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In this work, a non-local finite-element formulation is developed to analyse free vibration of functionally graded (FG) nanobeams considering
power-law variation of material through thickness of the nanobeam. The Euler–Bernoulli beam theory based on Eringen’s non-local elasticity
theory with one length scale parameter is used to model the FG nanobeam. To this end, two types of FG nanobeams composed of two different
materials are analysed by using the developed non-local finite-element formulation. First FG nanobeam is made of alumina (Al2O3) and steel,
whereas second one is composed of silicon carbide (SiC) and stainless steel (SUS304). Numerical results are presented to show the effect of
power-law exponent (k) and nanostructural length scale (e0a/L) on the free vibration of FG nanobeams.
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1. Introduction: Functionally graded materials (FGMs) which are
a new emerging class of advanced materials are very attractive for
an extensive range of engineering applications due to their abilities
in designing of different functional performances within a part.
Ceramic and metal are the most commonly used materials in the
fabrication of FGMwhere the ceramic region stand against hot tem-
peratures, while the metallic rich region is exposed to cold tempera-
tures. FGMs are commonly used as thermal barrier for applications
in space planes, space structures, nuclear reactors, turbine rotors,
flywheels and gears, to name only a few. Moreover, they have
been getting considerable attention in fabrication of nanobeams
which has been very commonly used in many applications in
micro- and nano-scale device such as biosensor, micro- and
nano-electro-mechanical devices (MEMs and NEMs). The rapid
developments in FGM are achieved by numerous theoretical and
computational studies performed on understanding the mechanical
behaviour of small-scale FGM structures. The most of the theoret-
ical studies developed for FGMs are based on the non-local con-
tinuum theories since the classical continuum theories fail to
account for the size effect observable at small scales.
Among them, the non-local elasticity theory pioneered by

Eringen [1], especially the non-local beam theories to model
micro- and nano-scale beams have received a considerable attention
to model the microscale devices. For the free vibration problem,
micro-/nano-beams were modelled via Timoshenko beam theory
and Eringen’s non-local elasticity theory by Wang et al. [2].
Uzun et al. [3] examined the free vibration behaviours of carbon
nanotube (CNT) and boron nitride nanotube depending on non-
local elasticity theory. They obtained non-local natural frequencies
of nanobeams for various cross-section geometries and various
boundary conditions via both analytical and finite-element solu-
tions. Yayli [4] proposed a stability model to analyse the critical
buckling loads of single-walled CNT embedded in an elastic
medium with an attached spring using non-local elasticity theory.
Also, Yayli et al. [5] studied the longitudinal vibration of nanorods
embedded in an elastic medium with elastic restraints at both ends
based on the non-local elasticity theory.
Ebrahimi et al. [6] presented the applicability of differential

transformation method in investigations on vibrational character-
istics of functionally graded (FG) size-dependent nanobeams.
Anandrao et al. [7] investigated free vibration analysis of FG
beams and they enhanced two different finite-element formulations
for Euler–Bernoulli and Timoshenko beam theory. Analytical solu-
tions of free and forced vibration of FG nanobeams were presented
by Uymaz [8] using generalised beam theory. Yayli [9] presented
the free axial vibration response of CNTs with arbitrary boundary
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conditions on the basis of the non-local elasticity theory. The
nonlinear free vibration of the non-local bi-directional graded
FG Euler–Bernoulli nanobeams was analysed by Nejad and
Hadi [10] using the generalised differential quadrature method
(GDQM). Alimoradzadeh et al. [11] studied nonlinear vibration
analysis of axially functionally graded (AFG) beam Euler–
Bernoulli beam subjected to a moving harmonic utilising Green’s
strain tensor. They investigated the effect of some parameters
such as the power index and stiffness coefficients, among others,
on the nonlinear natural frequency along with the velocity of the
moving harmonic load on the nonlinear dynamic response of
(AFG) Euler–Bernoulli, where it is found that these parameters
have a considerable effect on both nonlinear natural frequency
and response amplitude. El-Borgi et al. [12] investigated the
non-local nonlinear free and forced vibration behaviour of FG
nanobeams embedded in a nonlinear elastic foundation using the
method of multiple scales and Galerkin’s method.

It has seen that a considerable attention is given on the
development of the non-local finite-element formulation by many
researchers, recently. Eltaher et al. [13], on the basis of the classical
beam theory, proposed a two-noded, six degrees of freedom non-
local finite-element to examine free vibration of FG nanobeams.
Aria and Friswell [14] presented a five noded, ten degrees of
freedom non-local (strain-driven) finite-element model to examine
the free vibration and buckling behaviour of FG nanobeams on
the basis of first-order shear deformation theory. They predicted
buckling loads and natural frequencies considering the effects of
different non-local coefficients, boundary conditions, power-law
indices and span-to-depth ratios. Srividhya et al. [15] developed a
non-local nonlinear displacement finite element based on the
third-order shear deformation theory of Reddy [16, 17] to analyse
non-local behaviour of FG plates subjected to static loads. They per-
formed a detailed parametric study to show the effect of
side-to-thickness ratio, power-law index and non-local parameter
on the load deflection characteristics of plates.

The nanobeams are used in the fabrication of micro- and
nano-structures such as biosensors, MEMs and NEMs are in the
scale of non-local Euler–Bernoulli beam theory in which length/
diameter ≥10. In previous studies according to the best of our
knowledge, there has been no analysis performed on the inves-
tigation of free vibration of SiC/SUS304 FG nanobeam. In this
Letter, the vibration characteristics of SiC/SUS304 and Alumina/
Steel FG nanobeam with simply-supported boundary condition
are analysed using non-local finite-element formulation developed
here and their frequency values obtained from the analyses are com-
pared. The variation of material properties is assumed in the
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Fig. 1 Illustration of FG nanobeams
a Alumina/steel FG nanobeam
b SiC/SUS304 FG nanobeam
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thickness direction based on the power law. FG nanobeam is mod-
elled as Euler–Bernoulli beam and investigated depending upon
Eringen’s non-local elasticity theory. The contribution of this
Letter is the non-local elasticity theory with interpolation functions
are used to compute the mass and stiffness matrix in order to con-
struct an eigenvalue problem. The effects of small-scale parameters
and power law exponent on frequencies are examined in detail for
these FG nanobeams.

2. Equations of motion for FG Euler–Bernoulli beam: Two
types of FG nanobeam with simply-supported boundary conditions
are established with the geometric properties where L, b and h are
length, width and thickness of the FG beam, respectively (Fig. 1).

The material properties of the beam are assumed to vary continu-
ously in the thickness direction where the effective material prop-
erty of FG beam is expressed by the power law as follows [8, 14]:

P(z) = (PU − PL)
z

h
+ 1

2

( )k

+PL (1)

Here P(z) is the effective material property of the beam, PU and PL

are the material property at the upper and lower surfaces of the
beam, k is the positive variable parameter called power law expo-
nent. The effective material property refers to the properties of
the beam components such as the elastic module (E), density (ρ)
and so on, and can be transformed into the following FG forms:

E(z) = (EU − EL)
z

h
+ 1

2

( )k

+EL (2)

r(z) = (rU − rL)
z

h
+ 1

2

( )k

+rL (3)

The displacement fields for Euler–Bernoulli beam can be written as
follows [18]:

u1(x, z, t) = u(x, t)− z
∂w(x, t)

∂x
(4)

u2(x, z, t) = 0 (5)

u3(x, z, t) = w(x, t) (6)

Here u1, u2 and u3 are the displacements in the x, y, z directions, re-
spectively. u and w denote longitudinal and transverse displace-
ments of any point on the neutral axis, respectively. The
components of strain tensor of the Euler–Bernoulli beam can be
obtained using (4)–(6) as follows:

1xx =
∂u(x, t)

∂x
− z

∂2w(x, t)

∂x2
(7)

1xy = 1yx = 1xz = 1zx = 1yy = 1yz = 1zy = 1zz = 0 (8)

ɛxx is the non-zero only strain component. Using Hook’s law and
equilibrium equations stress, normal force and moment expressions
for the FG nanobeam can be written, respectively

sxx = E(z)1xx (9)

N = A1
∂u

∂x
− B1

∂2w

∂x2
, M = B1

∂u

∂x
− D1

∂2w

∂x2
(10)

where the coefficients A1, B1 and D1 are expressed as

A1 =
∫
A
E(z)dA, B1 =

∫
A
E(z)zdA, D1 =

∫
A
E(z)z2dA (11)

The Hamilton principle that express the actual motion minimises
the difference of kinetic energy and total potential energy is
36
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expressed as [19] ∫T
0
(dS − dT )dt = 0 (12)

where S and T are the strain energy and kinetic energy, respectively.
S and T for an element which has volume V and length L is as
below:

S = 1

2

∫
V
sxx1xxdV (13)

T = 1

2

∫
V
r(z)

∂u1
∂t

( )2

+ ∂u3
∂t

( )2
( )

dV (14)

The first variation of the strain and kinetic energy are obtained as
follows:

d

∫T
0
Sdt =

∫T
0

∫L
0

Nd
∂u

∂x

( )
−Md

∂2w

∂x2

( )( )
dxdt

=
∫T
0

∫L
0

A1
∂u

∂x
− B1

∂2w

∂x2

( )
d

∂u

∂x

( )(

− B1
∂u

∂x
− D1

∂2w

∂x2

( )
d

∂2w

∂x2

( ))
dxdt

(15)

d

∫T
0
Tdt =

∫T
0

∫L
0

I0
∂u

∂t
d

∂u

∂t

( )
+ ∂w

∂t
d

∂w

∂t

( )( )
−· · ·

...− I1
∂u

∂t
d

∂2w

∂x∂t

( )
+ ∂2w

∂x∂t
d

∂u

∂t

( )( )
+ I2

∂2w

∂x∂t
d

∂2w

∂x∂t

( )
⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠dxdt

(16)

Here I0, I1 and I2 are expressed as

I0 =
∫
A
r(z)dA, I1 =

∫
A
r(z)zdA, I2 =

∫
A
r(z)z2dA (17)

Substituting (15) and (16) into (12), one can obtain the fundamental
lemma of the calculus of variations within arbitrariness of du and
dw the governing equations (i.e. the Euler–Lagrange equations)
of the beams as follows:

du:
∂N

∂x
= I0

∂2u

∂t2
− I1

∂3w

∂x∂t2
(18)

dw:
∂2M

∂x2
= I0

∂2w

∂t2
+ I1

∂3u

∂x∂t2
− I2

∂4w

∂x2∂t2
(19)

3. Non-local elasticity theory for FG nanobeam: Unlike the local
elasticity theory, the non-local constitutive equation [1] where it is
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assumed that the stress at a point is function of strain at all point in
the continuum is given by

1− e0a
( )2∇2

[ ]
sij = Cijkl1kl (20)

where σij is the stress tensor, Cijkl is the fourth-order elastic module
tensor, ɛkl is the strain tensor, e0 is a material constant which is
determined experimentally, a is the internal characteristic length.
For Euler–Bernoulli FG nanobeam, (20) can be reduced to the fol-
lowing form:

sxx − e0a
( )2∂2sxx

∂x2
= E(z)1xx (21)

Integrating (21) over the cross-section area, one can obtain the axial
force–strain relation as

N − (e0a)
2 ∂

2N

∂x2
= A1

∂u

∂x
− B1

∂2w

∂x2
(22)

Multiplying (21) by z and integrating over the cross-section area,
the moment–curvature relation can be obtained as

M − (e0a)
2 ∂

2M

∂x2
= B1

∂u

∂x
− D1

∂2w

∂x2
(23)

Differentiating (18) with respect to x, then substituting the resulting
one into (22), one can rearrange into (22) as

N = A1
∂u

∂x
− B1

∂2w

∂x2
+ (e0a)

2 I0
∂3u

∂x∂t2
− I1

∂4w

∂x2∂t2

( )
(24)

Substituting (19) into (23), one can obtain the following:

M = B1
∂u

∂x
− D1

∂2w

∂x2
+ (e0a)

2 I0
∂2w

∂t2
+ I1

∂3u

∂x∂t2
− I2

∂4w

∂x2∂t2

( )
(25)

4. Non-local finite-element formulation: The Euler–Bernoulli
beam element is modelled using two nodes (at the ends of the
beam element), and three degrees of freedom per node (axial dis-
placement, transverse displacement and rotation). The mass and
stiffness matrices for Euler–Bernoulli beams are obtained in the
usual way from the kinetic and strain energy by applying the vari-
ational statement on FG Euler–Bernoulli nanobeam that is
expressed as

∫T
0

∫L
0

A1
∂u

∂x
d

∂u

∂x

( )
− B1

∂2w

∂x2
d

∂u

∂x

( )
+ ...

· · · + (e0a)
2 I0

∂3u

∂x∂t2
d

∂u

∂x

( )
− I1

∂4w

∂x2∂t2
d

∂u

∂x

( )( )
⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

−

B1
∂u

∂x
d

∂2w

∂x2

( )
− D1

∂2w

∂x2
d

∂2w

∂x2

( )
+ ...

· · · + (e0a)
2

I0
∂2w

∂t2
d

∂2w

∂x2

( )
+ I1

∂3u

∂x∂t2
d

∂2w

∂x2

( )
− ...

...− I2
∂4w

∂x2∂t2
d

∂2w

∂x2

( )
⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

I0
∂u

∂t
d

∂u

∂t

( )
+ ∂w

∂t
d

∂w

∂t

( )( )
− · · ·

· · · − I1
∂u

∂t
d

∂2w

∂x∂t

( )
+ ∂2w

∂x∂t
d

∂u

∂t

( )( )
+ · · ·

· · · + I2
∂2w

∂x∂t
d

∂2w

∂x∂t

( )

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

dxdt

(26)
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a

φu and φw are the interpolation shape functions. The Euler–Lagrange
equation and the boundary conditions can be obtained by using in-
tegration by parts. Interpolation functions can be derived from
boundary conditions. They are expressed as below [19]:

fu

[ ] = 1− x

L

x

L

[ ]
(27)

fw

[ ] = 1− 3x2

L2
+ 2x3

L3

[
x− 2x2

L
+ x3

L2
3x2

L2
− 2x3

L3
− x2

L
+ x3

L2

]
(28)

Ku, Kuw, Kw are the stiffness matrices,M c
u, M

c
uw, M

c
w are the clas-

sical mass matrices and Mnl
u , M

nl
uw, M

nl
w are the non-local mass

matrices and they expressed as

Ku =
∫L
0
A1 fu

[ ]′( )T
fu

[ ]′
dx (29)

Kuw = −
∫L
0

B1 fw

[ ]′′( )T
fu

[ ]′
dx+

∫L
0
B1 fu

[ ]′( )T
fw

[ ]′′
dx

⎛
⎜⎝

⎞
⎟⎠ (30)

Kw =
∫L
0
D1 fw

[ ]′′( )T
fw

[ ]′′
dx (31)

Mc
u =

∫L
0
I0 fu

[ ]( )T
fu

[ ]
dx (32)

Mc
uw = −

∫L
0
I1 fu

[ ]( )T
fw

[ ]′
dx+

∫L
0
I1 fw

[ ]′( )T
fu

[ ]
dx

( )
(33)

Mc
w =

∫L
0
I0 fw

[ ]( )T
fw

[ ]
dx+

∫L
0
I2 fw

[ ]′( )T
fw

[ ]′
dx (34)

Mnl
u = (e0a)

2
∫L
0
I0 fu

[ ]′( )T
fu

[ ]′
dx (35)

Mnl
uw =− (e0a)2

∫L
0
I1 fu

[ ]′( )T
fw

[ ]′′
dx

(

+(e0a)2
∫L
0
I1 fw

[ ]′′( )T
fu

[ ]′
dx

) (36)

Mnl
w = −(e0a)

2
∫L
0
I0 fw

[ ]( )T ∂2 fw

[ ]
∂x2

dx

+ (e0a)
2
∫L
0
I2

∂2 fw

[ ]
∂x2

( )T
∂2 fw

[ ]
∂x2

dx (37)

The classical stiffness and mass matrices have been obtained by
taking the non-local parameter to zero (e0a/L= 0). The frequencies
of FG nanobeam are found as follows:

K − v2M
∣∣ ∣∣ = 0 (38)

Here ω is the frequency. K andM are total stiffness and mass matri-
ces and given in the following equations:

K = Ku + Kw + Kuw (39)

M = Mc
u +Mc

uw +Mc
w +Mnl

u +Mnl
uw +Mnl

w (40)

The present finite-element method can be extended to calculate the
vibration frequencies of Timoshenko nanobeams by considering
the shear effects.
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Table 3 Variation of first five frequencies (MHz) of FG nanobeam with k
and e0a/L (alumina/steel)

ω k= 0

e0a/L

0 0.1 0.2 0.3 0.4

ω1 56.1924 53.6092 47.5800 40.8928 34.9897
ω2 224.0812 189.736 139.530 105.015 82.8423
ω3 501.6319 365.051 235.089 167.262 128.614
ω4 885.5566 551.415 327.388 227.049 172.789
ω5 1371.456 736.512 415.982 284.692 215.561
ω k= 2

e0a/L
0 0.1 0.2 0.3 0.4

ω 37.2402 35.5282 31.5325 27.1007 23.1886
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5. Numerical results: In this section, several figures and tables
present the vibrational frequencies for a nanobeam with different
power law exponent. Several numerical examples are solved in
order to point out to the possibility of enhancing or decreasing
the frequencies for different (a and e0) parameter. It also shows
the effectiveness of the present method to capture significance
of the power law exponent. Two types of alumina/steel and
SiC/SUS304 FG nanobeams are considered here to investigate
their frequencies. Ceramic and metal are the most commonly
used materials to form FGM where the bottom surfaces of the
beams are pure metal, whereas the top surfaces of the beams are
pure ceramic. Mechanical properties of nanobeams constituents
are given in Table 1. Geometrical properties of the FG nanobeams
are: b (width) = 100 nm, h (thickness) = 200 nm and L (length) =
4000 nm.

The frequency values obtained from the analyses of both types of
FGM with various dimensionless small-scale parameters (e0a/L)
ranging from 0 to 0.4 and various power law exponents (k)
ranging from 0 to 10 are presented in Tables 2 and 3, respectively.

According to the obtained results, the frequency values of
both FG nanobeams increase as the mode number increase.
However, frequencies of the both FG nonobeams decrease as
dimensionless small-scale parameters (e0a/L) increases. Similarly,
increasing in k values cause decreasing in frequency values of
the both types of FGM nonobeams. Also, as the k increases,
the properties of the beams transform from ceramic to metal
(Figs. 2 and 3).
Table 2 Variation of first five frequencies (MHz) of FG nanobeam with k
and e0a/L (SiC/SUS304)

ω k= 0

e0a/L

0 0.1 0.2 0.3 0.4

ω1 65.3062 62.3040 55.2969 47.5251 40.6647
ω2 260.4247 220.5102 162.1604 122.0480 96.2784
ω3 582.9910 424.2584 273.2186 194.3911 149.4739
ω4 1029.1840 640.8491 380.4871 263.8740 200.8142
ω5 1593.8916 855.9662 483.4502 330.8665 250.5226
ω k= 2

e0a/L
0 0.1 0.2 0.3 0.4

ω1 38.1371 36.3838 32.2919 27.7534 23.7471
ω2 152.1044 128.7919 94.7119 71.2837 56.2327
ω3 340.5901 247.8567 159.6175 113.5655 87.3244
ω4 601.4701 374.5216 222.3622 154.2118 117.3587
ω5 931.8969 500.4558 282.6577 193.4469 146.4725
ω k= 10

e0a/L
0 0.1 0.2 0.3 0.4

ω1 32.2792 30.7953 27.3319 23.4905 20.0995
ω2 128.7479 109.0151 80.1683 60.3377 47.5978
ω3 288.3145 209.8143 135.1185 96.1349 73.9214
ω4 509.2114 317.0742 188.2544 130.5575 99.3573
ω5 789.0671 423.7520 239.3354 163.7977 124.0229

Table 1 Properties of FG nanobeams constituents

Constituents Material E, GPa P, kg/cm3

alumina (Al2O3) [13] ceramic 390 3960
steel [13] metal 210 7800
silicon carbide (SiC) [20] ceramic 427 3210
stainless steel (SUS304) [20] metal 207.78 8166
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It is seen from Fig. 4 that when the e0a/L increases, the frequency
values of alumina/steel FG nanobeam and the frequency values of
SiC/SUS304 FG nanobeam approach each other.

It is seen from Fig. 5 that the frequency values of SiC/SUS304
FG nanobeam are higher than alumina/steel FG nanobeam while
k is small. As the k value increases, the difference between the fre-
quencies of FG nanobeams is closed. After a certain k value, the fre-
quency values of alumina/steel FG nanobeam become larger than
the frequency values of SiC/SUS304 FG nanobeam.
1

ω2 148.5221 125.7585 92.4813 69.6048 54.9083
ω3 332.5494 242.0052 155.8492 110.8844 85.2628
ω4 587.2244 365.6511 217.0956 150.5593 114.5791
ω5 909.7359 488.5547 275.9360 188.8467 142.9893
ω k= 10

e0a/L
0 0.1 0.2 0.3 0.4

ω1 32.4872 30.9937 27.5080 23.6418 20.2290
ω2 129.5722 109.7130 80.6816 60.7240 47.9025
ω3 290.1410 211.1435 135.9745 96.7439 74.3897
ω4 512.3905 319.0537 189.4296 131.3725 99.9775
ω5 793.9027 426.3489 240.8021 164.8015 124.7830

Fig. 2 Effect of k on mode number (SiC/SUS304)
a e0a/L= 0
b e0a/L= 0.4
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Fig. 5 Variation of the frequencies with k (e0a/L= 0.2)
a First frequency
b Second frequency
c Third frequency

Fig. 4 Variation of the frequencies with non-dimensional non-local para-
meters for different k
a First frequency
b Second frequency
c Third frequency

Fig. 3 Effect of k on mode number (alumina/steel)
a e0a/L= 0
b e0a/L= 0.4
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6. Conclusion: A non-local finite-element formulation is devel-
oped to analyse the non-local free vibration behaviour of FG nano-
beams where the mechanical properties are assumed to vary
continuously through the thickness and obey a power law distribu-
tion of the volume fraction of the constituents. Two types of FG
nanobeams composed of two different materials are analysed by
using the developed non-local finite-element formulation. As a
result of performed analyses it has found that frequencies of the
FG nonobeams decrease as dimensionless small-scale parameters
(e0a/L) increases. Similarly, increasing in k values cause decreasing
in frequency values of the FG nonobeams.
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