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Abstract

Popular features for speech processing, such as mel-frequency

cepstral coefficients (MFCCs), are derived from the short-term

magnitude spectrum, whereas the phase spectrum remains un-

used. While the common argument to use only the magnitude

spectrum is that the human ear is phase-deaf, phase-based fea-

tures have remained less explored due to additional signal pro-

cessing difficulties they introduce. A useful representation of

the phase is the group delay function, but its robust computa-

tion remains difficult. This paper advocates the use of group

delay functions derived from parametric all-pole models instead

of their direct computation from the discrete Fourier transform.

Using a subset of the vocal effort data in the NIST 2010 speaker

recognition evaluation (SRE) corpus, we show that group delay

features derived via parametric all-pole models improve recog-

nition accuracy, especially under high vocal effort. Addition-

ally, the group delay features provide comparable or improved

accuracy over conventional magnitude-based MFCC features.

Thus, the use of group delay functions derived from all-pole

models provide an effective way to utilize information from the

phase spectrum of speech signals.

Index Terms: speaker verification, group delay functions, high

vocal effort

1. Introduction

Feature extraction, or front-end, is a critical component in any

speech processing system. Typically, a spectral representation

(usually via the discrete Fourier transform, DFT) is computed

from short-term frames and converted into feature vectors, such

as cepstral coefficients. In general, the Fourier transform of a

signal is complex, with magnitude and phase spectrum compo-

nents. Most parametric representations of speech have been de-

rived from the magnitude spectrum. But several studies (for ex-

ample, [1]) have shown that the phase spectrum contains impor-

tant information, contributing to speech intelligibility. More-

over, information complementary to the magnitude spectrum

may be obtained from the phase spectrum, which may be useful

in the classification of speakers or of sound units.

Extracting features from the phase spectrum is challenging

due to various reasons, including signal processing difficulties.

Although there has been considerable interest in utilizing fea-

tures derived from the phase spectrum, seamless processing of

the phase spectrum has proved elusive [1]. Various methods of

processing the phase spectrum have been proposed, including

those based on the group delay function [2, 3, 4], instantaneous

frequency [5] and inter-frame phase difference [6]. The group

delay function is defined as the negative derivative of the phase
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spectrum. This paper revisits the use of group delay functions

for robust feature extraction in speaker recognition.

As explained later in this paper, the presence of spurious

high-amplitude spikes in the group delay function makes its

processing difficult. In this paper, we tackle this problem by uti-

lizing the group delay function from all-pole models of speech,

formed by linear predictive analysis. Temporally weighted vari-

ants of linear prediction provide robust parameterizations of the

speech signal, and the group delay functions from these also can

be used to derive features for speaker recognition.

Although group delay functions from all-pole models have

been utilized earlier for formant extraction in [7], they have

not been previously investigated for speaker recognition. Most

studies on group delay based features for speaker recognition

have used a non-parametric approach, computing the group de-

lay function directly from the signal. Hence, the goal of the

present study is to utilize features from group delay functions

of parametric all-pole models of speech signals.

Another motivation is to investigate the effect of group de-

lay features when the train and test speech are mismatched in

terms of vocal effort. In noisy environments, the Lombard ef-

fect affects several speech production parameters, including vo-

cal effort, pitch, spectral shape and formant locations [8]. Vocal

effort mismatch leads to considerable degradation of speaker

recognition performance [9].

2. Group delay representations for speech

If x(n) is a frame of speech, its Fourier transform X(ω) can be

written in polar form as

X(ω) = |X(ω)|ejθ(ω)
(1)

where |X(ω)| is the magnitude spectrum and θ(ω) is the phase

spectrum. The group delay function τ (ω) is the negative deriva-

tive of the continuous phase function,

τ (ω) = −
d

dw
θ(ω) (2)

Early studies on the group delay function have indicated

that it appears as a squared-magnitude response curve [7]. In

other words, as in the magnitude spectrum, resonances of the

vocal tract appear as peaks in the group delay spectrum. More-

over, a multiplication in the magnitude spectrum domain be-

comes an addition in the group delay domain. Due to this addi-

tive property, each resonance peak in the group delay function

has little influence on the other peaks. Thus closely spaced for-

mants are better resolved in the group delay domain than in the

magnitude domain. This property has been utilized for formant

extraction in [7].



The group delay function can be directly obtained from the

speech signal x(n) as derived in [10, 11]:

τ (ω) =
XR(ω)YR(ω) +XI(ω)YI(ω)

|X(ω)|2
, (3)

where x(n) ↔ X(ω) and y(n) ↔ Y (ω) are Fourier transform

pairs, and y(n) = nx(n). The advantage of the above expres-

sion is that no explicit phase unwrapping is required.

2.1. Issues in processing the group delay function

Processing of group delay functions is not straightforward [12].

The presence of zeros of the vocal tract system function (in the

Z-transform representation) can lead to an ill-behaved group de-

lay function. It can be seen that a zero (or dip in the spectrum)

will result in a small value of the denominator of Equation 3,

leading to an indefinitely large value of the group delay func-

tion. These zeros can occur as a result of the excitation source,

and can also be an artifact of short-term processing [4]. Compu-

tation of the group delay function at frequency bins near these

zeros thus results in high amplitude spurious peaks, masking

out the formant structure [4, 13].

Several methods have been proposed to mitigate the effect

of the zeros. The product spectrum was proposed in [3], where

the denominator term is canceled by multiplying Equation 3 by

the power spectrum. The product spectrum thus utilizes infor-

mation from both the magnitude and phase spectra. The chirp

group delay function [4] avoids the zeros near the unit circle by

evaluating the spectrum on a circle other than the unit circle.

The modified group delay function (MODGDF) was pro-

posed in [2]. This method modifies Equation 3 as,

τm(ω) = sign |τ ′(ω)|α, (4)

where,

τ
′(ω) =

XR(ω)YR(ω) +XI(ω)YI(ω)

|S(ω)|2γ .
(5)

Here, |S(ω)| is a cepstrally smoothed version of |X(ω)|. Fol-

lowing the notation in [13], the parameters α and γ are intro-

duced to control the dynamic range of the MODGDF, and the

window length for the cepstral smoothing is denoted as lifterω .

Features derived from the MODGDF have been used in speech

and speaker recognition in [13]. To restrict the dynamic range of

the MODGDF without the parameters α and γ, log compressed

group delay features were proposed in [11].

2.2. Group delay function of all-pole models

Linear prediction analysis of speech approximates the speech

spectrum using an all-pole model [14]. Considering the vocal

tract as an all-pole filter allows an equivalent representation as

a cascade of several second-order and first order all-pole filters

[7]. In this representation, the overall magnitude spectrum is the

product of the magnitude spectra of the individual filters. The

overall phase spectrum (and hence the group delay spectrum),

on the other hand, is a summation of the individual phase spec-

tra.

Denoting

H(ω) =
G

1−
∑p

k=1 a(k)e
−jωk

(6)

the linear prediction formulation can be specified as follows
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Figure 1: A frame of speech (top panel), corresponding log

magnitude spectra (both DFT and all-pole) (middle panel) and

all-pole group delay function (bottom panel); model order p =
20.

[14]. Given the speech power spectrum |X(ω)|2, determine the

set of coefficients a(k) such that the power spectrum of H(ω)
matches the speech power spectrum in a least-squared sense.

Here, G is the signal dependent gain and p is the model order.

The filter formed by H(ω) has both a magnitude response and

a phase response. The all-pole group delay function is defined

as the group delay function of this filter. Figure 1 shows a frame

of speech, its magnitude spectrum and its all-pole group delay

function, formed by linear prediction analysis with a model or-

der p = 20. Due to the high resolution property of the group

delay function, closely spaced higher formants can be captured,

unlike in the magnitude spectrum. For speaker recognition,

since we are interested only in the resonances of the filter H(z),
the gain G is usually set to unity for normalization purposes.

Any speech system function X(z) can be decomposed into

minimum-phase and all-pass components [15]

X(z) = Xmin(z)Xap(z) (7)

The corresponding magnitude spectra and phase spectra are

|X(ω)| = |Xmin(ω)| |Xap(ω)| (8)

θ(ω) = θmin(ω) + θap(ω) (9)

When the linear prediction equations are solved by the co-

variance method, the all-pole filter H(ω) in Equation 6 is a

minimum phase filter [14]. Thus, with respect to the phase re-

sponse in Equation 9, the filter keeps only the minimum-phase

part. This is the loss incurred while working with the phase of

the all-pole filter. Our experiments demonstrate that, in spite of

this lossy representation, the all-pole group delay function has

valuable information which makes it suitable for speaker recog-

nition.

The high resolution property of the group delay spectrum

(shown for different vocal efforts in Figure 2) may be helpful in

capturing formant information in a more robust manner, com-

pared to the magnitude spectrum. The higher order formants

are more pronounced in the group delay spectrum, particularly
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Figure 2: Spectra under different vocal effort for the vowel /a/

spoken by the same female speaker. (a) Log magnitude and

all-pole spectrum under normal vocal effort. (b) Group delay

spectrum under normal vocal effort. (c), (d) low vocal effort.

(e), (f) high vocal effort.

in the low and high vocal effort conditions.

3. Temporally weighted linear prediction

In noisy conditions, the performance of the standard linear

prediction model deteriorates and hence, noise-robust versions

have been proposed. Weighted linear prediction (WLP) applies

temporal weighting to the squared residual error during com-

putation of the all-pole filter coefficients [16]. Weighting is

applied to emphasize the contribution of samples with higher

signal-to-noise ratio (SNR) and de-emphasize samples with low

SNR. In [16], the WLP coefficients a(k) are obtained by mini-

mizing the weighted residual energy,

E =
∑

n

(

x(n)−

p
∑

k=1

a(k)x(n− k)

)2

W (n), (10)

where W (n) is the weighting function. The coefficients a(k)
are obtained by setting the partial derivatives of E to zero, and

solving for each a(k). The WLP normal equations are

p
∑

k=1

a(k)
∑

n

W (n)x(n− k)x(n− i) =

∑

n

W (n)x(n)x(n− i) 1 ≤ i ≤ p

(11)

Unlike the autocorrelation method of standard linear pre-

diction analysis, the all-pole model produced by WLP is not

guaranteed to be stable. To mitigate this, stabilized weighted

linear prediction was developed in [17]. Writing the WLP nor-
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Figure 3: Feature extraction from group delay functions derived

from different types of all-pole models.

mal equations in terms of partial weights Zn,j , we have

p
∑

k=1

a(k)
∑

n

Zn,kx(n− k)Zn,ix(n− i) =

∑

n

Zn,0x(n)Zn,ix(n− i) 1 ≤ i ≤ p

(12)

Here, Zn,j =
√

W (n) for 0 ≤ j ≤ p. Typically the temporal

weighting function W (n) used in WLP and SWLP is the short

term energy (STE), computed using a sliding window of M

samples around the region of interest as W (n) =
∑M

i=1 x
2(n−

i). A comparison of spectrum estimators from various meth-

ods, including WLP and SWLP was made in [18]. Studies have

shown improved performance in speech recognition [19] and

speaker recognition [20] using magnitude-spectrum based fea-

tures derived from WLP and SWLP.

It is reasonable to assume that the coefficients a(k) ob-

tained from the temporally weighted linear prediction methods

provide a more robust representation of the vocal tract filter

H(ω). As in the case of standard linear prediction, the group

delay function from these weighted variants can also be utilized

to derive features. Collectively, we term these group delay func-

tions as all-pole group delay functions.

4. Speaker verification experiments

We apply features derived from all-pole group delay functions

to the vocal effort subconditions of the NIST 2010 speaker

recognition evaluation (SRE). On account of producing stable

filters, the all-pole models considered are the standard linear

prediction (denoted LP) and stabilized weighted linear predic-

tion (denoted SWLP). The performance of all-pole group delay

features are compared to features from non-parametric group

delay representations, namely the standard group delay function

(Equation 3), and the modified group delay function (Equation

4). Since several features are being evaluated in the study, due

to its simplicity and fast turnaround time, the classical Gaussian

mixture model with universal background model (GMM-UBM)

[21] speaker recognition system is used for our experiments.

Additionally, a state-of-the-art verification system using the i-

vector representation [22] is also used to evaluate group delay

based features.

4.1. Converting the group delay function into features

Similar to [2], the all-pole group delay function is converted into

cepstral coefficients by applying the discrete cosine transform

(DCT). The feature extraction process is shown in Figure 3 and

is described as follows.

Features are extracted from a frame of speech (frame size =



30 ms, shift = 15 ms), as follows:

1. Perform all-pole modeling (either LP or SWLP) on the

frame of speech with prediction order p = 20. For SWLP,

the short term energy duration M is set to 20 samples as

in [20]. Obtain the all-pole filter coefficients a(k).

2. From the a(k), form the frequency response H(ω) using

Equation 6 with G = 1.

3. Compute the group delay function by taking the negative

derivative of the phase response of H(ω). In practice,

the derivative is computed using the sample-wise differ-

ence.

4. Take DCT on the group delay function and keep the first

18 cepstral coefficients, excluding the zeroth coefficient.

5. Velocity and acceleration coefficients are appended to

the feature in a conventional manner, to from a 54 di-

mensional feature vector.

Additionally, mean and variance normalization are applied to

the features on an utterancewise basis.

4.2. Speaker verification setup

A 128-mixture GMM-UBM system was utilized, where the

UBM utilized telephone data from NIST SRE 2004, 2005 and

2006 corpora. Speaker models are adapted from the UBM us-

ing maximum a posteriori estimation [21]. Since the data was

telephone speech, a simple energy-based voice activity detector

was used to remove non-speech frames. The evaluation dataset

was the vocal effort conditions of the NIST 2010 (conditions 5,

6 and 8) and is summarized in Table 1 [23].

Table 1: Chosen sub conditions of NIST SRE 2010 [23], con-

sisting of telephone data only. VE = vocal effort.

NIST condition Train VE Test VE

CC 5 Normal Normal

CC 6 Normal High

CC 8 Normal Low

Speaker verification accuracy in terms of equal error rate

(EER), is evaluated for features derived from parametric all-

pole group delay functions (LP or SWLP). Features from non-

parametric group delay functions (standard group delay func-

tion, MODGDF) are also evaluated. Features from the stan-

dard group delay function were obtained by taking a DCT on

Equation 3. Finally, the conventional magnitude based mel-

frequency cepstral coefficients (MFCC) were also evaluated, to

compare how group delay based methods compare to them.

4.3. Results

Results for experiments with the GMM-UBM system are shown

in Table 2. It can be seen that features from the standard group

delay function do not fare well in speaker recognition. The

presence of large spikes in the group delay spectrum masks out

the formant information, rendering the unprocessed group delay

function useless as a feature. The MODGDF features perform

much better, but are sensitive to its parameters α, γ and lifterω .

The best results we obtained (shown in table 2) were for the

values α = γ = 0.1 and lifterω = 8. The parametric mod-

els performed better than the non-parametric models, with the

standard LP showing higher performance than SWLP. Although

both LP and SWLP generate minimum-phase filters, the weight-

ing function used in SWLP possibly introduces some phase dis-

tortion. Finally, for the normal and low vocal effort conditions,

the magnitude-based MFCC features gave results comparable

to the parametric methods. The MFCC features work poorly

for the high vocal effort condition, which is more pronounced

in the female case.

As a final note, the standard LP group delay features were

also evaluated using a state-of-the-art speaker verification sys-

tem using the i-vector representation for utterances [22] and the

Gaussian probabilistic linear discriminant analysis (G-PLDA)

classifier [24, 25]. For this setup, 600 dimension length nor-

malised i-vectors were estimated for each utterance. The i-

vector extractor (or T-matrix) was estimated using data from

NIST SRE 2004, 2005, 2006, Fisher and Switchboard data. The

PLDA model was also trained using the same data, utilising

200 dimensions for the speaker subspace and a full-covariance

residual term as in [26]. The results of the i-vector PLDA sys-

tem are presented in Table 3. From these results, we see that

group delay features perform well in a state-of-the-art system.

Table 2: Results of speaker verification experiments (GMM-

UBM) in terms of EER on the SRE 10 vocal effort conditions.

Male Female

Feature CC 5 CC 6 CC 8 CC 5 CC 6 CC 8

Group delay based feature

Std. gdelay 32.9 42.1 32.0 46.9 46.4 44.6

MODGDF 19.7 25.9 13.7 25.0 30.1 20.6

SWLP 15.3 21.3 11.7 16.1 23.6 11.5

LP 11.4 22.1 9.9 15.4 22.8 12.1

Magnitude based feature

MFCC 13.0 24.0 7.5 16.9 34.9 11.7

Table 3: Verification accuracy in terms of EER, using LP group

delay features and MFCC features on an i-vector G-PLDA sys-

tem.
Male Female

Feature CC 5 CC 6 CC 8 CC 5 CC 6 CC 8

LP 1.71 3.24 0.28 3.20 5.11 1.03

MFCC 1.78 3.66 0.35 3.17 4.43 1.96

5. Conclusions

In this paper, we investigated the use of phase-based features in

speaker recognition. Using both parametric and non-parametric

approaches, features from the phase spectrum were derived

using the group delay function. Speaker verification experi-

ments on the vocal effort conditions of the NIST 2010 SRE

dataset demonstrate that group delay features perform compara-

ble to conventional magnitude spectrum-based MFCC features.

In particular, the experiments also reveal that the group delay

methods are useful under high vocal effort. Utilizing paramet-

ric all-pole models provide an effective mechanism to extract

information from group delay functions, which otherwise suffer

from signal processing difficulties. Thus, group delay features

from all pole models can be used to effectively process phase

information for speaker recognition.

Further work in this direction will look at the performance

of parametric methods in the presence of noise. Group de-

lay functions derived from the theoretically noise-robust SWLP

model are good candidates for investigation as features for pro-

cessing noisy speech.
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