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Abstract: Apart from its applications in Chemistry, Biology, Physics, Social Sciences,
Anthropology, etc., there are close relations between graph theory and other areas of Mathematics.
Fibonacci numbers are of utmost interest due to their relation with the golden ratio and also due
to many applications in different areas from Biology, Architecture, Anatomy to Finance. In this
paper, we define Fibonacci graphs as graphs having degree sequence consisting of n consecutive
Fibonacci numbers and use the invariant Ω to obtain some more information on these graphs.
We give the necessary and sufficient conditions for the realizability of a set D of n successive
Fibonacci numbers for every n and also list all possible realizations called Fibonacci graphs for
1 ≤ n ≤ 4.
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1. Introduction

Graph theory is one of the most popular subjects in mathematics as it can be applied to any
area of science. One may easily found applications of graphs in networks, physics, electronical
engineering, chemistry, molecular biology, pharmacology, transportation, trade, city planning,
economy etc. Several mathematicians studied interrelations between number theory and graph
theory and connected several properties of numbers with graphs. Every eigenvalue of a tree is a
totally real algebraic integer and every totally real algebraic integer is a tree eigenvalue. So there
is a close relation between algebraic number theory and spectral graph theory. In the network
topology, for example in a hypercube convenient for parallel processing, the vertices are labeled
with binary n-tuples if the hypercube is n dimensional. In [1], Erdös used graphs to prove a
number theoretical inequality for the maximum number of integers less than a positive integer n
no one of which divides the others. In this paper, we introduce graphs whose degree sequences
consist of consecutive Fibonacci numbers and call them Fibonacci graphs.

The Fibonacci sequence is a famous number sequence whose name comes from the Italian
Mathematician Leonardo Pisano, Fibonacci or Leonardo of Pisa lived between 1170–1240 in Italy.
This number sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, · · · is called Fibonacci sequence. Let Fr be
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the r-th Fibonacci number. Taking F1 = 1, F2 = 1 as initial conditions, these numbers satisfy the
recurrence relation Fr = Fr−1 + Fr−2 for r ≥ 3.

In [2], some graphs called Fibonacci cube graphs have been defined and studied. A Fibonacci
cube graph of order n is a graph on Fn+2 vertices labeled by the Zeckendorf representations of
the numbers 0 to F(n + 2)− 1 so that two vertices are connected by an edge iff their labels differ
by a single bit, i.e., if the Hamming distance between them is exactly 1. Note that our definition
of Fibonacci graph of order n means a graph with n vertices with degrees equal to n successive
Fibonacci numbers.

The rest of the paper is organized as follows. In Section 2, the necessary definitions and
results related to Ω invariant are recalled. In Section 3, the so-called Fibonacci graphs of order
1 to 4 are catalogued and their properties are studied. For an arbitrary non-negative integer
n, the necessary and sufficient conditions for the existence of a Fibonacci graph of order n are
established. The number of loops which is equal to the number of faces of the graph is formulized
in all cases by means of the Ω invariant.

2. Fundamentals and Ω Invariant

Let G = (V, E) be a graph of order n and size m. Let the degree of a vertex v ∈ V(G) be
denoted by dv. A vertex with vertex degree one is called a pendant vertex and an edge having
a pendant vertex is similarly called a pendant edge. The biggest vertex degree is denoted by ∆.
A well-known result known as the handshaking lemma states that the sum of vertex degrees in
any graph is equal to twice the number of edges of the graph. If u and v are two adjacent vertices
of G, then the edge e between them is denoted by e = uv and also the vertices u and v are called
adjacent vertices. The edge e is said to be incident with u and v. A support vertex is a vertex
adjacent to a pendant vertex. If there is a path between every pair of vertices, then the graph is
called connected.

In many cases, we classify our graphs according to the number of cycles. A graph having no
cycle is called acyclic. For example, all trees, paths, star graphs are acyclic. A graph which is not
acyclic will be called cyclic. If a graph has one, two, three cycles, then it is called unicyclic, bicyclic
and tricyclic, respectively.

A loop is an edge starting end ending at the same vertex. Two or more edges connecting the
same pair of vertices are called multiple edges. A graph is called simple if there are no loops nor
multiple edges. Usually, simple graphs are preferable in many research, but in this work we shall
make use of graphs with small order and much larger size making those graphs non-simple.

Considered with multiplicities, a degree sequence is written as

D = {d1
(a1), d2

(a2), d3
(a3), · · · , ∆(a∆)}

where ai’s are positive integers corresponding to the number of vertices of degree di. It is also
possible to state a degree sequence as

D = {1(a1), 2(a2), 3(a3), · · · , ∆(a∆)}

where some of ai’s could be zero.
Let D = {d1, d2, d3, · · · , ∆} be a set of non-decreasing non-negative integers. If there exists

a graph G with degree sequence D, then D is said to be realizable and G is a realization of D.
There is no formula for the number of realizations of a degree sequence and it is known that this
number is quite big. The most well-known and effective results to determine the realizability are
Havel-Hakimi and Erdös-Gallai, see [3,4]. There are some other techniques as well.
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The degree sequence of some frequent graphs are as follows: D(Pn) = {1(2), 2(n−2)}, D(Cn) =

{2(n)}, D(Sn) = {1(n−1), (n− 1)(1)}, D(Kn) = {(n− 1)(n)}, D(Kr,s) = {r(s), s(r)} and D(Tr,s) =

{1(1), 2(r+s−2), 3(1)}.
In this paper, we utilize some graph classes with one, two, three or four vertices. The ones

with one and two vertices were defined and used in solving the problem of finding the maximum
number of components amongst all realizations of a given degree sequence in [5]. A graph having
q loops at a single vertex is denoted by Lq. Some Lq’s are seen in Figure 1:

Figure 1. Some Lq graphs.

Let r, s ∈ N. Br,s is the graph having r loops at one end of an edge and s loops at the other.
Some Br,s graphs are seen in Figure 2:

Figure 2. Some Br,s graphs.

A connected graph having three vertices u, v, w of degrees 2a + 1, 2b + 2 and 2c + 1 with
a, b, c are integers, respectively, is a graph consisting of a path P3 = {u, v, w} such that a loops are
incident to u, b loops are incident to v and c loops are incident to w. It will be denoted by Ta,b,c,
see Figure 3.

Figure 3. T9,10,7.

A connected graph of four vertices u, v, w, z having degrees 2a + 1, 2b + 2, 2c + 2 and 2d + 1
with a, b, c, d are integers, is a graph consisting of a path P4 = {u, v, w, z} so that a loops are
incident to u, b loops are incident to v, c loops are incident to w and d loops are incident to z. It is
denoted by Qa,b,c,d, see Figure 4.
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Figure 4. Q9,10,6,7.

For non-negative integers r and k, the notation “r[k]” will mean that k loops are attached at
a new vertex on one of the r loops incident to others. For non-negative integers r, k1, k2, · · · , kt,
the notation “r[k1, k2, · · · , kt]” will mean that k1 loops are attached to one of the loops of degree
r at a new vertex, k2 loops are attached to another loop of degree r at a another new vertex,
and continuing this way, kt loops are attached to yet another one of the loops of degree r at another
new vertex. Finally, the notation “r[k1; k2; · · · ; kt]” will mean that k1 loops are attached to one of
the loops of degree r at a new vertex, k2 loops are attached to the same loop at a another new
vertex, and continuing this way, kt loops are attached to the same loop at another new vertex.
To illustrate the definitions, the notations B2[3],1, B2[3,1],1 and T2[3;1],1 corresponds to graphs shown
in Figures 5–7:

Figure 5. The graph B2[3],1.

Figure 6. The graph B2[3,1],1.

Figure 7. The graph T2[3;1],1.

The following fact on Fibonacci numbers will be frequently used in this paper:
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Observation 1. Fibonacci numbers follows the rule odd, odd, even, odd, odd, even, · · · . That is, the index
r of a Fibonacci number Fr is divisible by 3, then Fr is even.

Fibonacci numbers have several interesting properties and there are a lot of identities about
them. For example, there is a formula for the sum F1 + F2 + · · ·+ Fr. This formula is given in the
following result:

Theorem 1. [6] The sum of the first r Fibonacci numbers satisfy the following equality

Σr
i=1Fi = Fr+2 − 1.

Some obvious consequences of this result are below:

Corollary 1. (i) Fr + Fr+1 + · · ·+ Fk = Fk+2 − Fr+1. (ii) Fr+3 − Fr = 2Fr+1.

We shall call a graph a Fibonacci graph if all its vertex degrees are consecutive Fibonacci
numbers. We shall study the existence of Fibonacci graphs where the degree sequence has 1, 2, 3
or 4 elements.

Let G be a realization of a degree sequence D. We recall the definition and some properties of
Ω(G) from [5,7–10]. The number a1 of leaves of a tree T is

a1 = 2 + a3 + 2a4 + 3a5 + 4a6 + · · ·+ (∆− 2)a∆, (1)

where ai is the number of vertices of degree i. Note that Equation (1) can be reformulized as

a3 + 2a4 + 3a5 + 4a6 + · · ·+ (∆− 2)a∆ − a1 = −2. (2)

Generalizing this equation, Ω(D) is defined in [7] as follows:

Definition 1. Let D = {1(a1), 2(a2), 3(a3), · · · , ∆(a∆)} be the degree sequence of a graph G. The Ω(G) of
G is defined in terms of D as

Ω(G) = a3 + 2a4 + 3a5 + · · ·+ (∆− 2)a∆ − a1

=
∆

∑
i=1

(i− 2)ai.

Ω invariant of a tree T, path graph Pn, cycle graph Cn, star graph Sn, complete graph Kn,
tadpole graph Tr,s and complete bipartite graph Kr,s where n = r + s in the latter two cases are

Ω(Cn) = 0
Ω(Pn) = −2
Ω(Sn) = −2
Ω(T) = −2
Ω(Kn) = n(n− 3)
Ω(Kr,s) = 2[rs− (r + s)]
Ω(Tr,s) = 0.

Note that the fact Ω invariant of a path, star or a tree is −2 is true for all connected acyclic
graphs as stated in [7].
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We recall some basic properties of Ω invariant. In most cases, we face with some disconnected
graphs. The following result shows the additivity of Ω invariant:

Theorem 2. [7] Let G be a disconnected graph with c components G1, G2, · · · , Gc. Then

Ω(G) =
c

∑
i=1

Ω(Gi).

The following relation is a useful tool in finding Ω(G) of a given graph G and is
used frequently:

Theorem 3. [7] For any graph G,
Ω(G) = 2(m− n).

That is, Ω invariant is always even. Hence, if Ω(D) is an odd integer for any set D of non-negative
integers, as a new realizability test, we can conclude that D is not realizable.

The number r of independent cycles in a connected graph G which is well-known as the
cyclomatic number of G can be stated in terms of Ω invariant:

Theorem 4. [7] Let D = {1(a1), 2(a2), 3(a3), · · · , ∆(a∆)}. If D is realizable as a connected planar graph G,
then the number r of faces (closed regions) is given by

r =
Ω(G)

2
+ 1.

This result is used in many applications. The following is a generalization to disconnected
graphs:

Corollary 2. [7] Let D = {1(a1), 2(a2), 3(a3), · · · , ∆(a∆)} be realizable as a graph G with c components.
The number r of faces of G is given by

r =
Ω(G)

2
+ c.

In [5], the maximum possible number of components amongst all realizations of a degree
sequence was given by the formula

cmax = ∑
di even

ai +
1
2 ∑

di odd
ai. (3)

In any graph, there are edges, vertices and faces. These three graph parameters frequently
appear as bridges, cut vertices, pendant vertices, chords, loops, multiple edges, pendant edges,
etc. For the fundamental notions in Graph Theory, see [11–15].

3. Existence Conditions for Fibonacci Graphs

In this section, we show the existence of graphs with n consecutive Fibonacci numbers as
their vertex degrees. That is, we are looking for graphs with degree sequence consisting of n
consecutive Fibonacci numbers. This problem can be restated as follows: Which sets having n
consecutive Fibonacci numbers are realizable as graphs? We shall solve this problem by means of
the Ω invariant.
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3.1. Fibonacci Graphs of Order 1

We now start with the Fibonacci graphs of 1 vertex. These are the graphs consisting of a
single vertex with degree a Fibonacci number.

Theorem 5. A graph with one vertex is a Fibonacci graph if and only if its size is F3k/2 for some positive
integer k. In this case, the graph is LF3k/2.

Proof. (⇐) Let a graph G with one vertex be of size F3k/2. Then as there is only one vertex, say v,
all ends of the edges are v. Therefore the degree of v is twice F3k/2 which is F3k and this shows
that the graph is a Fibonacci graph.

(⇒) Let G be a Fibonacci graph with one vertex v. As G is a Fibonacci graph, dv = Fr for some
positive integer r. The sum of vertex degrees which is equal to the degree dv of v must be even.
Therefore Fr must be even which is possible when r is divisible by 3.

In such a case, the degree sequence of this graph having one vertex must be D = {F(1)
3k }.

Hence, its realization would be the graph LF3k/2 and Ω(LF3k/2) = F3k − 2. Hence all Fibonacci
graphs of order 1 may have 1, 4, 17, 72, 305 faces, that is, they are L1, L4, L17, L72, L305, · · · , LF3k/2,
· · · . Therefore we showed

Corollary 3. A graph with one vertex is a Fibonacci graph iff it has LF3k/2 faces for some positive integer k.

3.2. Fibonacci Graphs of Order 2

We now discuss the Fibonacci graphs having two vertices. Namely, we want to find which
sets consisting of two consecutive Fibonacci numbers are realizable. By the Observation 1, only the
Fibonacci numbers F3, F6, F9, F12, · · · are even. So to have Fr and Fr+1 as the vertex degrees
of a Fibonacci graph having two vertices, the graph must be connected and also we must have
r ≡ 1 modulo 3. That is, the degrees of the vertices must be F3k+1 and F3k+2 for some integer k.
If the graph is disconnected, then two components must have orders F3k+1 and F3k+2. But this is a
contradiction with the Handshaking Lemma. Therefore, we proved

Theorem 6. A graph with two vertices is a Fibonacci graph iff its degree sequence is D =
{

F(1)
3k+1, F(1)

3k+2

}
for some integer k.

In this case, the graph is B(F3k+2−1)/2,(F3k+1−1)/2 with Ω invariant

Ω(B(F3k+2−1)/2,(F3k+1−1)/2) = (F3k+1 − 2) · 1 + (F3k+2 − 2) · 1 = F3k+3 − 4.

Hence
Ω(G)

2
+ 1 =

F3k+3 − 4
2

+ 1 =
F3k+3 − 2

2
. (4)

This proves the following:

Corollary 4. If a graph of order 2 is a Fibonacci graph, then it has F3k+3−2
2 faces for some integer k.

Note that the converse may not be true.
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For k = 0, the vertex degrees are F1 and F2 and by Equation (3), the maximum number of
components is

cmax = ∑
di even

ai +
1
2 ∑

di odd
ai =

1
2
(1 + 1) = 1.

Therefore there is only one connected graph given in Figure 8:

Figure 8. The Fibonacci graph having vertex degrees F1 and F2.

This graph is B0,0 and by Equation (4), there are 2−2
2 = 0 faces, implying that the graph

is acyclic.
For k = 1, the vertex degrees are F4 = 3 and F5 = 5. Similarly to the above, there is only one

connected graph given in Figure 9:

Figure 9. The Fibonacci graph having vertex degrees F4 and F5.

This graph is B2,1. Note that by Equation (4), there are 8−2
2 = 3 faces in B2,1.

In summary, when n = 2, for each non-negative integer k, the only connected Fibonacci
graphs are B F3k+2−1

2 ,
F3k+1−1

2
and each of them has F3k+2−1

2 loops at one end, F3k+1−1
2 loops at the other

end and F3k+3−2
2 faces.

3.3. Fibonacci Graphs of Order 3

Now we take Fibonacci graphs with three vertices. Note that, the sum of three consecutive
Fibonacci numbers is always even, implying the following result:

Theorem 7. Every degree sequence consisting of any three consecutive Fibonacci numbers is realizable as
a Fibonacci graph.

So there are three possibilities for the degree sequence of such a graph where k is a
non-negative integer: {F(1)

3k+1, F(1)
3k+2, F(1)

3k+3}, {F
(1)
3k+2, F(1)

3k+3, F(1)
3k+4} or {F(1)

3k+3, F(1)
3k+4, F(1)

3k+5}. In each
of these cases, we have one even and two odd integers. Hence, the maximum number of
components is

cmax = ∑
di even

ai +
1
2 ∑

di odd
ai = 1 +

1
2
(1 + 1) = 2.

A Fibonacci graph with three vertices can be connected or may have two components. This is
because there are two odd degrees and an even one. A realization of 3 components is impossible
as two components would have total vertex degree odd. So, for the three degree sequences above,
two odd degree vertices must belong to the same component, and the other vertex could belong to
this component causing a connected graph, or could form a second component. We now consider
these possibilities:
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Case 1. First let D =
{

F(1)
3k+1, F(1)

3k+2, F(1)
3k+3

}
. In this case, Ω of D is

Ω(D) = (F3k+1 − 2) · 1 + (F3k+2 − 2) · 1 + (F3k+3 − 2) · 1
= 2F3k+3 − 6.

As Ω(D) is even, D is always realizable by Theorem 3. For the case of k = 0 where
F1 = 1, F2 = 1, F3 = 2, the only possible connected realization is in Figure 10:

Figure 10. The unique connected realization of D =
{

F(1)
1 , F(1)

2 , F(1)
3

}
.

which is a path graph P3 which has r = 2F3−6
2 + 1 = 0 faces. The unique disconnected realization

of D is given in Figure 11:

Figure 11. The unique disconnected realization of D =
{

F(1)
1 , F(1)

2 , F(1)
3

}
.

which is the graph B0,0 ∪ L1 (or P2 ∪ L1) and it has 2F3−6
2 + 2 = 1 faces, i.e., it is unicyclic.

Let us now consider D = {F(1)
3k+1, F(1)

3k+2, F(1)
3k+3} for k ≥ 1. By the above discussion, it is not

difficult to determine the existence of the following three connected realizations of D given in
Figure 12:

Figure 12. All three connected realizations of D = {F(1)
3k+1, F(1)

3k+2, F(1)
3k+3} .

which are TF3k+2−1
2 ,

F3k+3−2
2 ,

F3k+1−1
2

, TF3k+2−1
2 [

F3k+3−2
2 ],

F3k+1−1
2

and TF3k+2−1
2 ,

F3k+1−1
2 [

F3k+3−2
2 ]

, respectively.

In all these graphs, the number of faces is 2F3k+3−6
2 + 1 = F3k+3 − 2. The fourth and final

realization of D is a disconnected graph B F3k+2−1
2 ,

F3k+1−2
2
∪ L F3k+3

2
in Figure 13 which has

2F3k+3−6
2 + 2 = F3k+3 − 1 faces.
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Figure 13. The unique disconnected realization of D = {F(1)
3k+1, F(1)

3k+2, F(1)
3k+3}.

Case 2. Let us secondly take D =
{

F(1)
3k+2, F(1)

3k+3, F(1)
3k+4

}
. We have Ω(G) = 2F3k+4 − 6. Note that F3k+2

and F3k+4 are odd and F3k+3 is even. In the singular case of k = 0 where three consecutive Fibonacci
numbers are F2 = 1, F3 = 2, F4 = 3, there are three possible graphs as below: two are connected and one is
disconnected. The first and second graphs in Figure 14 have the number of faces 1 which is compatible with
Theorem 4 and the third graph has 2 faces which is compatible with Corollary 2. These graphs are named by
T1,0,0, T1[0],0 and B1,0 ∪ L1, respectively.

Figure 14. All three realizations of D = {F(1)
2 , F(1)

3 , F(1)
4 }.

Now, we take D as a set of three consecutive Fibonacci numbers F3k+2, F3k+3, F3k+4 for k ≥ 1.
There are four graph realizations, three are connected, see Figure 15, and one is disconnected, see
Figure 16. The connected ones are

Figure 15. All three connected realizations of {F3k+2, F3k+3, F3k+4}.

which are respectively denoted by TF3k+4−1
2 ,

F3k+3−2
2 ,

F3k+2−1
2

, TF3k+4−1
2 [

F3k+3−2
2 ],

F3k+2−1
2

and finally

by TF3k+4−1
2 ,

F3k+2−1
2 [

F3k+3−2
2 ]

which all have F3k+4− 2 faces. Finally, there is a disconnected realization

of D given in Figure 16: which is denoted by B F3k+4−1
2 ,

F3k+2−1
2
∪ L F3k+3

2
. It has F3k+4 − 1 faces.

Figure 16. The unique disconnected realization of {F3k+2, F3k+3, F3k+4}.
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Case 3. If we take D =
{

F(1)
3k+3, F(1)

3k+4, F(1)
3k+5

}
. Then similarly, Ω(G) = 2F3k+5 − 6. We have no

singular case and there are four realizations, the first three are connected and the last one is disconnected.
The connected realizations are in Figure 17.

Figure 17. All three connected realizations of D =
{

F(1)
3k+3, F(1)

3k+4, F(1)
3k+5

}
.

They all have F3k+5 − 2 faces. Also, there is a disconnected realization with F3k+5 − 1 faces
given in Figure 18.

Figure 18. The unique disconnected realization of D =
{

F(1)
3k+3, F(1)

3k+4, F(1)
3k+5

}
.

We have the following generalization:

Corollary 5. For a positive integer s, every set consisting of consecutive n = 3s Fibonacci numbers is
realizable as a Fibonacci graph of order 3s.

3.4. Fibonacci Graphs of Order 4

Finally, we discuss the case of n = 4. We want to have a degree sequence with four consecutive
Fibonacci numbers to be realizable. We have

Theorem 8. Let Fr, Fr+1, Fr+2, Fr+3 be four consecutive Fibonacci numbers.

D = {Fr, Fr+1, Fr+2, Fr+3}

is realizable iff r is a multiple of 3.

Proof. (⇒) Let us take four consecutive Fibonacci numbers Fr, Fr+1, Fr+2, Fr+3. The sum of these
numbers must be even. If E denotes an even number and O denotes an odd one, by Observation
1.1, the possible sums are E+O+O+E, O+O+E+O or O+E+O+O when r ≡ 0, 1 or 2 modulo 3,
respectively. Therefore the result.

(⇐) If r is a multiple of 3, then Fr and Fr+3 are even and Fr+1 and Fr+2 are odd giving the
realizability of D.
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Hence, the only possible degree sequence for a Fibonacci graph of order 4 is

D =
{

F(1)
3k , F(1)

3k+1, F(1)
3k+2, F(1)

3k+3

}
for a positive integer k. For such a degree sequence, Ω(D) = F3k+2 + F3k+4 − 8 is even implying
that D is realizable by Theorem 3. Also

cmax = ∑
di even

ai +
1
2 ∑

di odd
ai = (1 + 1) +

1
2
(1 + 1) = 3.

That is, any realization of D might have at most three components.
If we take k = 1, we get F3, F4, F5, F6 and we would have realizations having one, two or

three components. The fourteen connected realizations are B2[3,0],1, B2[0],1[3], B2[3],1[0], B2,1[3[0]],
B2[3[0]],1, B2,1[3,0], B2[3,0],1, T2[3],0,1, T2,3,1[0], T2[0],3,1, T2,0,1[3], T2,3[0],1, Q2,0,3,1, Q2,3,0,1. There are seven
disconnected realizations with two components which are B2,1 ∪ L4[0], B2[0],1 ∪ L4, B2,1[0] ∪ L4,
B2[3],1 ∪ L1, B2,1[3] ∪ L1, T2,0,1 ∪ L4, T2,3,1 ∪ L1, and finally there is a unique disconnected realization
with three components B2,1 ∪ L4 ∪ L1. In general case where k ≥ 2, we have eighteen
connected realizations

B F3k+2−1
2 ,

F3k+1−1
2

[ F3k+3−2
2

[ F3k−2
2

]], B F3k+2−1
2 ,

F3k+1−1
2

[ F3k−2
2

[ F3k+3−2
2

]],

B F3k+2−1
2

[ F3k−2
2

[ F3k+3−2
2

]]
,

F3k+1−1
2

, B F3k+2−1
2

[ F3k+3−2
2

[ F3k−2
2

]]
,

F3k+1−1
2

,

B F3k+2−1
2 ,

F3k+1−1
2

[ F3k+3−2
2 ,

F3k−2
2

], B F3k+2−1
2

[ F3k+3−2
2 ,

F3k−2
2

]
,

F3k+1−1
2

,

B F3k+2−1
2

[ F3k+3−2
2

]
,

F3k+1−1
2

[ F3k−2
2

], B F3k+2−1
2

[ F3k−2
2

]
,

F3k+1−1
2

[ F3k+3−2
2

],

B F3k+2−1
2

[ F3k+3−2
2 ,

F3k−2
2

]
,

F3k+1−1
2

, B F3k+2−1
2 ,

F3k+1−1
2

[
F3k+3−2

2 , F3k−2
2

]
,

TF3k+1−1
2

[ F3k+3−2
2

]
,

F3k−2
2 ,

F3k+1−1
2

, TF3k+2−1
2 ,

F3k+3−2
2 ,

F3k+1−1
2

[ F3k−2
2

],

TF3k+2−1
2

[ F3k−2
2

]
,

F3k+3−2
2 ,

F3k+1−1
2

, TF3k+2−1
2 ,

F3k−2
2 ,

F3k+1−1
2

[ F3k+3−2
2

],

TF3k+2−1
2 ,

F3k+3−2
2

[ F3k−2
2

]
,

F3k+1−1
2

, TF3k+2−1
2 ,

F3k−2
2

[ F3k+3−2
2

]
,

F3k+1−1
2

,

Q F3k+2−1
2

F3k−2
2 ,

F3k+3−2
2 ,

F3k+1−1
2

, Q F3k+2−1
2

F3k+3−2
2 ,

F3k−2
2 ,

F3k+1−1
2

;

seven disconnected realizations

B F3k+2−1
2 ,

F3k+1−1
2
∪ L F3k+3

2

[ F3k−2
2

], B F3k+2−1
2

[ F3k−2
2

]
,

F3k+1−1
2
∪ L F3k+3

2
,

B F3k+2−1
2 ,

F3k+1−1
2

[ F3k−2
2

] ∪ L F3k+3
2

, B F3k+2−1
2 ,

F3k+1−1
2

[ F3k+3−2
2

] ∪ L F3k
2

,

B F3k+2−1
2

[ F3k+3−2
2

]
,

F3k+1−1
2
∪ L F3k

2
, TF3k+2−1

2 ,
F3k+3−2

2 ,
F3k+1−1

2
∪ L F3k

2
,

TF3k+2−1
2 ,

F3k−2
2 ,

F3k+1−1
2
∪ L F3k+3

2
,

having two components, and a unique disconnected realization B F3k+2−1
2 ,

F3k+1−1
2
∪ L F3k+3

2
∪ L F3k

2
with three components.
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3.5. Fibonacci Graphs of Order N ≥ 5

In the above four subsections, we established the conditions for a set of n consecutive
Fibonacci numbers to be realizable where 1 ≤ n ≤ 4, and generalized these to sets of length n = 3s.
Therefore, only two cases where n = 3s + 1 and n = 3s + 2 remains:

Corollary 6. (i) A set {Fr, Fr+1, Fr+2, · · · , Fr+n−1} consisting of n = 3s + 1 consecutive Fibonacci
numbers is realizable iff r ≡ 0 modulo 3. (ii) A set {Fr, Fr+1, Fr+2, · · · , Fr+n−1} consisting of
n = 3s + 2 consecutive Fibonacci numbers is realizable iff r ≡ 1 modulo 3.
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writing—original draft preparation, M.D.; visualization, M.D. and A.S.C.; supervision, I.N.C. All authors
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