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Abstract

The electric travelling salesman problem with time windows (ETSPTW) is an extension of the well-
known travelling salesman problem with time windows (TSPTW). The ETSPTW additionally
considers recharging operations of the electric vehicle at identical charging stations. However,
different charging technologies used at public or private stations result in different charging times of
the electric vehicles. Therefore, this study extends the ETSPTW by additionally considering charging
operations at customer locations with different charging rates, called hereafter the electric travelling
salesman problem with time windows and mixed charging rates (ETSPTW-MCR). To the best of our
knowledge, this is the first study that considers both private and public charging stations for the
ETSPTW. In addition to the extended version of the ETSPTW, this paper introduces a new and
effective hybrid Simulated Annealing/Tabu Search (SA/TS) algorithm to solve the ETSPTW-MCR
problem efficiently. Distinct from the existing hybridization of SA and TS, the proposed hybrid SA/TS
algorithm employs efficient search procedures based on the TSPTW restrictions, a modified solution
acceptance criterion, and an advanced tabu list structure. Moreover, an improved dynamic
programming procedure is integrated to optimally find the charging station visits in shorter
computational times. The proposed hybrid SA/TS is tested on several TSPTW and ETSPTW
benchmark problems and compared with well-known solution approaches. Results of these
experiments show that the proposed algorithm outperforms the other considered competitor algorithms

both with regard to solution quality and computational time. Furthermore, 26 new best results are



obtained for the ETSPTW instances. In addition, the hybrid algorithm is applied to a new problem set
generated for the ETSPTW-MCR by extending the ETSPTW problems found in the literature.
Comparisons with the ETSPTW results show that significant distance savings are found for most of
the instances by charging the electric vehicle at customer locations. As a result of the computational
studies, it should be concluded that the proposed algorithm is capable of finding efficient and more

realistic route plans for the electric vehicles.
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1. Introduction
The vehicle routing problem (VRP) is one of the most important researched problems due to its great
potential to reduce transportation and logistics costs in both the private and public sector. The classical
VRP introduced by Dantzig and Ramser (1959) aims to find a route plan for a fleet which has to serve
a set of customer locations where the objective is to minimize total transportation cost. Since its first
introduction, the VRP with various assumptions has been studied extensively by researchers
(Eksioglu, Vural, & Reisman, 2009; Laporte, 2009). With the growing concern about the
environmental impact of logistics activities, the green vehicle routing problem (GVRP), a relatively
new research field, is introduced by Erdogan and Miller-Hooks (2012) as an extension of the VRP.
The GVRP aims to minimize the transportation cost of conventional internal combustion vehicles and
additionally considers their fuel tank capacity. The refueling time is assumed to be constant (Erdogan
& Miller-Hooks, 2012). As a result of the increasing attention on the environmental impact of the
transportation, a considerable number of researches have been carried out on the GVRP during the last

decade (Lin, Choy, Ho, Chung, & Lam, 2014).

The electric vehicle routing problem (EVRP), which deals with planning routes for electric vehicles, is
another research field studied recently by researchers because of the promising opportunity of the
electric vehicles to reduce transportation costs and pollution effects in comparison to fossil-fuel based
engines (Pelletier, Jabali & Laporte, 2016). The EVRP is an extension of the GVRP where the battery
capacities of the electric vehicles are limited when planning routes. The limited cruising range and
long charging times of the electric vehicles make the charging operations a more critical issue
compared to the refueling operations in the GVRP (Keskin & Catay, 2016). Although the service
times at charging stations have been significantly reduced with ever-developing technology, charging
times of electric vehicles are still time-consuming. Depending on the charging power, charging
technologies are divided into three levels: Level I-1II (Awasthi et al., 2017). Level I and Level II are
referred to as slow and normal charging modes. Due to low power requirements, such stations can be
constructed at residential homes or working places as private charging stations. Level III charging
technology is a fast charging mode, and its usage is limited to public charging stations because of high

voltage requirements (Xu, Meng, Liu, & Yamamoto, 2017). Nevertheless, charging times of the



electric vehicles at charging stations still exceed more than half an hour even if a fast charging
technology is used. In this context, considerable cost and time reductions can be achieved for logistics
companies by encouraging the usage of private charging stations since a certain percentage of the

battery can be recharged while the electric vehicle is in the parking position.

Another critical issue for the companies is managing the routing plans, where any improvement in
routing plans has the potential to provide a considerable reduction of transportation costs and
greenhouse gas emissions. However, the difficulty of finding efficient routing plans for the companies
is that most of the routing problems belong to the class of combinatorial optimization problems that
are shown to be NP-hard. Therefore, many metaheuristic algorithms have been introduced in the
literature. However, obtaining insight in the problem structure of the specific problem under
consideration is crucial to develop an efficient expert system that outperforms more generic

approaches and human planners.

Based on the aforementioned motivations, this study addresses the electric travelling salesman
problem with time windows (ETSPTW) introduced by Roberti and Wen (2016) as a single-vehicle
version EVRP, and extends the problem by additionally considering charging operations with different
charging rates for an electric vehicle at customer locations. With this new assumption, the extended
problem is called the electric travelling salesman problem with time windows and mixed charging
rates (ETSPTW-MCR), and formulated as a mixed integer mathematical model. In addition to the new
variant of the ETSPTW, an efficient hybrid metaheuristic algorithm is introduced based on two well-
known meta-heuristic algorithms: tabu search (TS), and simulated annealing (SA). The proposed
hybrid SA/TS combines the advantages of SA and TS to escape local minima by modifying the
solution acceptance procedure of SA and the tabu list structure of the TS. Moreover, new components

are integrated into the algorithm to search the solution space efficiently.

This paper contributes to the literature in two main aspects: a new perspective for the ETSPTW, and a
new solution methodology. In the ETSPTW, the electric vehicle is allowed to recharge its battery only
at public charging stations with the same charging technology. To the best of our knowledge, the
ETSPTW-MCR has not been discussed in the literature before. By considering recharging at customer
locations with slow or normal charging technologies in real life logistics applications, this study
provides a new perspective for researchers and company decision-makers. By allowing these
recharging operations, a reduction on the total distance travelled is expected since the ETSPTW-MCR
provides more flexible charging opportunities for the electric vehicle while still servicing all
customers within their allowed time windows. Although, recharging times at private charging stations
are longer than the times at public charging stations, ETSPTW-MCR gives extra recharging
opportunity to the electric vehicle while waiting at the customer location and reduces the visits to the

public charging stations.



In addition to the introduction of the extended version of the ETSPTW, this study contributes to the
literature by presenting a new hybrid SA/TS algorithm, which exhibits superior performance on these
types of problems. Distinct from the existing hybridization of SA and TS, the novelty of the proposed
algorithm can be summarized as follows. An efficient local search procedure consisting of 1-shift, 2-
opt, and swapping operations is used to generate new solutions. The standard solution acceptance
criterion of the SA is modified. An advanced tabu list structure is introduced to escape local optima
and avoid unnecessary computations. As in the solution approach proposed by Roberti and Wen
(2016), a dynamic programming procedure is used to obtain charging operation plans. The dynamic
programming procedure is improved to speed up the computations. Besides the main contribution of
the study, a benchmark problem set is introduced for the ETSPTW-MCR by extending the existing
ETSPTW problem sets. Moreover, new best results are found by the proposed algorithm for both the
TSPTW and the ETSPTW.

The remainder of this paper is formed as follows: In Section 2, a review of the related literature is
presented. Section 3 introduces the ETSPTW-MCR and its formulation as a mixed integer
mathematical model. The details of the proposed hybrid SA/TS are given in Section 4. The
computational studies for the hybrid SA/TS, comparisons, and discussions are presented in Section 5.
This section also includes exact solver solutions for small sized ETSPTW-MCR instances. Finally, a

conclusion part with future research perspectives is given in Section 6.

2. Literature Review
The ETSPTW is introduced by Roberti and Wen (2016), which can be seen as a generalization of the
well-known travelling salesman problem with time windows (TSPTW). In the ETSPTW, an electric
vehicle services a set of customers while satisfying customer time window and battery capacity
constraints. The battery can be charged at a given set of public charging stations. The authors
formulated two different mathematical models for the problem and proposed a metaheuristic approach
based on a combination of a general variable neighborhood search (GVNS) procedure and dynamic
programming. Hereafter, this metaheuristic is referred to as the three phase heuristic (3P-Heu). In the
first two phases, the 3P-Heu uses the GVNS metaheuristic to optimize the vehicle route only taking
the time windows constraints into account. Next, an insertion algorithm based on dynamic
programming inserts charging stations to the route in order to find a feasible solution for the
ETSPTW. The authors analyzed the performance of the 3P-Heu on two different problem sets
generated by extending two well-known TSPTW datasets. High-quality results in short computational

times are reported.

The ETSPTW can be assumed closely related to TSP variant called the black and white travelling
salesman problem (BWTSP). The BWTSP was introduced by Bourgeois, Laporte, and Semet (2003),
and has been mostly applied in the field of short-haul airline scheduling and telecommunications. In

the BWTSP, the vertex set is divided into two subsets called hereafter the black and white vertices.
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The BWTSP differs from the TSP in that both the number of white vertices visited and the length of
the path between two consecutive black vertices cannot exceed the specified limits. The objective of
the problem is to find the shortest Hamiltonian tour that covers all vertices satisfying the cardinality
and the length constraints (Bourgeois et al. 2003). A number of researchers have recently studied this
problem, such as by Ghiani, Laporte, and Ruthmair (2006), by Muter (2015), by Li and Alidaee
(2016), and by Gouveia, Leitner, and Ruthmair (2017). This problem shows similarity to the ETSPTW
and ETSPTW-MCR in case the black and white vertices are assumed to be charging stations and
customer locations, respectively. The length constraint in the BWTSP can be used to model the battery
level constraint between two charging stations visits in the case where a full charging policy is
followed. However, in the ETSPTW there is no restriction on the number of customer visits between
two charging operations. Likewise, a charging station is not limited to a single visit by the electric
vehicle, and moreover, the electric vehicle is not even obliged to visit every charging station. Lastly,
the length constraint of the BWTSP cannot model a partial charging policy. In addition, the ETSPTW

considers customer time windows.

To the best of our knowledge, the study of Roberti and Wen (2016) is the only paper on the ETSPTW.
However, the ETSPTW can be seen as a special case of the EVRP, where only a single vehicle is
present. In the field of route optimization of electric vehicles, there are only a few studies in the
literature due to the EVRP being a relatively new research field. The earliest study on EVRP is
proposed by Conrad and Figliozzi (2011) where the charging operations follow a so-called full
charging policy. Following a full charging policy, an electric vehicle can depart from a charging
station if and only if its battery is fully recharged. In addition to the battery capacity of the electric
vehicles, vehicle load capacities and customer time windows are taken into account. The authors
proposed a mathematical model for the considered problem which has two objectives. The first
objective aims to minimize the number of routes. The second objective minimizes the total travelling
distance. An iterative route construction and improvement procedure is proposed by the authors. Wang
and Cheu (2013) considered the EVRP for the operations of an electric taxi fleet, and introduced a TS
algorithm to minimize total distance travelled and maximum route time by considering recharging
operations. Worley, Klabjan, and Sweda (2012) studied the EVRP with charging station siting
constraints. They introduced a mixed integer mathematical model for the problem which aims to

simultaneously minimize total travelling cost, recharging cost, and station location cost.

Schneider, Stenger, and Goeke (2014) extended the EVRP by considering the EVRP with time
windows (EVRPTW), in which a full charging strategy is taken into account. The authors developed a
hybrid metaheuristic algorithm consisting of a variable neighborhood search (VNS) algorithm and a
TS approach. The performance of the proposed hybrid VNS/TS algorithm is analyzed on different
benchmark data sets related to vehicle routing problems. Additionally, the proposed algorithm is tested

on a new problem set which is generated by the authors for the EVRPTW. The EVRPTW is extended



by Preis, Frank, and Nachtigall (2014), Afroditi, Boile, Theofanis, Sdoukopoulos, and Margaritis
(2014), Chen, Qi, and Miao (2016), Paz, Granada-Echeverri, and Escobar (2018), and Montoya,
Guéret, Mendoza, and Villegas (2017) with different assumptions. Preis et al. (2014) considered load
dependent energy consumptions in urban delivery systems and proposed an adapted tabu search
algorithm. Afroditi et al. (2014) used predefined energy consumptions for the electric vehicles. Chen
et al. (2016) considered battery swapping operations for the electric vehicles instead of recharging
operations. Paz et al. (2018) addressed the EVRPTW with multi-depot consideration. Montoya et al.
(2017) used nonlinear charging functions for the electric vehicles and proposed a hybrid metaheuristic

algorithm to minimize total time of the operations consisting of travel times and charging times.

In addition to the EVRP following a full charging policy, some researchers focus on partial charging
policies where an electric vehicle can leave from a charging station with full capacity or with any
battery level depending on the time spent for charging. Felipe, Ortuno, Righini, and Tirado (2014)
extended the EVRP by allowing a partial charging strategy using different charging technologies for
the electric vehicles and presented three heuristic algorithms to solve the problem: a construction
heuristic, a deterministic local search algorithm, and an SA algorithm. According to their
computational studies, the SA performs better with respect to other methods for large sized problems.
Desaulniers, Errico, Irnich, and Schneider (2016) proposed an exact branch-price-and-cut algorithm to
solve the EVRPTW regarding four different charging strategies: at most a single full recharge per
route, multiple full recharges per route, at most a single partial recharge per route, and multiple partial
recharges per route with partial charging policy. Similarly, Keskin and Catay (2016) tackled the
EVRPTW with a partial charging policy and proposed an adaptive large neighborhood search (ALNS)
algorithm for the problem. According to their computational studies, new best results are obtained by
the proposed ALNS considering the full charging policy. Moreover, the advantages of the partial
charging policy are pointed out by comparing the partial and full charging policies. Another study
considering a partial charging policy is presented by Bruglieri, Mancini, Pezzella, Pisacane, and Suraci
(2017) where a three phase metaheuristic method based on VNS is introduced to solve the problem. A
different assumption for the problem is taken into account by Schiffer and Walther (2017), Schiffer
and Walther (2018a, b) and Schiffer, Schneider, and Laporte (2018) where siting decisions for the

charging stations are considered simultaneously.

Besides the charging policy for the electric vehicles, some of the papers pay attention to the effects of
fleet type on routing plans and total travel cost. Goeke and Schneider (2015) proposed a new variant of
the EVRPTW where a mixed fleet of electric and conventional internal combustion vehicles are used
for customer visits. Kiigiikoglu and Oztiirk (2016) proposed a mathematical formulation for the
EVRPTW with a heterogeneous fleet consisting of different types of electric vehicles. The advantages
of the heterogeneous fleet based on the total distance travelled and the number of vehicles used are

pointed out in their computational studies on a small sized problem set generated via the EVRPTW



problems proposed by Schneider et al. (2014). Penna, Afsar, Prins, and Prodhon (2016) introduced a
hybrid iterative local search algorithm for the EVRPTW with a heterogeneous fleet, which is formed
by combining an iterative local search algorithm and a set partitioning model. Hiermann, Puchinger,
Ropke, and Hartl (2016) introduced an effective ALNS algorithm to solve the EVRPTW with

heterogeneous fleet. The performance of the proposed ALNS is tested on various problem sets.

Considering the existing studies, various solution approaches are introduced to solve the EVRP and its
variations. Since the VRP is an NP-hard problem, and the EVRP is a generalization of the VRP, the
EVRP can equally be considered NP-hard in the strong sense (Desaulniers et al., 2016; Zhang, Gajpal,
Appadoo, & Abdulkader, 2018). Therefore, a metaheuristic algorithm based solution approach is
employed in most of the studies. Table 1 summarizes the metaheuristic approaches used in the field of
EVRP. Also, additional components that are integrated with the algorithms are noted in the last
column of Table 1. The additional components, such as dynamic programming, matheuristic, column
generation, etc., are used as a subroutine in the algorithms to increase algorithm efficiency. It should
be noted that only a few studies consider a population based algorithm, in which a discretization step
is required to represent a solution for EVRP since these algorithms are firs introduced for global
optimization problems. On the other hand, a permutation order based coding scheme can be used in
the genetic algorithm (GA), which allows representing a solution for the EVRP without using any
transformation procedure. However, it should be seen from the Table 1 that a solution improvement
mechanism is integrated into GA in most of the studies to increase algorithm performance. Based on
the single solution-based algorithms, the LNS and VNS based algorithms are the most used
approaches to solve EVRPs. Several variations integrated with different subroutines have been
introduced in the literature. Here, it should be expressed that the LNS and VNS based algorithms show
better performance for most of the EVRP variants with regards to the computational results of the
proposed algorithms. Especially, the adaptive versions of both the algorithms exhibits better
performance, since their importance weights of local search mechanisms are adjusted during the
search. Finally, it should be pointed out from Table 1 that only a few studies consider SA or TS, and a
hybrid structure of SA and TS has not been applied to the EVRP in literature. Furthermore, regarding
the ETSPTW in particular, the 3P-Heu is the only solution approach considered so far. Comparing
with the 3P-Heu and other algorithms introduced for the EVRP, the proposed hybrid SA/TS is
distinctive since it integrates the advantages of both the SA and TS, and operates a number of

advanced procedures to take forward the search capability of the algorithm.

[Insert Table 1 about here]



3. Problem Definition and Model Formulation
As described by Roberti and Wen (2016), the ETSPTW considers a set of customer and charging
station locations where each customer location is to be serviced by an electric vehicle in a specific
time interval. The vehicle starts its tour at the depot with a full battery, which depletes proportionally
to the distance travelled. Because of the range limit of the current state of electric vehicle technology,
the vehicle most likely will have to visit one or more public charging stations during the execution of
its tour. This is allowed at any time and it is assumed that the battery is recharged according to a full
charging policy. Therefore, the vehicle always departs from a charging station with a full battery. The
service time at an electric charging station depends on the battery level of the vehicle when it arrives at
the charging station and the station’s charging rate. The aim of the ETSPTW is to obtain the best route
plan for the electric vehicle that minimizes the total distance travelled while satisfying the time
windows and battery capacity constraints. Distinct from the ETSPTW, the ETSPTW-MCR also
considers the possible charging operations at those customer locations that have their own private
charging stations. Additionally, different charging rates for the public or private stations are taken into

account. Charging operations for the ETSPTW-MCR are defined with the following assumptions:

e FEach customer location can possibly own a private charging station with a certain charging
technology.

e The electric vehicle can be recharged at any customer location containing a charging station.

e Assuming that the waiting time of the electric vehicles before the service is a slack time, the
charging operation at a customer location has to be completed before the service starts at the
customer.

e The electric vehicle can complete its visit to a customer without performing a charging operation.

e For the ETSPTW, Roberti and Wen (2016) also considered partial charging policy and pointed
out the improvements on total distances by allowing partial charging. To investigate the
computational feasibility of ETSPTW-MCR and estimate its broadly any potential savings, only a
full charging policy is taken into account for both public and private charging stations. In case of
a partial charging policy for the ETSPTW-MCR, reduction on the total distances are most likely
expected for the electric vehicles.

e Charging rates at public charging stations or private stations at customer locations can be

different with respect to the used technology.

As an illustrative example, Figure 1 shows a route plan that services 15 customer locations
(Cl,...,C15) in which C4, C7, C9, C10, and C13 have their own private charging station. Moreover,
there exist five available public charging stations (S1,...,S5) at different locations. The percentage
values on the arcs show the battery level of the electric vehicle when it arrives and departs from a

location. A value of 100% indicates that the electric vehicle is fully charged. In this example, the route



plan includes charging operations at S1, S3, and S4 (public charging stations) and also at C4 and C7

(private charging stations).

[Insert Figure 1 about here]

According to the problem definition and considered assumptions, the mathematical model of the
ETSPTW-MCR which is derived from the mathematical model of the ETSPTW proposed by Roberti
and Wen (2016) is formulated as follows.

Notations
ON+1

€;

li

Depot nodes

Set of charging stations

Set of dummy nodes to allow several visits to each charging station in the set of F
Set of customers; V = {1,2, ..., N}

Set of customers and depot node; V, =V U {0}, V41 = VU {N + 1}

Set of customers and charging stations; V' =V U F’

Set of customers, charging stations and depot node; Vg = V' U {0}, V41 = V' U{N + 1}
Travelling distance from node i to node j; Vi € Vj,j € Viyyq, i #j

Travelling time from node i to node j; Vi € Vy,j € Vi, q, I #

Recharging rate of the electric vehicle at node i; Vi € V' U {0} U {N + 1}

Energy consumption rate of the electric vehicle per unit of distance

Battery capacity of the electric vehicle

Earliest time to start the service allowed at node i; Vi € V U {0} U {N + 1}

Latest time to start the service allowed at node i; Vi € V U {0} U {N + 1}

Decision Variables

xl-j

Di
Vi

Binary variable and equal to 1 if the electric vehicle travels from node i to node j, O
otherwise; Vi €V, jEVniq, L #]

Binary variable and equal to 1 if the electric vehicle is charged at node i, O otherwise;
VieV'u{0}U{N + 1}

Decision variable to track the service start time at node i; Vi € V' U {0} U {N + 1}
Decision variable to track the battery level of the electric vehicle upon arrival at node i;
VieV'u{0}U{N + 1}

Non-negative decision variable to identify the charged battery level of the electric vehicle

atnodei; Vi e V' U {0} U {N + 1}



w; Non-negative decision variable to identify the idle battery level of the electric vehicle at

nodei; Vi e V' U{0}U{N + 1}

Objective Function

Minz=2 Z dijxij €Y

i€Vy JEVN 41

Subject to

Z Xy =1 Viev, )
JEVR 41

2 Xij ST ViEeF' 3
JEVN41
Z Xij = z Xji vjev’ 4)
i€vy IEVN 41
Po = €9 (5)
e <p; < Vi€ Vyyq (6)
pi + tijxij + wig; < pj + lo(1 — x;5) Vi € Vg, Vj € Vi1 @)
Yo =0 3
y; + hdjjxi; <y +wi +Q(1 —x;5) Vi € Vg, Vj € Viie 9
w; +y; = Qr; ViEeF' (10)
wi+wi+y; =Q VievV (11)
w; < Qr; VievVv (12)
w; <Q(1—-r) VievVv (13)

The objective function (1) aims to minimize the total travelled distance. Constraints (2) ensure that
each customer node is visited exactly once and ensures that the tour starts from the depot node.
Constraints (3) guarantee that each dummy charging station node can be visited at most once if it is
used by the electric vehicle for a recharging operation. Constraints (4) maintain the flow continuity for
the route plan. Constraint (5) sets the service start time at the depot equal to its earliest time window
bound. Constraints (6) ensure that the depot node and each customer node have to be visited within
their time windows. Constraints (7) track the service start times at customer, charging station and
depot nodes by considering the charging times. Constraints (8)-(13) determine the battery levels of the
electric vehicle at each node. Constraint (8) ensures that the electric vehicle starts its tour with a full
battery. Constraints (9) determine the arrival battery level and possible charging operation at the
predecessor node. Constraints (10)-(13) determine the charging amounts of the electric vehicle at the
customer or charging station nodes following a full charging policy. For these constraints, it is
assumed that a charging station is set up at each customer location. However, if the charging stations

are set up at only some of the customer nodes, constraints (12) can be replaced with constraints (14)

10



by defining a new given parameter s; which takes the value 1 if a charging station is set up at customer

node i, 0 otherwise; Vi € V.

w; < Qsiri VieV (14)

4. Proposed Algorithm
This section presents the details of the proposed hybrid SA/TS which integrates a TS algorithm within
an SA algorithm. Simulated annealing is first introduced by Kirkpatrick, Gelatt, and Vecchi (1983)
and is a stochastic search that has been successfully applied to many combinatorial optimization
problems owing to its stochastic solution acceptance procedure. Tabu search, which is another
efficient heuristic algorithm to solve combinatorial optimization problems, is first introduced by
Glover in 1986 and uses a memory mechanism to prevent the search from cycling back to previously
visited solutions (Glover, 1989, 1990). Considering the accomplished solution acceptance procedure
of the SA and the cycling-avoidance memory mechanism of the TS, several hybrid structures of SA
and TS can be found in the literature. Distinct from the existing hybrid structures of SA and TS, the
proposed hybrid SA/TS uses two different types of tabu lists to escape local optima and operates a
dynamic programming procedure to generate charging operation plans optimally for a given customer-
only route. Similar to the 3P-Heu introduced by Roberti and Wen (2016), the proposed hybrid SA/TS
optimizes the ETSPTW-MCR in two stages. First, the algorithm searches the solution space
considering TSPTW constraints. Then, a dynamic programming procedure, called station_insertion,
is carried out to obtain a feasible solution for the ETSPTW-MCR. The overall framework of the

hybrid SA/TS is presented in Algorithm 1 and explained in more detail in the following sub sections.

[Insert Algorithm 1 about here]

4.1.Preprocessing

In order to reduce the computational time of the algorithm, a preprocessing step is carried out. First,
the arcs resulting in infeasibilities with respect to time windows are eliminated if they satisfy one of

the following conditions:

e, +dij >1; Vi €V, Vj € Vs

ei+dij+dine > lys Vi €V, VjeV

After elimination of the infeasible arcs, all feasible paths and their distances between the
customer/depot nodes are determined. In addition, for each path, the minimum required battery level

from the start point of the path to its successor is determined to be used in the station_insertion

subroutine, where the electric vehicle arrives at a customer location with less than the minimum

11



required battery level to reach the next location, then this solution is specified as infeasible. Finally,
unnecessary paths are removed according to the five dominance rules given by Roberti and Wen

(2016).

4.2. Initialization
The hybrid SA/TS operates on two different solutions: X and Y, both consist of a permutation order of
customer locations and represent the TSPTW and ETSPTW-MCR solutions in the algorithm,
respectively. The algorithm operates on the X solution in the first stage of the search procedure and on
the Y solution in the ETSPTW-MCR procedure. The best found TSPTW solution X* and the best
found ETSPTW-MCR solution Y* are stored during the search procedure and updated when a better
solution is observed for TSPTW or ETSPTW-MCR, respectively.

The solution X is initialized with a permutation of customer nodes according to an increasing value of
l;. This order is not guaranteed to provide a feasible solution with respect to the allowed time
windows. However, comparing with a randomly generated solution, it was found that this initial

solution resulted in reaching a time-feasible solution quicker.

Since the hybrid SA/TS requires a time-feasible X and a time and battery-feasible Y, two operations
are applied during the initialization. In the first operation, a set of local search procedures, specified in
the following subsection, are randomly applied to get a time-feasible route plan for the electric vehicle.
This operator has a similar structure as the “maketwfeasible” operator introduced by Roberti and
Wen (2016). For these local searches, the objective function used is the summation of all delays
ey max{0,p; — [;}) at customer and depot locations. Until a time-feasible route is obtained, i.e. the

objective function is greater than zero, randomly selected local searches are applied to X.

In the second operation, a completely feasible route plan Y for the electric vehicle is determined from
X. Several local search procedures are randomly applied to X for a specific number of iterations
(init_iter). However, different from the first operations, only feasible moves with regard to the time
window constraints are considered in this phase. After each local search procedure, the
station_insertion subroutine is applied to X if the solution is not present in the tabu list. After the
station_insertion subroutine, the initialization procedure is terminated and Y* is updated if a feasible
solution for ETSPTW-MCR is obtained. Otherwise, the algorithm continues with the local search
procedure to create new solutions. At the end of the init_iter, the algorithm is restarted by perturbing
the X if a feasible solution ¥ is still not obtained. The pseudo code of the initialization procedure is

given in Algorithm 2.

[Insert Algorithm 2 about here]
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4.3. Local search

During the local search procedure, the hybrid SA/TS considers a set of moves consisting of 1-shift, 2-
opt, and swapping operations. At each iteration, the algorithm randomly selects a move and applies it
to X in order to obtain a new solution X'. The details of the moves are presented by Gendreau, Hertz,
Laporte, and Stan (1998), Ohlmann and Thomas (2007), Da Silva and Urrutia (2010), and Mladenovic,
Todosijevi¢, and UroSevi¢ (2012). For each local search application, a best improvement strategy is
used. As described by Da Silva and Urrutia (2010), the shifting operators are applied by considering
backward and forward movements. Figure 2 represents an illustrative example of the considered three
move operations. In detail, Figure 2b-d show the results of 1-shift, 2-opt, and swap operations when

they applied to the route given in Figure 2a.

[Insert Figure 2 about here]

In addition to the moves described above, a perturbation operator is used to diversify the solution. The
perturbation operator removes a number of customer nodes from the route, where the number of
customer nodes to be removed is specified with parameter R, and inserts them into the route randomly.
For the customer insertion, the time windows restrictions are ignored in this step. At the end of the
perturbation, as in the initialization step, the local search procedures are iteratively applied to the route
until it becomes feasible with respect to the time windows restrictions. The application frequency of

the perturbation operator in the algorithm is controlled by the parameter perturbation.
4.4.Tabu List Structure

Two different tabu lists are used in the hybrid SA/TS, which are independent from each other. The
first tabu list is used to escape from local minima during the local search procedure by storing move
information of the move operations. This structure not only stores the node information changed in the
move, but also keeps the used local search procedure information. After each local search procedure,
an accepted move is simply added to the tabu list memory according to the nodes changed and the
local search type used in the related move. The stored information in the tabu list is used to prohibit
the same nodes for a number of iterations to avoid recreation of a solution feature of the previous
solution. Furthermore, the aspiration criterion of TS is taken into account for the first tabu list, which
means that a move that is declared tabu will still be accepted if it provides a better solution than the
X*. The length of the first tabu list is controlled by the parameter TL,. If the tabu list length exceeds
TL4, the oldest information in the tabu list is removed. For instance to the first tabu list structure, let

the nodes changed in the route at the end of a swap operation be i and j, respectively. This information
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is added to the first tabu list as “sawp/i/j”. Then, a swap operation of node i and node j is not
allowed during the next TL, iterations. Here, it should be noted that, the tabu list does not restrict the
inverse move of these nodes, which means that node j and node i can be swapped to generate new

solution.

Distinct from the first tabu list, the second tabu list avoids applying the station insertion procedure to a
solution that has been investigated before. Since the station insertion procedure is time consuming for
the algorithm, the second tabu list is operated to keep critical information of a route to avoid redundant
computations. It was found that using the first and last customer of a route and the arrival times at the
first and last customer are sufficient to avoid applying the insertion procedure multiple times to the
same solution. When the station insertion procedure is carried out for a newly generated X, the
specified information is added to the second tabu list. The second tabu list is controlled by the
parameter TL,, and as in the first tabu list, the oldest information is removed when the tabu list length

exceeds TL,.
4.5. Evaluation of the TSPTW solution for the ETSPTW-MCR

After generating a new solution X' at the end of the local search procedure, the station_insertion is
carried out to obtain ¥ for the ETSPTW-MCR, if f(X") < f(Y*) and at least one of the following two
criteria is satisfied. Firstly, X is not tabu with respect to the second tabu list. Secondly, X’ has more
slack time than Y*, i.e. slack(X") > slack(Y™*). The total slack time of the customers, defined as
slack(X"), is calculated to determine the potential available charging time of the electric vehicle as

follows:

slack(X") = Z li —p;
7
The station_insertion procedure finds the best station insertion for a given route consisting only of
customer nodes by using a dynamic programming approach introduced by Roberti and Wen (2016).
The dynamic programming approach is also used by Desaulniers et al. (2016), and Schiffer and
Walther (2018a, b) effectively to solve EVRP variants. The procedure inserts the predetermined paths
between the customer pairs one by one to obtain the best solution for the ETSPTW-MCR. Figure 3
presents illustrative examples of four different types of paths that can occur between a pair of
customer nodes. The first case is a path between two customers without any charging operations and is
shown in Figure 3a. Figure 3b shows routes including public charging station visits, in which the
electric vehicle is recharged at one or more public charging stations. Here, it should be noted for the
partial charging policy that only one possible outcome for battery level of the electric vehicle is shown
at the successor customer node. However, battery level of the electric vehicle can be variable

dependent on the charging time at the station. Therefore, different states for the battery levels are
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possible for partial charging policy. In case, a private charging station is installed at the successor

customer node, the electric vehicle can be recharged at that location as seen in Figure 3c-d.

[Insert Figure 3 about here]

Since a full charging policy is taken into account in this study, battery levels and charging times after
the first customer location of the paths can be determined in the preprocessing part. For instance,
considering a path consisting of three locations (i, k, j), where i and j are customers and k is a public
charging station, the battery level of the electric vehicle is always Q — hd; at location j. In addition,
the arrival time at j can be determined by only using the battery level of the electric vehicle at
customer location i because the travel times between the locations are fixed. In this way, the dynamic
programming labels are calculated in shorter processing times. In addition to the original structure of
the dynamic programming approach of Roberti and Wen (2016), the station_insertion procedure
used in the hybrid SA/TS is improved by adapting the minimum required battery levels for the paths to
speed up the computations. With this restriction, a new label can only be considered if the minimum
battery level of the label is sufficient to reach the next customer location or a public charging station.

The pseudo code of the station_insertion procedure is given in Algorithm 3.

[Insert Algorithm 3 about here]

4.6. Solution acceptance and cooling procedure
At the end of the main loop of the algorithm, a newly generated X' is accepted or rejected based on the
solution acceptance policy of SA. On the other hand, Y* is updated when the station_insertion
procedure is carried out for a new generated solution X', where Y is accepted as Y*if and only if
f(Y) < f(Y™). Since the solution quality of ¥ in the hybrid SA/TS is dependent on X, a decrease of
f(X) can potentially result in a reduction of f(¥). However, preliminary tests showed that a good
solution for the TSPTW does not always correspond to a good solution for the ETSPTW or ETSPTW-
MCR. Therefore, the SA is adjusted with an additional parameter w € [0,1], which controls whether
the search is continued from Y*. In this way, the algorithm can escape from the X related local
minimum. The adjusted acceptance procedure works as follows: the algorithm continues with a new
solution X', if f(X") < f(X) or e T > rnd, where A= f(X') — f(X), T is the temperature, and rnd
is a randomly generated number between 0 and 1. Otherwise the algorithm randomly continues with X

or Y* according to the probabilities of w and 1 — w, respectively. In case Y™ is selected, the route
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information of the solution is copied to X by ignoring the charging station nodes. The temperature of
the hybrid SA/TS is controlled by using a cooling ratio (¢) and cooling length (CL), where T is
reduced by multiplying with ¢ at the end of each CL iterations. After the cooling procedure, the

algorithm continues to search or stops at the end of the maximum iteration number (max_iter).

Algorithm 4 presents the pseudo code of the hybrid SA/TS procedure described above, in which

integration of the SA, TS, local search, and station_insertion procedures are given in more detail.

[Insert Algorithm 4 about here]

5. Computational Results and Discussions
In order to validate the performance of the proposed hybrid SA/TS, extensive computational
experiments are performed. The experiments are split into three parts according to problem type:
TSPTW, ETSPTW, and ETSPTW-MCR. For the computations, two well-known problem sets for the
TSPTW and their extensions are solved by the hybrid SA/TS using an Intel(R) Core(TM) i7-7500U
CPU @ 2.7GHz with 16 GB RAM. This section initially presents the structure of the considered
problem sets and parameter tuning studies for the hybrid SA/TS. Then, the results of the proposed
hybrid SA/TS and comparisons with recent existing solution methodologies are given in the following
subsections for each problem type. Finally, strengths and limitations of the proposed algorithm, and

managerial insights of the results are discussed in the last subsection.

5.1. Benchmark problems
Because the TSPTW has been studied by many researchers, there exist various benchmark problem
sets in the literature generated for the TSPTW. However, there exist only two different problem sets
for the ETSPTW introduced by Roberti and Wen (2016) which are extensions of the TSPTW problem
sets proposed by Gendreau et al. (1998) and Ohlmann and Thomas (2007). Therefore, the
computational studies for the TSPTW, ETSPTW and ETSPTW-MCR are carried out based on these

problems in order to make fair comparisons between the algorithms.

For the first part of the computational studies, we used the original TSPTW problem sets proposed by
Gendreau et al. (1998) and Ohlmann and Thomas (2007), which we will refer to as the G and OT sets,
respectively. The G problem set consists of 140 instances grouped into 28 cases where the number of
customer nodes varies between 20 and 100. The OT problem set contains 25 instances grouped into 5

cases with a larger number of customer nodes: 150 and 200 customer nodes.

The second part of the computational studies are carried out by using the ETSPTW problems
introduced by Roberti and Wen (2016) derived from the G and OT problems. In order to create small

sized problems, the authors used the G dataset instances with 20 customers consisting of 25 instances.
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Large sized problems are generated by using all the OT problems. Each TSPTW instance is adapted to
ETSPTW by adding a number of charging station (either 5 or 10) locations. One of them is at the
depot node location, and the other charging station locations are identified in a systematic way to
obtain a feasible solution for the problem. For the charging operations, the energy consumption rate
and the charging rate are fixed to 1 and 0.25, respectively. Or put otherwise, the energy consumption
rate is chosen such that the required charge for travelling a given arc is equal to the distance of the arc
for each instance. Similarly, the recharging time of one unit of battery level is always equal to 0.25
time units at the public charging stations. The vehicle’s battery capacity is specified with respect to the
best known solution of the corresponding TSPTW instance. Finally, time windows of the customer
locations are modified for some of the instances in order to guarantee a feasible solution. In total, 100

test instances are proposed for the ETSPTW where the instances are grouped as follows:

e 25 small sized instances with 5 charging stations generated by using the G dataset (called G-E5)

e 25 small sized instances with 10 charging stations generated by using the G dataset (called G-
E10)

e 25 large sized instances with 5 charging stations generated by using the OT dataset (called OT-
E5)

e 25 large sized instances with 10 charging stations generated by using the OT dataset (called OT-
E10)

For the ETSPTW-MCR computations, the ETSPTW problems are simply adapted by randomly
selecting customer locations to be designated as containing a private charging station. For the private
charging stations, three cases are considered to extend the ETSPTW problems: 30%, 70% and 100%
of the customers have their own private charging stations. This percentage is referred to as the private
charging station ratio. Since the customers are randomly located in the G and OT datasets, private
charging stations are simply chosen by selecting the first 30%, 70% and 100% customer locations. For
these stations, a slow or normal charging technology is assumed. Therefore, the charging rate is fixed

to 1.5.

The new problem sets for the ETSPTW-MCR are identified by using the MCR(p) term where p is the
private charging station construction ratio. According to the p value, the number of private charging
stations for the ETSPTW-MCR problem set are identified as follows: In small sized instances, first 6,
14, and 20 customers contain a private charging station with respect to the charging station ratio. For
instance, G-E5-MCR(30%) problems are formed by using the G-E5 problem set where the first 6
customers have a private charging station for each instance. In the same manner, the number of private
charging stations in the large sized instances, in which the problems consist of 150 customer locations,
are 45, 100, and 150. Finally, the number of private charging stations for the remaining instances with
200 customer locations are 60, 140, and 200. Figure 4 presents an illustrative graph representation for

the first instance of OT-E5-MCR(30%) dataset, in which the depot node with a public charging station,
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public charging stations, customer locations and private charging station at customer locations are
shown. The ETSPTW and ETSPTW-MCR problem sets, and details of the computational results
presented in the following subsections are available at [dataset]

http://dx.doi.org/10.17632/s2xcd2hpzy.1.

[Insert Figure 4 about here]

5.2. Parameter tuning
Most of the heuristic algorithms work with a set of parameters and the performance of the algorithms
are strongly related with their parameter values. In order to find suitable parameters, different
approaches are introduced in the literature, such as, hand-made tuning, tuning by analogy,
experimental design based tuning, search based tuning, and hybrid tuning (Montero, Riff, & Neveu,
2014). Among them, experimental design based tuning methods, or search based tuning methods are
found to be more successful to obtain good parameters. This is especially the case for the algorithms
having a large number of parameters. However, these tuning methods can be time consuming when a
large number of problems or complex algorithms are taken into account for the experiments (Adenso-
Diaz & Laguna, 2006; Coy, Golden, Runger, & Wasil, 2001; Hutter, Hoos, & Stiitzle, 2007).
Therefore, a straightforward tuning method inspired from the study proposed by Keskin and Catay
(2016) is used in the hybrid SA/TS. By selecting five different problems from the OT-E5 dataset and
setting the max_iter number to 15000 and T, = 10000, the parameter values of the hybrid SA/TS are
determined as follows: ¢ = 0.95, CL = 100, TL, = 400, TL, = 75, perturbation = 500, R = 30,
w = 0.7, and init_iter = 100. Details of the parameter tuning study and results are given in

Appendix A.

5.3. Computational results for the TSPTW
The first part of the computational studies is carried out to identify the performance of the proposed
hybrid SA/TS for the TSPTW. For these computations, the proposed algorithm is adapted to TSPTW
by ignoring the station_insertion procedure for ETSPTW. Table 2 and Table 3 show the results of the
experiments for G and OT data sets, respectively, and compare the hybrid SA/TS solution with three
metaheuristic approaches proposed for the TSPTW: a compressed annealing (CA) algorithm
introduced by Ohlmann and Thomas (2007), a GVNS algorithm introduced by Da Silva and Urrutia
(2010), and a variable iterated greedy VNS algorithm (VIG_VNS) introduced by Karabulut and
Tesgetiren (2014). In addition to CA, GVNS, and VIG-VNS, Table 3 compares the hybrid SA/TS with
3P-Heu proposed by Roberti and Wen (2016). The columns fg, f4, o, and t(s) for each heuristic

algorithm present the best result of 10 runs, the average result of the 10 runs, the standard deviation of
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the runs, and the average computational time of the runs in seconds, respectively. New best results

obtained by the hybrid SA/TS are pointed out with the bold characters in the tables.
[Insert Table 2 about here]

[Insert Table 3 about here]

Table 2 shows that for the G dataset, one new best solution is found by the hybrid SA/TS. For the
other problems, the hybrid SA/TS yielded the same results as the GVNS and VIG VNS approaches
which are also better than the CA results. Moreover, the hybrid SA/TS provides better average results
with smaller standard deviations with respect to the CA and GVNS. On the other hand, a better
average result is found by VIG_VNS with a 0.1 difference with respect to the hybrid SA/TS. When the
average results of the experiments for the G dataset are analyzed, it should be emphasized that the
hybrid SA/TS outperforms the CA and GVNS and finds better results with smaller CPU times. Similar
results are also observed for the OT dataset which are presented in Table 3. For these computations,
the hybrid SA/TS provided better average results for three problem groups. According to the average
results of the heuristic methods, a better performance is provided by the hybrid SA/TS. In addition to
the CA and GVNS, the hybrid SA/TS additionally outperforms the VIG_VNS by finding better results
with smaller CPU times for the OT dataset. As a result of the TSPTW experiments, it should be noted
that the proposed hybrid SA/TS is capable of consistently finding high-quality results compared to the
CA, GVNS, VIG_VNS, and 3P-Heu algorithms.

5.4. Computational results for the ETSPTW

Following the TSPTW computations, the hybrid SA/TS is carried out for the ETSPTW problems by
considering both full and partial charging policies. To implement the partial charging policy in the
hybrid SA/TS, the station_insertion procedure is extended by allowing additional labels with partial
battery level for the charging operations as described by Roberti and Wen (2016). In Appendix B,
Tables B.1-4 introduce the computational results of the hybrid SA/TS and comparisons with 3P-Heu
for the G-E5, G-E10, OT-E5, and OT-E10 datasets, respectively. In order to specify the solution
quality of the proposed algorithm, the percentage gaps between the hybrid SA/TS and 3P-Heu
solutions are given in the tables by considering the best and average results as follows.

_ fp(Hybrid SA/TS) — fz(3P-Heu)

P%, = 1009
3 /OB fB(3P-Heu) X 100%
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_ fa(Hybrid SA/TS) — f,(3P-Heu)

3P%, = X 1009
Yo f4(3P-Heu) %

In addition to the percentage gaps, the columns specified with nsp represent the number of public
charging stations visits for the solutions. Table 4 summarizes the results obtained by the hybrid SA/TS

and comparisons based on the average solutions.

For the small sized instances, our algorithm found the optimal solutions as found by Roberti and Wen
(2016). Moreover, when the hybrid SA/TS is compared with the 3P-Heu, the proposed hybrid
algorithm obtained better results for two G-E5 instances. Regarding the number of charging station
visits, it should be noted that different values for nsp are observed for some of the instances because

of alternative optimal solutions.

[Insert Table 4 about here]

Considering the large sized instances, the performance of the hybrid SA/TS is more evident with
respect to the 3P-Heu. Comparing the best results of the algorithms, 26 new best results are obtained
by the hybrid SA/TS. For the remaining problems, the results of the hybrid SA/TS are the same as the
3P-Heu results except for two instances. Regarding the best results, the hybrid SA/TS provides a
0.22% and 0.15% improvement on average for the OT-ES5, and OT-E10 problems, respectively.
Similarly, the average results of the hybrid SA/TS are better than the 3P-Heu.

With respect to the computational effort, the average required CPU time of the hybrid SA/TS is
slightly more than the 3P-Heu due to the station insertion procedure calls in the algorithms, where the
3P-Heu calls the dynamic programming procedure almost 500 times (maximum iteration number)
while this value is mostly more than a thousand times for our algorithm even for small sized problems.
Nevertheless, an increase of a few seconds on the computational time can be reasonable for the hybrid

SA/TS in order to obtain better results.

5.5. Computational results for the ETSPTW-MCR
The final part of the computational studies is carried out for the small and large sized ETSPTW-MCR
problems. For the small sized instances, the results of the hybrid SA/TS are compared with the
GUROBI 7.0.1 solutions obtained with a two hour time limitation. In addition to the comparisons
between the hybrid SA/TS and GUROBI solver, the ETSPTW-MCR and ETSPTW results are
analyzed for both small and large sized instances. Table 5 and Table 6 present the GUROBI solver
solutions for the small sized instances. The columns labelled MIP, LB, Gap%, and t(s) in the tables
indicate the mixed integer programming result, lower bound of the solution, optimality gap of the

solution, and solution time of the GUROBI, respectively.
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[Insert Table 5 about here]

[Insert Table 6 about here]

In addition to the GUROBI results, Table 7 summarizes the average results obtained by hybrid SA/TS
for both the small and large sized ETSPTW-MCR instances, where the details of the results 