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In this study, we perform the extended Kudryashov method to nonlinear Schrodinger equation (NLSE)
with spatio-temporal dispersion that arises in a propagation of light in nonlinear optical fibers, planar
waveguides, Bose-Einstein condensate theory. Four types of nonlinearity - Kerr law, power law, para-
bolic law and dual-power law - are being considered for the model. By using this scheme, the topological,
singular soliton and rational solutions are obtained. In addition, some graphical simulations of solutions

It is demonstrated that the proposed algorithm is effective and can be handled for many other nonlin-
ear complex differential equations.
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Introduction

It is well known that there exist various regimes that describe
the dynamics of soliton propagation such as Korteweg-de Vries
(KdV) equation and Kadomtsev-Petviashvili (KP) hierarchies. One
of most visible is the nonlinear Schrédinger’s equation (NLSE) with
spatio-temporal dispersion

iqt+ath+qux+cF<\q|2>q =0. 1)

The nonlinear Schrédinger’s equation (NLSE) is a very important
equation that arises in physics, engineering and mathematical phy-
sics [1]. It typically shows up in the study of optical fibers, planar
waveguides, Bose-Einstein condensate theory, fluid dynamics,
plasma physics, mathematical biology and many more. There are
various types of solution to Eq. (1). They are include the soliton
solution, cnoidal wave solutions, periodic solutions, doubly peri-
odic waves and many more [2-7].

Optical solitons form the basic molecules for signal propagation
across long distances [13]. Also, optical solitons is one of the main
topics of research in modern telecommunications industry. Several
advances in this field of research, during the past few decades, led
to modern day marvel in telecom systems. Internet activity, face-
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book, twitter and all such communication means are the outcomes
of research in solitons and other related topics in quantum and
nonlinear optics [12].

In this paper, our aim is to reveal soliton and other counterpart
solutions for NLSE with spatio-temporal dispersion in the four
types of nonlinear forms which are Kerr law, power law, parabolic
law and dual-power law.

The paper is structured thusly. In Section “The extended
Kudryashov’s method”, we present extended Kudryashov method’s
for complex nonlinear evolution equations (NLEEs). Section “Exact
solutions of model equation” is devoted to application of the
method to Eq. (1) for four distinct cases including Kerr law, power
law, parabolic law and dual-power law.

In final section, we give some concluding remarks.

The extended Kudryashov’s method

We now briefly present the main steps of method. For the
details and applications, we refer to [9].
We consider the following nonlinear evolution equation (NLEE)

F(u, ug, Uy, Uy, Uyt .. .) =0, (2)

where u = u(x, t) is an unknown function, F is a polynomial in u and
its various partial derivatives u,, u, with respect to t,x respectively,
in which the highest order derivatives and nonlinear terms are
involved.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Step 1 Inserting the traveling wave transformation which corre-
sponds the linear combination of time and space translations of Lie
symmetry generators

ux,t) =U(¢), &=kx—ct), 3)

into Eq. (2) then it transforms to a nonlinear ordinary differential
equation (NLODE) of the form

P(U,—keU', kU IU",....) =0 (4)

where k, c are constants to be determined later.
Step 2 We assume that the solution of Eq. (4) can be expressed
in the form

N N
UE) =Ao+ Y D> A OV (&) + DD By (O (9) (5)
k=1 i-j—k k=1 i+j—k
where Ay, By, Aj(i,j =0,1,2,...,N) are constants to be determined,
and the functions ¢(¢) and y(¢) holds the Bernoulli and Riccati
equations, respectively

¢'(8) = Re¢® (&) —Ri (&), R #0, (6)

V(&) = S20% (&) + Siv(€) + So,

where R;, Ry, S, S1 and Sy are constants.

It is well known that the elementary solutions of the Bernoulli
and Riccati equations with respect to arbitrary coefficients of R,,
Ry, S, S1, So are given respectively

S, #0 (7)

¢(c>={ﬁ o ®)
Rétdo’ 1=
and
%—%tanh(@éq{o), [L>0
%—%coth(‘%ﬁiﬂ-fo), w>0
Y(é) = %+%tan(@é+éo>7 n<0 9)
;—g;—%cot(@@-go), u<o
=~ sta p=0

where u = Sf — 4S50S, and & is an arbitrary real constant.

Step 3 The main point of the application is based on the constant
N. This positive integer number N in Eq. (5) is determined by bal-
ancing the highest order derivatives and the nonlinear terms in
Eq. (4).

Step 4 We obtain polynomial forms of ¢(&)y(¢) after substitut-
ing the series of (5) into (4) along with (6) and (7). In this polyno-
mial form, we collect all terms of same powers and equating them
to be zero, we get an over-determined system of algebraic equa-
tions which can be assisted by the Maple to reveal the unknown
parameters k, ¢, Ry, Ry, So, S1, S2, Ao, Aj and By, (i,j =0,1,...). Con-
sequently, we construct the exact solutions of original Eq. (2).

Exact solutions of model equation

The dimensionless form of NLSE with spatio-temporal disper-
sion is given by [7]

iq, + aqy + by + cF (g )g = 0 (10)

where x represents the non-dimensional distance along the fiber, t
represents temporal variable in dimensionless form and a, b and ¢
are real valued constants. The dependent variable q(x,t) is a com-
plex valued wave profile.

The coefficient of the constant a is spatio-temporal dispersion
and the coefficient of constant b is group-velocity dispersion. In
addition, c is the coefficient of the nonlinear term where the func-
tional F represents the non-Kerr law nonlinearity in general. The
nonlinear function F(\qf)q is k times continuously differentiable,

so that [10]
Fla?)ae O Ci((=n.n) x (-m,m); R?).

Eq. (10) reduces to the standart NLSE when ¢ = 0, and it arises
as a model for nonlinear pulse propagation in monomode optical
fibers [8].

In order to solve Eq. (10), we use the following wave
transformation

q(x,t) = U(&)e™™) (11)
where U(¢) represents the shape of the pulse and

& =k(x —vt), (12)

O(x,t) = —Kx + wt + 0. (13)

The function ®(x, t) is the phase component of the soliton, k is
the soliton frequency, w is the wave number of the soliton, 0 is the
phase constant and v is the velocity of the soliton.

Plugging Eq. (11) into Eq. (10) and then decomposing into imag-
inary and real parts, the following equations are deduced

aw — 2bk
R 14
K2(b — av)U’ — (wfawK+bK2)U+cF<UZ)U:O, (15)

respectively.
Kerr-law nonlinearity

The Kerr-law of nonlinearity occurs in the case of if a light wave
in an optical fiber faces nonlinear responses from nonharmonic
motion of electrons bound in molecules, caused by an external
electric field [11].

The Kerr law nonlinearity is the case when F(s) = s. For Kerr law
nonlinearity, (10) reads

iq, + aqy, + bqy +clg’q =0 (16)

and Eq. (15) converts to

k(b —av)U" — (w — awk + br?)U + cU® = 0. (17)
Balancing U” with U* in Eq. (17) yields N = 1. Therefore the

solution form of Eq. (17) has the following expression

U(&) = Ao +A10¢ (&) + Ao (&) +Brod (O +Boaw (&) (18)

Substituting U(¢) and its necessary derivatives into (17) and
equating all the coefficients of ¢(&)y/(¢) to zero, thus we get highly
complicated a system of algebraic equations. Handling this system
with the help of Maple or Mathematica, we reach to the following
results:

Result 1.
" kSi(av —b)

c /2avc—2b ’
Bo1 = :‘:\/Msok, Bip=0,

AO = AO‘l = 07 AI.O = 07
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1 —k°Sav + k°S?b + 2bk? — 2awkK + 20
Sy = —— . : (19)
4 Sok*(av — b)

Then, the solutions of (16) corresponding to (19) are

q(x,t) = :tkS](aV—b) 4 \/@Sokwq(@ gi-xrot0) (90)
c /2avc—2b

where
o1 _VR VL

V(&) =55, 35, taﬂh< o k(x =) +<:o), ©>0, (21)
WSV (VE

V(&) =55 ~ 35, coth <7k(x V) +& ), u>0, (22)
aN_=S VR —A

00 - o+ sl an (k-0 +a). w<o. @3)
o _ = VR —I .

W) = 35, 25, cot (Tk(x —Vt)+ Co>= u<o, (24)
AP R S

VO =25 " Ske-wrg M0 (25)

and

2p —
[ = § — 45,5, = 20D — Kaw + )

K (av — b)

One can see that the solutions of (20) include the solutions of
Riccati equation. They physically represent dark soliton, singular
soliton, singular periodic solutions and a family of rational soliton
solutions, respectively.

Result 2.
/2K2b— 2Kaw+2(o(av b

Ao = @b ;A1 =0,

Zav 2b
A1,0 [ /MRZk7

c
BO‘l = 07
2

Bio—0, Ri— 1 2K%b — Zicaa)+2w (26)

k av—>b

Then, the solutions of (16) corresponding to (26) are

Ww ay — b — .
q(X, t) N V av—b ( )i \/QEV—ZbRZka(é) el(ficx+(ut+6)
c /Zavc—zb Cc
(27)
where
$(&) = Ry Ry #0 (28)
YR Rexp Rk V1 &)
. -1
d(&) = R =0. (29)

Rok(x —vt) + &’

One can see that the solutions of (27) include the solutions of
Bernoulli equation. They physically represent a new family of soli-
ton solutions and a family of rational soliton solutions,
respectively.

Result 3.

Ao = 0 Ao_] = i\/izavc_ 2b52k, Al.,O =0

2 _
By =+l IO GOK 0 g
c 2a\7c—2b52k

_1bi? —awk +
° T4 1s,(av—b)

Then, the solutions of (16) corresponding to (30) are

S, =0. (30)

2av—2b
c

(bx? —awx + w)

c /ZavE—ZhSZk

Q(th): + 4(5) pli(—rx+ot+0)

1
Sokib(£)

(31
where y(¢) holds Eq. (9) and
K%b — Kaw +
k*(av — b)
One can see that the solutions of (31) include the solutions of
Riccati equation. They physically represent dark soliton, singular

soliton, singular periodic solutions and a family of rational soliton
solutions, respectively.

[h= ST — 4SS, = —

Result 4.

Ao = 0 Aol = :t\/zavf_ZbSZk, A]_yo = O,

1 bk? — awk + w

Boi=+t5—F+————, Bip=0,
4 c /2avc—2b52k
goz,lw’ S, =0. (32)

8 K*Sy(av—b)
Then, the solutions of (16) corresponding to (32) are

2av—2b 1 (bk*—awk+w) _, .
222Dy ) PR O)
c 2avc—2b52k

ex(—xx+u)t+[))

qx,t)=

(33)
where y/(¢) holds Eq. (9) and
2h — kaw + w
— §2 45,5, = KO KAOT @
Ao e = v — b)

One can see that the solutions of (33) include the solutions of
Riccati equation. They physically represent dark soliton, singular
soliton, singular periodic solutions and a family of rational soliton
solutions, respectively.

Result 5.

Ap = i%7 Ag1 = i\/L;%52k7 A10=0, By; =0,
c 2avc—2b

1 -k*Sjav + K’Sib + 2bx? —
4 k*S,(av — b)

Then, the solutions of (16) corresponding to (34) are

i\/@szkdf@) pil—Kx+ot+0) (35)

Big=0, Sp=- 2awK + 2w.

(34)

n kSi(av —b)

2av-2b
¢ V¢

Q(Xv t) =
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where (&) holds Eq. (9) and
2(k%b — Kaw + )
=S 45,8, =" T
== oo k*(av — b)

One can see that the solutions of (35) include the solutions of
Riccati equation. They physically represent dark soliton, singular
soliton, singular periodic solutions and a family of rational soliton
solutions, respectively.

In this case, to the extent of our knowledge the solutions of (20),
(27),(31) and (33) are new exact solutions. Additionally, we obtain
a family of rational soliton solutions that is given by Eq. (35).

Power-law nonlinearity

The power-law nonlinearity is exhibited in various process such
as semiconductors, higher-order photons and in nonlinear plas-
mas. It is readily seen that this law is a generalization to the
Kerr-law nonlinearity [11].

In this case,

F(s)=s"
so that Eq. (10) modifies to
iq, + aqy + bay + clg"g = 0 (36)

where the parameter n is referred to as the nonlinearity parameter
which is in the range 0 <n <2, and in particular n # 2 since
this case leads to a self-focusing singularity. Then, Eq. (15)
simplifies to

K*(b—av)U" - (o — awk + bk?)U + cU*™" = 0. (37)
In order to balancing, we make the following ansatz
U=Vvi (38)
so that (37) transforms to
k(b= av) (W + (1= m)(V))?) = mV? (—aoic + bi + @) + cn?V* = 0.
(39)

Balancing VV” with V* in Eq. (39) gives N = 1. Thus, we have the
following series expansion

V(&) = Ao +A10h(&) + Ao 1 (&) +Biod " (&) + Bory ' (&) (40)

Plugging V(¢) and its necessary derivatives into (39) and equating
all the coefficients of ¢(&)y (&) to zero, we obtain a highly compli-
cated system of algebraic equations. Solving this system with the
help of Maple or Mathematica, we yield the following result:

n(w—awk + bKZ /anv+av—bn—b
Ay=0, Ao.1:i1 ( ) ., Ao=0,

4 Sok(av—Db)

Bl.OZO-,

anv+av-bn—b 2 2
VA a— n?(w — awk + bk
Bo1 = ifcsok, $;=0, S= ( + bic?) .

4(av — b)Sok?

(41)

Then, the solutions of (36) corresponding to (42) are

1 n(w — awic+b;c2 /anwmc'—bn—b
qx.t) = (i— ( ) v(S)

4 Sok(av — b)

/any-+av—bn—b b )
4 nf Soklﬁq (f) ex(fxx+wt+()) (42)

where /(&) holds Eq. (9) and

n?(x%b — Kaw + w)
K@ —b

One can see that the solutions of (42) include the solutions of
Riccati equations. They physically represent dark soliton, singular
soliton, singular periodic solutions and a family of rational soliton
solutions, respectively.

In this case, to the extent of our knowledge the solutions of (42)
are new exact solutions. It is interesting to note that any solution
could not be detected in [3] while we could obtain a plenty of
new exact physically important solutions.

=57 — 455, = —

Parabolic-law nonlinearity

This law arises in the nonlinear interaction between Langmuir
waves and electrons. It describes the nonlinear interaction
between the high frequency Langmuir waves and the ion-
acoustic waves by ponder-motive forces [11].

For parabolic-law nonlinearity,

F(s) = as + fps?

where o and p are constants. The form of the Eq. (10) in this case
is

iq, + ady + b + c(lal® + Blg|*)g = O, (43)

and Eq. (15) converts to

(b — av)U" — (o — awk + br?)U + aU? + pU° = 0. (44)

In order to balancing, we make the following ansatz
U=Vv: (45)

so that (44) transforms to

(b —av) (2v0" — (V')?) —4V? (—aon + bK? + ) + 4oV + 4pV* = 0.
(46)

Balancing VV” with V* in Eq. (46) yields N = 1. Thus, we have
the following series expansion

V(&) = Ao +A10h(&) + Aot (&) + Biod " (&) + Boryy ' (&) (47)

Inserting V(&) and its necessary derivatives into (46) and equat-
ing all the coefficients of ¢(&)y(¢) to zero, we obtain a highly com-
plicated system of algebraic equations. Solving this system with
the help of Maple or Mathematica, we reach to the following
results:

Result 1.
A 3o A 3 16x%bp —16Kapw + 302 + 16w A 0
0="2p 01T %5 , A1p=0,
4ﬁ 64 /302;3b50kﬂ2

Bo1 == wsok, Bip=0, S = 137067

4ﬁ 4ﬂk 3av-3b

Vo4

2hR 2

S, = 1 16k bp — 16xapw + 30* + 16[3@. 48)

16 (av — b)pSek?
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Then, the solutions of (43) corresponding to (48) are

300 3 16K2bp — 16Kapw + 30 + 16w
g Ei b b ﬂ ¥(&)

4ﬁ 64 /3a¥1;3b50k/32

1
:t\/%i?&)kllll (é)) pl(-Kx+t+0) (49)

where /(&) holds Eq. (9) and

qix,t) =

4(x?b — Kaw + )
Kk’ (av — b)

One can see that the solutions of (49) include the solutions of
Riccati equation. They physically represent dark soliton, singular
soliton, singular periodic solutions and a family of rational soliton
solutions, respectively.

U=S3—45S, = —

Result 2.

_ —o£2,/4K2bp — 4Kapw + 02 + 4w
= 15 7

[3av —3b
Ai1p=0, Byj == Tsok, Bip =0,

g _ ot 4,/4K2bp — Akapw + o2 + 4fw
1= 5

45 302E3bk

Ag

M

Aoq = ims

M :32K2bﬂ(—oci2\/4K2bﬁ—4;caﬁw+cx2 +4ﬁw)

—32Kkapw <foc +2+/412bf — dKxapw + o2 +4/fw)

—16K20bf + 16Ka0f» + 802 <7oci2\/4;c2b/374lcaﬁw+ 2 +4ﬁw)

+32/3w(—o¢i2\/4K2b/3—4;<aﬁw+oc2 +4[3w> —30® —16wpa,

=4 3(127;3])50%2 (o 4 4/41bf — 4afoo + o2 + 4f)

Pl

3

T 481,

52

A3 :BZKZbB(foci2\/4K2b/374m1/50)+12 +4ﬁw)

—32xapw (foc +2/4K2bp — 4icapw + o2 +4ﬁw>

—16Kc%abf + 16Kacfw + 8o? (—cxiz\/4;<2b/3—4xaﬁw+ o2 +4/3w)

+32pw (—a +2+/4K2bf — 4Kafw +o? + 4/360) —30 —16wpo,

J4 = (av — b)BSok? (oc +4\/4K2bf — dKafo + o2 + 4/3co). (50)

Then, the solutions of (43) corresponding to (50) are

_ 2 _ 2
q(x./t):( o+ 2/4K2bp 44;<a/;w+oc +4/3wi6j&2w(6)

iWSOk‘lll (5)) ei(—lcx+(/)t+0) (5])

where y/(¢) holds Eq. (9) and

s

U=S3 45,5, =22,
76

75 = 56K2abf+ 16K2bﬁ<—<xiZ\/4K2b[)’—4Kaﬁw+oc2 +4ﬁa))

—56Kaupw —16Kapw (—oc +21/4K2bf — 4Kkapw+ o2 + 4ﬂa)>

+15083 4 502 (—aiZ\/4K2bﬁ—4Ka/3w+<x2 +4ﬁa))

+ 560+ 16/3w(foci2\/4xzbﬁf4xaﬁw+oc2 +4[3w).,

Js = 2K B(av — b) (a +4./4K2bf — 4kafw + o2 + 4ﬁw).

One can see that the solutions of (51) include the solutions of
Riccati equation. They physically represent dark soliton, singular
soliton, singular periodic solutions and a family of rational soliton
solutions, respectively.

In this case, to the extent of our knowledge the solutions of (49)
and (51) are new exact solutions (Figs. 1-7).

Dual-power law nonlinearity

Dual-power law nonlinearity is used to explain the saturation of
the nonlinear refractive index. Moreover, this law serves as a basic
model to describe the solitons in photovoltaic-photorefractive
materials such as LiNbO3 [11].

In this case,

F(s) = as" + s>

where « and p are constants. As can be seen that this law is a gen-
eralization of the parabolic law nonlinearity. Therefore, for this con-
straint of F(s), Eq. (10) reduces to

iq; + ady + by + c(4lal™ + Blg™)g =, (52)
and Eq. (15) converts to
k(b —an)U”" — (w — awk + br?)U + aU*™" + U™ =0.  (53)
In order to balancing, we make the following ansatz
U=V (54)
so that (53) transforms to
IZ(b — av) (2nvv” +(1- 2n)(V’)2)
—4n*V? (—awk + bi? + o) + 4om*V? + 4pn?V* = 0. (55)

Balancing VV” with V* in Eq. (55) yields N = 1. Thus, we have
the following series expansion

V(&) = Ao + A1 (&) + Ao1 (&) + Brogp " (&) + Boayy ' (&). (56)

Inserting V(&) and its necessary derivatives into (55) and
equating all the coefficients of ¢(&)y(¢) to zero, we obtain a highly
complicated system of algebraic equations. Solving this system with
the help of Maple or Mathematica, we get the following results:

Result 1.
AO = 07 AO.l = 07

2Ry (k?bn — kanw + k?b — Kaw + nw + w)

A]‘O OCR1 )

BO.] = 07
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Re(q) Im(q)

1 | ’
TS
N R,

Fig. 1. The plot of (20) with (21) whenK =2,b=a=w=k=c=5 =S =0=¢ =1.

TSI

Fig. 4. The plot of (20) with (24) when K = -], b=2,a=-1,0 =2,k=-2,c=5 =S =0=¢ =1.

Re(q) Im(q)

Fig. 5. The plot of (20) with (25)whena=2,K=b=w=k=c=S5=S=0=¢ =1.
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Fig. 7. The plot of (27) with (29) whena=2,K=b=w=k=c=R, =0=¢& = 1.

2n+/—(av — b)(K2b — Kaw + )

Big=0, Ri==+ k(av — b) }

(2K%bn — 2Kkanw + Kb — Kaw + 2nw + w)o?

p=— (57)

4(Kk2bn — Kanw + K2b — Kaw + nw + o)

Then, the solutions of (52) corresponding to (57) are

2 _ 2 21_" .
q0.t) = <2Rz (K2bn — kanw + k?b — Kaw +nw + o) o €)> E——
O(R]
(58)

where (&) holds Eq. (8).

One can see that the solutions (58) include the solutions of
Bernoulli equation. They physically represent a new family of
soliton solutions and a family of rational soliton solutions,
respectively.

Result 2.
2(x?bn — kanw + K?b — Kaw + nw +
Ao = ( ki o ), Ao1 =0,
o
2R, (k?bn — kanw + k?b — Kaw + nw + )
Ao =— )
O(R1
By1 =0,

2ny/—(av — b)(k2b — kaw + w)

Bio=0, Ri==+ Ra@v—b) ,

(2K%bn — 2Kanw + kb — Kaw + 2nw + w)o*

p=- > (59)
4(x2bn — kanw + Kb — Kaw + nw + w)
Then, the solutions of (52) corresponding to (59) are
1
qx,t)= ((bin — Kanw + k*b — kaw +nw + ) (é —% (é)))2
1
% ei(—lcx+(ut+0) (60)

where /(&) holds Eq. (8).

One can see that the solutions of (60) include the solutions of
Bernoulli equation. They physically represent a new family of
soliton solutions and a family of rational soliton solutions,
respectively.

In this case, to the extent of our knowledge, the solutions of (58)
and (60) are new exact solutions.

Concluding remarks

In this paper, we have applied the extended Kudryashov
method that has more advantageous than classical simplest equa-
tion method to NLSE equation with spatio-temporal dispersion
which include the cases of Kerr, parabolic, power and dual power
law nonlinearity effects. We successfully obtained the exact solu-
tions which include topological, singular soliton, rational solutions
and singular periodic solutions. Comparing our results with El-
Borai et al.’s results [3], we conclude two important aspects. First,
our solutions contain solutions of the Bernoulli equation. Second,
classical solutions, inverse solutions and linear combination solu-
tions of the Riccati equations which are y~!, ay + by ™',y is pre-
sented. However, the obtained solutions in [3]| contain only
solutions of the Riccati equation which is .

We also emphasize that in Kerr-law nonlinearity case the solu-
tions of [3] are exactly the coincide with our solutions (Results 1
and 5) when §; = 0.

The proposed method is direct, concise, effective and can be
extended to other types of complex NLEEs. Yet the applicability
of the method to NLSE depends on the balancing of reduced ODE.
If one can not reveal the balance number then the aforementioned
method does not work.
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