ′ ∈ Lα([0,∞)), g ′ ∈ Lβ ([0,∞)), α,β ,γ > 1 with 1

α
+

1
α′ = 1, 1

β
+ 1

β ′ = 1, and 1
γ

+ 1
γ ′ = 1, then for all t > 0, δ > 0, we have

∣∣Jδq(t)Jδpfg(t) + Jδp(t)Jδqfg(t) – Jδpf (t)Jδqg(t) – Jδqf (t)Jδpg(t)
∣∣

≤ ‖f ′‖α‖g ′‖β

�(δ)2

(∫ t

0

∫ t

0
(t – x)δ–1(t – y)δ–1|x – y| 1

α′ + 1
β′ p(x)q(y) dx dy

)
.

2 Main results
In this section we present some inequalities for the weighted and the extended Chebyshev
functionals involving the fractional integral operators, respectively, Katugampola frac-
tional integral operator, mixed conformable fractional integral operator, and Hadamard
fractional integral operator.

Definition 2.1 ([16]) Let [a, b] ⊂R be a finite interval. Then the left- and right-hand side
Katugampola fractional integrals of order (α > 0) of f ∈ Xp

c (a, b) are defined as follows:

ρIα
a+f (x) =

ρ1–α

�(α)

∫ x

a

tρ–1

(xρ – tρ)1–α
f (t) dt

and

ρIα
b–f (x) =

ρ1–α

�(α)

∫ b

x

tρ–1

(tρ – xρ)1–α
f (t) dt

with a < x < b and ρ > 0, if the integral exists.

Theorem 2.1 Let f and g be two differentiable functions on [0,∞) and p be a positive and
integrable function on [0,∞). If f ′ ∈ Xp

c (aρ , bρ), g ′ ∈ Xp
c (aρ , bρ), r, s,γ > 1 with 1

r + 1
r′ = 1,
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1
s + 1

s′ = 1, and 1
γ

+ 1
γ ′ = 1, then for all t > 0, α,ρ > 0, we have

2
∣∣ρIαp(t)ρIαpfg(t) – ρIαpg(t)ρIαpf (t)

∣∣ (2.1)

≤
[

ρ1–α‖f ′‖γ
r

�(α)

∫ t

0

∫ t

0

xρ–1

(tρ – xρ)1–α

yρ–1

(tρ – yρ)1–α
|x – y| 1

r′ + 1
s′ p(x)p(y) dx dy

] 1
γ

×
[

ρ1–α‖g ′‖γ ′
s

�(α)

∫ t

0

∫ t

0

xρ–1

(tρ – xρ)1–α

yρ–1

(tρ – yρ)1–α
|x – y| 1

r′ + 1
s′ p(x)p(y) dx dy

] 1
γ ′

≤
(

ρ1–α

�(α)

)2∥
∥f ′∥∥

r

∥
∥g ′∥∥

s

∫ t

0

∫ t

0

xρ–1

(tρ – xρ)1–α

yρ–1

(tρ – yρ)1–α
|x – y| 1

r′ + 1
s′ p(x)p(y) dx dy.

Proof Let us define

H(x, y) :=
(
f (x) – f (y)

(
g(x) – g(y)

))
; x, y ∈ (0, t), t > 0. (2.2)

Multiplying (2.2) by ρ1–α

�(α)
xρ–1

(tρ–xρ )1–α p(x) and integrating the resulting identity with respect
to x from 0 to t, we can write

ρ1–α

�(α)

∫ t

0

xρ–1

(tρ – xρ)1–α
p(x)H(x, y) dx

= ρIαpfg(t) – g(y)ρIαpf (t) – f (y)ρIαpg(t) + f (y)g(y)ρIαp(t). (2.3)

Again, multiplying (2.3) by ρ1–α

�(α)
yρ–1

(tρ–yρ )1–α p(y) and integrating the resulting identity with
respect to y from 0 to t, we can write

(
ρ1–α

�(α)

)2 ∫ t

0

∫ t

0

xρ–1

(tρ – xρ)1–α

yρ–1

(tρ – yρ)1–α
p(x)p(y)H(x, y) dx dy

= 2
[
ρIαp(t)ρIαpfg(t) – ρIαpg(t)ρIαpf (t)

]
. (2.4)

Also, on the other hand, we have

H(x, y) :=
∫ x

y

∫ x

y
f ′(u)g ′(w) du dw. (2.5)

By employing Hölder’s inequality, we have

∣∣f (x) – f (y)
∣∣ ≤ |x – y| 1

r′
∣
∣∣
∣

∫ x

y

∣∣f ′(u)
∣∣r du

∣
∣∣
∣

1
r

(2.6)

and

∣
∣g(x) – g(y)

∣
∣ ≤ |x – y| 1

s′
∣∣
∣∣

∫ x

y

∣
∣g ′(w)

∣
∣s dw

∣∣
∣∣

1
s
. (2.7)

Then, we can estimate H as follows:

∣
∣H(x, y)

∣
∣ ≤ |x – y| 1

r′ + 1
s′
∣∣
∣∣

∫ x

y

∣
∣f ′(u)

∣
∣r du

∣∣
∣∣

1
r
∣∣
∣∣

∫ x

y

∣
∣g ′(w)

∣
∣s du

∣∣
∣∣

1
s
. (2.8)
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Therefore, we can write

2
∣∣ρIαp(t)ρIαpfg(t) – ρIαpg(t)ρIαpf (t)

∣∣

≤
(

ρ1–α

�(α)

)2 ∫ t

0

∫ t

0

xρ–1

(tρ – xρ)1–α

yρ–1

(tρ – yρ)1–α
p(x)p(y)

× |x – y| 1
r′ + 1

s′
∣
∣∣
∣

∫ x

y

∣∣f ′(u)
∣∣r du

∣
∣∣
∣

1
r
∣
∣∣
∣

∫ x

y

∣∣g ′(w)
∣∣s dw

∣
∣∣
∣

1
s

dx dy.

By Hölder’s inequality for double integral, we obtain

2
∣∣ρIαp(t)ρIαpfg(t) – ρIαpg(t)ρIαpf (t)

∣∣ (2.9)

≤
(

ρ1–α

�(α)

)2[∫ t

0

∫ t

0

xρ–1

(tρ – xρ)1–α

yρ–1

(tρ – yρ)1–α
|x – y| 1

r′ + 1
s′

×
∣
∣∣
∣

∫ x

y

∣∣f ′(u)
∣∣r du

∣
∣∣
∣

γ
r

p(x)p(y) dx dy
] 1

γ

×
[∫ t

0

∫ t

0

xρ–1

(tρ – xρ)1–α

yρ–1

(tρ – yρ)1–α
|x – y| 1

r′ + 1
s′

×
∣∣
∣∣

∫ x

y

∣
∣g ′(w)

∣
∣s dw

∣∣
∣∣

γ ′
s

p(x)p(y) dx dy
] 1

γ ′
.

Using the following properties:

∣∣
∣∣

∫ y

x

∣
∣f ′(u)

∣
∣r du

∣∣
∣∣ ≤ ∥

∥f ′∥∥r
r ,

∣∣
∣∣

∫ y

x

∣
∣g ′(w)

∣
∣s dw

∣∣
∣∣ ≤ ∥

∥g ′∥∥s
s,

(2.9) can be written as

2
∣
∣ρIαp(t)ρIαpfg(t) – ρIαpg(t)ρIαpf (t)

∣
∣

≤
[

ρ1–α‖f ′‖γ
r

�(α)

∫ t

0

∫ t

0

xρ–1

(tρ – xρ)1–α

yρ–1

(tρ – yρ)1–α
|x – y| 1

r′ + 1
s′ p(x)p(y) dx dy

] 1
γ

×
[

ρ1–α‖g ′‖γ ′
s

�(α)

∫ t

0

∫ t

0

xρ–1

(tρ – xρ)1–α

yρ–1

(tρ – yρ)1–α
|x – y| 1

r′ + 1
s′ p(x)p(y) dx dy

] 1
γ ′

.

Therefore

2
∣∣ρIαp(t)ρIαpfg(t) – ρIαpg(t)ρIαpf (t)

∣∣

≤
(

ρ1–α

�(α)

)2∥
∥f ′∥∥

r

∥
∥g ′∥∥

s

∫ t

0

∫ t

0

xρ–1

(tρ – xρ)1–α

yρ–1

(tρ – yρ)1–α
|x – y| 1

r′ + 1
s′ p(x)p(y) dx dy.

This completes the proof. �

Theorem 2.2 Let f and g be two differentiable functions on [0,∞) and p, q be positive and
integrable functions on [0,∞). If f ′ ∈ Xp

c (aρ , bρ), g ′ ∈ Xp
c (aρ , bρ), r, s,γ > 1 with 1

r + 1
r′ = 1,
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1
s + 1

s′ = 1, and 1
γ

+ 1
γ ′ = 1, then for all t > 0, α,ρ > 0, we have

∣∣ρIαq(t)ρIαpfg(t) + ρIαp(t)ρIαqfg(t) – ρIαpf (t)ρIαqg(t) – ρIαqf (t)ρIαpg(t)
∣∣

≤
(

ρ1–α

�(α)

)2∥
∥f ′∥∥

r

∥
∥g ′∥∥

s

×
∫ t

0

∫ t

0

xρ–1

(tρ – xρ)1–α

yρ–1

(tρ – yρ)1–α
|x – y| 1

r′ + 1
s′ p(x)q(y) dx dy. (2.10)

Proof Multiplying (2.3) by ρ1–α

�(α)
yρ–1

(tρ–yρ )1–α q(y) and integrating the resulting identity with re-
spect to y from 0 to t, we can write

∣∣ρIαq(t)ρIαpfg(t) + ρIαp(t)ρIαqfg(t) – ρIαpf (t)ρIαqg(t) – ρIαqf (t)ρIαpg(t)
∣∣

≤
(

ρ1–α

�(α)

)2 ∫ t

0

∫ t

0

xρ–1

(tρ – xρ)1–α

yρ–1

(tρ – yρ)1–α
|x – y| 1

r′ + 1
s′

×
∣
∣∣
∣

∫ x

y

∣∣f ′(u)
∣∣r du

∣
∣∣
∣

1
r
∣
∣∣
∣

∫ x

y

∣∣g ′(w)
∣∣s dw

∣
∣∣
∣

1
s
p(x)q(y) dx dy.

Using the same arguments as in the proof of Theorem 2.1, we obtain the desired re-
sult. �

Definition 2.2 ([1]) Let f be defined on [a, b] and α ∈C, Re(α) > 0, ρ > 0. Then:
(i) The mixed left conformable fractional integral of f is defined by

b
aJ

α,ρ f (x) =
1

�(α)

∫ x

a
f (s)

(
(b – s)ρ – (b – x)ρ

ρ

)α–1

(b – s)ρ–1 ds;

and
(ii) The mixed right conformable fractional integral of f is defined by

a
J

α,ρ
b f (x) =

1
�(α)

∫ b

x
f (s)

(
(s – a)ρ – (x – a)ρ

ρ

)α–1

(s – a)ρ–1 ds.

For recent results related to this operators, we refer the reader to [1, 2, 4, 26].

Theorem 2.3 Let f and g be two differentiable functions on [0,∞) and p be a positive
and integrable function on [0,∞). If f ′ ∈ Lr([0,∞), g ′ ∈ Ls([0,∞), r, s,γ > 1 with 1

r + 1
r′ = 1,

1
s + 1

s′ = 1, and 1
γ

+ 1
γ ′ = 1, then for all t > 0, α,ρ > 0, we have

2
∣∣b
0J

α,ρp(t)b
0J

α,ρpfg(t) –b
0 J

α,ρpg(t)b
0J

α,ρpf (t)
∣∣

≤
[‖f ′‖γ

r

�(α)

∫ t

0

∫ t

0

(
(b – x)ρ – (b – t)ρ

ρ

)α–1

(b – x)ρ–1

×
(

(b – y)ρ – (b – t)ρ

ρ

)α–1

(b – y)ρ–1|x – y| 1
r′ + 1

s′ p(x)p(y) dx dy
] 1

γ

×
[‖g ′‖γ ′

s

�(α)

∫ t

0

∫ t

0

(
(b – x)ρ – (b – t)ρ

ρ

)α–1

(b – x)ρ–1
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×
(

(b – y)ρ – (b – t)ρ

ρ

)α–1

(b – y)ρ–1|x – y| 1
r′ + 1

s′ p(x)p(y) dx dy
] 1

γ ′

≤ ‖f ′‖r‖g ′‖s

�2(α)

∫ t

0

∫ t

0

(
(b – x)ρ – (b – t)ρ

ρ

)α–1

(b – x)ρ–1

×
(

(b – y)ρ – (b – t)ρ

ρ

)α–1

(b – y)ρ–1|x – y| 1
r′ + 1

s′ p(x)p(y) dx dy.

Proof Multiplying (2.2) by 1
�(α) ( (b–x)ρ–(b–t)ρ

ρ
)α–1(b – x)ρ–1p(x) and integrating the resulting

identity with respect to x from 0 to t, we can write

1
�(α)

∫ t

0

(
(b – x)ρ – (b – t)ρ

ρ

)α–1

(b – x)ρ–1p(x)H(x, y) dx

=b
0 J

α,ρpfg(t) – g(y)b
0J

α,ρpf (t) – f (y)b
0J

α,ρpg(t) + f (y)g(y)b
0J

α,ρp(t). (2.11)

Now, multiplying (2.11) by 1
�(α) ( (b–y)ρ–(b–t)ρ

ρ
)α–1(b – y)ρ–1p(y) and integrating the resulting

identity with respect to y from 0 to t, we can write

1
�2(α)

∫ t

0

∫ t

0

(
(b – x)ρ – (b – t)ρ

ρ

)α–1

(b – x)ρ–1

×
(

(b – y)ρ – (b – t)ρ

ρ

)α–1

(b – y)ρ–1p(x)p(y)H(x, y) dx dy

= 2
[b

0J
α,ρp(t)b

0J
α,ρpfg(t) –b

0 J
α,ρpg(t)b

0J
α,ρpf (t)

]
.

Using the same arguments as in the proof of Theorem 2.1, we obtain the desired re-
sult. �

Theorem 2.4 Let f and g be two differentiable functions on [0,∞) and p, q be positive
and integrable functions on [0,∞). If f ′ ∈ Lr([0,∞), g ′ ∈ Ls([0,∞), r, s,γ > 1 with 1

r + 1
r′ = 1,

1
s + 1

s′ = 1, and 1
γ

+ 1
γ ′ = 1, then for all t > 0, α,ρ > 0, we have

∣∣b
0J

α,ρq(t)b
0J

α,ρpfg(t) +b
0 J

α,ρp(t)b
0J

α,ρqfg(t)

–b
0 J

α,ρpf (t)b
0J

α,ρqg(t) –b
0 J

α,ρqf (t)b
0J

α,ρpg(t)
∣∣

≤ ‖f ′‖r‖g ′‖s

�2(α)

∫ t

0

∫ t

0

(
(b – x)ρ – (b – t)ρ

ρ

)α–1

(b – x)ρ–1

×
(

(b – y)ρ – (b – t)ρ

ρ

)α–1

(b – y)ρ–1|x – y| 1
r′ + 1

s′ p(x)q(y) dx dy.

Proof Multiplying (2.11) by 1
�(α) ( (b–y)ρ–(b–t)ρ

ρ
)α–1(b – y)ρ–1q(y) and integrating the resulting

identity with respect to y from 0 to t, we can write

∣∣b
0J

α,ρq(t)b
0J

α,ρpfg(t) +b
0 J

α,ρp(t)b
0J

α,ρqfg(t)

–b
0 J

α,ρpf (t)b
0J

α,ρqg(t) –b
0 J

α,ρqf (t)b
0J

α,ρpg(t)
∣∣

≤ 1
�2(α)

∫ t

0

∫ t

0

(
(b – x)ρ – (b – t)ρ

ρ

)α–1

(b – x)ρ–1
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×
(

(b – y)ρ – (b – t)ρ

ρ

)α–1

(b – y)ρ–1|x – y| 1
r′ + 1

s′

×
∣∣
∣∣

∫ x

y

∣
∣f ′(u)

∣
∣r du

∣∣
∣∣

1
r
∣∣
∣∣

∫ x

y

∣
∣g ′(w)

∣
∣s dw

∣∣
∣∣

1
s
p(x)q(y) dx dy.

Using the same arguments as in the proof of Theorem 2.1, we obtain the desired re-
sult. �

Definition 2.3 The Hadamard fractional integral of order α ∈ R
+ of a function f (t), for

all t > 1, is defined as follows [19]:

HJα
{

f (t)
}

=
1

�(α)

∫ t

1

(
log

t
τ

)α–1

f (τ )
dτ

τ
.

Theorem 2.5 Let f and g be two differentiable functions on [1,∞) and p be a positive
and integrable function on [1,∞). If f ′ ∈ Lr([1,∞), g ′ ∈ Ls([1,∞), r, s,γ > 1 with 1

r + 1
r′ = 1,

1
s + 1

s′ = 1, and 1
γ

+ 1
γ ′ = 1, then for all t > 1, α > 0, we have

2
∣∣HJα

{
p(t)

}
HJα

{
pfg(t)

}
– HJα

{
pg(t)

}
H Jα

{
pf (t)

}∣∣

≤
[‖f ′‖γ

r

�(α)

∫ t

1

∫ t

1

(
log

t
x

)α–1(
log

t
y

)α–1

|x – y| 1
r′ + 1

s′
p(x)p(y)

xy
dx dy

] 1
γ

×
[‖g ′‖γ ′

s

�(α)

∫ t

1

∫ t

1

(
log

t
x

)α–1(
log

t
y

)α–1

|x – y| 1
r′ + 1

s′
p(x)p(y)

xy
dx dy

] 1
γ ′

≤ ‖f ′‖r‖g ′‖s

�2(α)

∫ t

1

∫ t

1

(
log

t
x

)α–1(
log

t
y

)α–1

|x – y| 1
r′ + 1

s′
p(x)p(y)

xy
dx dy.

Proof Multiplying (2.2) by (log t
x )α–1

x�(α) p(x) and integrating the resulting identity with respect
to x from 1 to t, we can write

1
�(α)

∫ t

1

(
log

t
x

)α–1 p(x)
x

H(x, y) dx (2.12)

= H Jα
{

pfg(t)
}

– g(y)HJα
{

pf (t)
}

– f (y)HJα
{

pg(t)
}

+ f (y)g(y)HJα
{

p(t)
}

.

Now, multiplying (2.12) by
(log t

y )α–1

y�(α) p(y) and integrating the resulting identity with respect
to y from 1 to t, we can write

1
�2(α)

∫ t

1

∫ t

1

(
log

t
x

)α–1(
log

t
y

)α–1 p(x)p(y)
xy

H(x, y) dx dy

= 2
[

H Jα
{

p(t)
}

HJα
{

pfg(t)
}

– HJα
{

pg(t)
}

HJα
{

pf (t)
}]

.

Using the same arguments as in the proof of Theorem 2.1, we obtain the desired re-
sult. �

Theorem 2.6 Let f and g be two differentiable functions on [1,∞) and p, q be positive
and integrable functions on [1,∞). If f ′ ∈ Lr([1,∞), g ′ ∈ Ls([1,∞), r, s,γ > 1 with 1

r + 1
r′ = 1,
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1
s + 1

s′ = 1, and 1
γ

+ 1
γ ′ = 1, then for all t > 1, α > 0, we have

∣∣HJα
{

q(t)
}

HJα
{

pfg(t)
}

+ H Jα
{

p(t)
}

HJα
{

qfg(t)
}

– HJα
{

pf (t)
}

HJα
{

qg(t)
}

– HJα
{

qf (t)
}

HJα
{

pg(t)
}∣∣

≤ ‖f ′‖r‖g ′‖s

�2(α)

∫ t

1

∫ t

1

(
log

t
x

)α–1(
log

t
y

)α–1

|x – y| 1
r′ + 1

s′
p(x)p(y)

xy
dx dy.

Proof Multiplying (2.12) by
(log t

y )α–1

y�(α) q(y) and integrating the resulting identity with respect
to y from 1 to t, we can write

∣
∣HJα

{
q(t)

}
HJα

{
pfg(t)

}
+ H Jα

{
p(t)

}
HJα

{
qfg(t)

}

– HJα
{

pf (t)
}

HJα
{

qg(t)
}

– HJα
{

qf (t)
}

HJα
{

pg(t)
}∣∣

≤ 1
�2(α)

∫ t

1

∫ t

1

(
log

t
x

)α–1(
log

t
y

)α–1

|x – y| 1
r′ + 1

s′

×
∣∣
∣∣

∫ x

y

∣
∣f ′(u)

∣
∣r du

∣∣
∣∣

1
r
∣∣
∣∣

∫ x

y

∣
∣g ′(w)

∣
∣s dw

∣∣
∣∣

1
s p(x)q(y)

xy
dx dy.

Using the same arguments as in the proof of Theorem 2.1, we obtain the desired re-
sult. �

3 Concluding remarks
In this paper, we established some integral inequalities related to the weighted and the
extended Chebyshev functionals for different fractional integral operators. If we consider
ρ = 1 in Theorem 2.1 and Theorem 2.2, then the obtained results will reduce to the said
inequalities obtained by Dahmani et al. [9].
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