
 17500443, 2018, 7, D
ow
nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/m

nl.2018.0181 by B
ursa U

lud
Free longitudinal vibration of a nanorod with elastic spring boundary conditions
made of functionally graded material

Mustafa Özgür Yayli ✉

Faculty of Engineering, Department of Civil Engineering, Uludag University, 16059 Görükle Campus, Bursa, Turkey
✉ E-mail: ozguryayli@uludag.edu.tr

Published in Micro & Nano Letters; Received on 4th March 2018; Revised on 31st March 2018; Accepted on 9th April 2018

The elastic spring boundary conditions play an important role in dynamical analysis of functionally graded (FG) nanorods. However, these
special issues have not been properly paid attention to in the previously developed non-local models. In this work, longitudinal vibration
analysis of FG restrained nanorods is presented via non-local elasticity theory. Two axial springs are attached to a FG nanorod at both
ends. By considering the non-local differential relations for the FG nanorod, a coefficient matrix is derived and analysed via an exact
eigenvalue method. Finally, the results calculated from finite-element method are used to validate the present method. The influence of FG
index, non-local parameter and boundary conditions on the axial frequencies of FG nanorods is discussed.
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1. Introduction: Over the past decades, free vibration
characteristics of functionally graded (FG) nanorods have
received a great deal of attention, especially the carbon
nanostructures. There are many papers on carbon nanostructures.
These types of structures are used in many engineering devices,
mainly nano and micro electromechanic systems, due to their
specific physical, chemical and mechanical properties [1, 2]. At
micro or nanometre length scales, small size effects become
important. Both theoretical and experimental test results have
shown that the size effects in the analysis of mechanical
properties of micro or nanosized structures cannot be neglected.
Consequently, classical elasticity theories cannot be applied to
these types of structures. In recent years, numerous scientific
researches based on higher order elasticity theories have been
implemented to analyse these type of nanosized structures and its
correlates, utilising different definitions and approaches [3, 4].
Molecular dynamics method is a more convenient technique to
simulate the nanomechanical response of small sized structures.
However, it takes too much time for computation.
The FG nanorods (carbon nanotubes) have several advantages in

different field of application, including corrosion and enhanced
thermal resistance. Structures made of FG materials have a great
application in engineering and industrial fields [5–8]. Several poten-
tial applications of FG nanorods (carbon nanotubes) have been
made to various engineering applications on account of its useful
properties, such as chemical sensors, graphene transistors, field-gas
detection, effect transistor, logic circuits, solar cells, ultracapacitors,
diagnosis devices, conductive and ultrastrength composite materials
and transparent films. FG nanorods are produced from mixing of
two materials. This type of nanorods provides the benefits of
both of the materials. Recently, numerous higher order continuum
theories have been used by researchers in order to understand the
effect of the small size [9–21] and different theoretical methods
have been used to solve for the classical and the higher order
models [22–24].
In this Letter, axial vibration analysis of the FG nanorod with

deformable boundary conditions is studied. The analytical calcula-
tion method of vibration frequencies of such nanorod is formed by
using Fourier sine series and Stoke transformation. The advantage
of this method is that a coefficient matrix including material
index and boundary conditions is obtained first, and then the eigen-
value approximation is used to solve the dynamic characteristics of
the FG nanorod. Compared with the finite-element method, the pro-
posed approach in this Letter is more efficient, in the process of
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forming the characteristic equation of the FG restrained nanorod,
there is no any assumption introduced, thus the method can be con-
sidered as an exact method.

2. Background theory: In this Letter, the free axial vibrations of
FG carbon nanotubes have been investigated based on non-local
elasticity theory.

2.1. Non-local elasticity theory: In this Letter, the FG nanotube
with elastic boundary conditions can be taken as a nanorod of
circular cross-section with end restraints which are considered as
axial springs (see Fig. 1). The normality assumption for stresses
in the classical elasticity model is discarded in the non-local
elasticity model. Consequently, the non-local elasticity theory is
capable of capturing the size effect in contrast to the classical
elasticity theory. The following higher order mathematical
expressions have been used in non-local elastic theory [25]:

skl,l + r fl −
∂2ul
∂t2

( )
= 0, (1)

skl(x) =
∫
V
a x− x′

∣∣ ∣∣, x( )
tkl x

′( )
dV x′

( )
, (2)

tkl(x
′) = lmm x′

( )
dkl + 2mkl x

′( )
, (3)

ekl(x
′) = 1

2

∂uk (x
′)

∂x′ l
+ ∂ul(x

′)
∂x′k

( )
, (4)

where a x− x′
∣∣ ∣∣ represents the distance form of Euclidean. fl

denotes the applied force density, r is the mass density of the
body, ekl(x

′) denotes the strain tensor, t is the time, V indicates
the volume occupied by the body, m and l represent Lame
constants, skl indicates the non-local stress tensor, tkl(x

′) is
the Cauchy stress tensor at any point x′ and ul indicates the
displacement vector. According to the non-local elasticity, the
differential form of above equations can be displayed as

< = 1− (e0a)
2∇2[ ]

, (5)

in which, a expresses the internal length. e0 represents a material
constant, ∇2 expresses the Laplacian and < is a differential
operator. This higher order partial differential equation can be
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Fig. 1 Schematic drawing of a FG nanorod with elastically restrained by
the means of axial springs
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expressed in terms of small-scale parameter

1− (e0a)
2∇2[ ]

skl = tkl. (6)

2.2. Equation of motion: By using (6), axial force equation may be
expressed as

Nx − (e0a)
2 ∂

2Nx

∂x2
= E(x)Hrx

∂w

∂x
(7)

in which, Nx denotes the axial force. In contrast to homogeneous
nanotubes, the effective elasticity modulus Hrx of the FG carbon
nanotube should be integrated over the circular cross-section

Hrx =
∫
A
Er(z, y)(z

2 + y2)dA = 2p

∫r2
r1

Er(r)r
3dr (8)

where Er represents the axial rigidity for the FG material. It is taken
as follows:

Er = Ei − E0

( ) r0 − r

r0 − ri

( )b

+G0 (9)

where b expresses the FG index. The outer radius and the inner
radius are assumed to be ro and ri, respectively. By the help of
equilibrium equation, the following mathematical formulation can
be obtained:

Nx = Hrx
∂w

∂x
+ (e0a)

2mr
∂3w

∂x∂t2
(10)

where

mr =
∫
A
rr(z, y)(z

2 + y2)dA = 2p

∫r2
r1

rr(r)r
3dr (11)

Combining the equilibrium equation and (10) yields the axial
motion for a FG nanotube

Hrx
∂2w

∂x2
+ (e0a)

2mr
∂4w

∂x2∂t2
− mr

∂2w

∂t2
= 0 (12)
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Equation (12) is the higher order partial differential equation for the
longitudinal vibration of a FG tube.

3. Formulation for deformable boundary conditions: The main
idea of this Letter is to present a general analytical method for
eigenvalue solution for the FG nanotubes including the axial
spring parameters.

3.1. Axial deformation function: It is assumed that the vibration
modes are harmonic in time. Consequently, the axial deformation
function can be expressed as

w(x, t) = d(x)eivt , (13)

where d(x) denotes the axial deformation function and v represents
the angular frequencies of the vibration modes. Substituting (13)
into equation (12), the following second-order ordinary
differential equation results in

Hrx
d2d(x)

dx2
− (e0a)

2v2m2
r
d2d(x)

dx2
+ mrv

2d(x) = 0, (14)

in this Letter, the axial deformation function d(x) is defined as
follows:

d(x) =
d0 x = 0

dL x = L∑1
n=1

An sin (anx) 0 , x , L

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦, (15)

where

an =
np

L
. (16)
3.2. Stokes’ transformation: In this section, Stokes’ transformation
is described [26–30]. Fourier coefficient An

( )
in (15) can be

expressed by

An =
2

L

∫L
0
d(x) sin (anx) dx. (17)

First derivative of axial deformation function with respect to x gives

d′(x) =
∑1
n=1

anAn cos (anx). (18)

Fourier cosine series can be related to (18)

d′(x) = j0
L
+

∑1
n=1

jn cos (anx). (19)

where j0, jn are the Fourier constants. These constants are
described by

j0 =
2

L

∫L
0
d′(x) dx = 2

L
d(L)− d(0)
[ ]

, (20)

jn =
2

L

∫L
0
d′(x) cos (anx) dx (n = 1, 2 . . . ), (21)

utilising the integrating parts rule, the following mathematical
Micro & Nano Letters, 2018, Vol. 13, Iss. 7, pp. 1031–1035
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expressions are obtained:

fn =
2

L
d(x) cos (anx)
[ ]L

0+
2

L
an

∫L
0
d(x) sin (anx)dx

[ ]
, (22)

fn =
2

L
(− 1)nd(L)− d(0)
[ ]+ anHn. (23)

Finally, it is worth pointing out that axial deflections at the ends of
nanotube are taken into account through the proposed solution
method without any simplifications. This algorithm can be
repeated for the higher derivatives as follows:

dd(x)

dx
= dL − d0

L
+

∑1
n=1

cos anx
( )

× 2 (− 1)ndL − d0
( )

L
+ anAn

( )
, (24)

d2d(x)

dx2
= −

∑1
n=1

an sin anx
( )

× 2 (− 1)ndL − d0
( )

L
+ anAn

( )
. (25)

3.3. Fourier constant and axial deformation function: Combining
(15) and (25) with (14), the Fourier constant in axial deformation
function is calculated to be

An =
2 (− 1)n+1dL + d0
( )

(e0a)
2v2mr − Hrxan

( )
L v2mr (e0a)

2an + 1
( )− Hrxa

2
n

( ) , (26)

By using the Fourier constant in (26), the function w(x, t) can be
denoted in terms of d0 and dL

w(x, t) =
∑1
n=1

An × sin (anx)e
ivt . (27)

4. Boundary conditions
4.1. General case: The following two equations for non-local
continuum elasticity in the x-direction can be written as

Hrx
dd

dx
− (e0a)

2mrv
2 dd

dx
= S0d0, x = 0, (28)

Hrx
dd

dx
− (e0a)

2mrv
2 dd

dx
= SLdL, x = L, (29)

in which, S0 and SL denote the elastic spring coefficients in the
x-direction. By combining (26), (28), (29) with (24), boundary
conditions with axial springs are governed by the following
systems of equations:

S0 + Dr +
∑1
n=1

2Vn

cn

( )
d0 + Dr +

∑1
n=1

2(− 1)nVn

cn

( )
dL = 0,

(30)

Dr +
∑1
n=1

2(− 1)nVn

cn

( )
d0 + SL + Dr +

∑1
n=1

2Vn

cn

( )
dL = 0,

(31)
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where

Dr =
(e0a)

2mrv
2

L
− Hrx

L
, (32)

Vn = Lmrv
2 (e0a)

2mrv
2 − Hrx

( )
, (33)

cn = Lmrv
2 L+ p(e0a)

2n
( )− p2n2Hrx, (34)

and the following eigenvalue problem is obtained in terms of axial
spring parameters:

f11 f12

f21 f22

[ ]
d0

dL

[ ]
= 0, (35)

where

f11 = S0 + Dr +
∑1
n=1

2Vn

cn

, (36)

f12 = Dr +
∑1
n=1

2(− 1)nVn

cn

, (37)

f21 = Dr +
∑1
n=1

2(− 1)nVn

cn
, (38)

f22 = SL + Dr +
∑1
n=1

2Vn

cn

. (39)

To obtain a non-trivial solution of (35), the coefficient determinant
of the matrix should be zero, or

fij

∣∣∣ ∣∣∣ = 0(i, j = 1, 2). (40)

Letting S0 = SL = 1. In the above equation, the axial natural
frequency of a fixed-fixed FG nanorod modelled on the basis of
the non-local elasticity theory can be obtained. Furthermore, the
axial frequency of a non-local fixed-free FG nanorod can be
derived from (40) by letting S0 = 1 and SL = 0.

5. Results and discussion: In the following study, a FG nanotube
with axial springs at the ends, as shown in Fig. 1, will be
investigated in detail. A plenty of numerical examples are solved
and discussed to verify the accuracy of present model in
predicting the axial vibration responses of FG restrained nanorods
whose inner and outer sides are assumed to be two different
materials. In the numerical analysis, a nanorod composed of two
different materials is considered. The material properties of inside
material are Ei = 48GPa, ri = 2700 kg/m3, and those of outer
material are Eo = 129GPa, ro = 3210 kg/m3. The outer radius
and the inner radius are assumed to be ro = 200 nm and
ri = 100 nm, respectively. Length of the nanorod is taken as
300 nm.

5.1. Model validation: In this section, the axial frequencies of
restrained FG nanorod are compared with the results of
finite-element method for different FG index and also for
different ten modes.

5.1.1. Clamped-clamped FG nanotube: In order to obtain the solu-
tion of fixed-fixed boundary conditions, axial spring coefficients are
taken as S0 = 10× 109 and SL = 10× 109. In Table 1, the com-
parative analysis of the first ten modes computed by finite-element
and present method is carried out. The numerical results have been
presented for constant value of the non-local parameter e0a = 0

( )
.

As it is seen from Table 1, the predicted results of the present
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& The Institution of Engineering and Technology 2018

e C
om

m
ons L

icense



Table 1 Comparisons of the first ten frequencies for a clamped-clamped
FG nanorod with different index (b = 1.00 and b = 2.00)

b = 1 b = 2

Mode FEM Present FEM Present

1 9.6097 9.6097 10.0736 10.0735
2 19.2195 19.2195 20.1471 20.1471
3 28.8292 28.8292 30.2206 30.2204
4 38.4391 38.4386 40.2942 40.2939
5 48.0488 48.0482 50.3677 50.3671
6 57.6585 57.6574 60.4413 60.4401
7 67.2683 67.2665 70.5148 70.5129
8 76.8780 76.8753 80.5885 80.5856
9 86.4877 86.4839 90.6619 90.6083
10 96.0974 96.0922 100.7356 100.7300

FEM, finite-element method.

Fig. 2 Effect of FG index b
( )

for different modes
S0 = SL = 28× 10−9nN/nm
( )
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analytical method (Fourier sine series and Stokes’ transformation)
are in excellent agreement with those calculated by finite-element
method.
Fig. 3 Effect of FG index b
( )

for different modes
S0 = SL = 28× 10−10nN/nm
( )
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5.1.2. Cantilever FG nanotube: In the second validation, the canti-
lever FG nanorod is considered. In order to compute the frequencies
of a clamped-free nanorod, the spring coefficients are taken as
S0 = 10× 106 and SL = 0. It can be seen from Table 2 that the pre-
dicted results of the present method are in excellent agreement with
those calculated by finite-element method for the cantilever bound-
ary condition.

5.2. Effect of FG index: In this section, in order to delineate the FG
material, some numerical case examples are solved and assessed for
vibration analysis, using the derived formulations in the previous
sections. It is seen from Figs. 2–4 that axial vibration frequencies
are affected by the hardness of springs at the ends. This
observation is rational, because the axial deflection is neglected in
the clamped-clamped boundary conditions and it makes the
nanorod behaviour invalidly stiffer than the reality.

Figs. 2, 3 and 4 show that the non-local FG restrained nanorod,
with the formulation presented in this work, is stiffer than the
homogenous nanorods. This is due to the fact that an extra stiffness
is observed in the FG material. It can be said that when the spring
parameters at the ends increases, the response of the restrained FG
nanorod approaches to the FG nanorod with clamped ends.

From the calculated results in this study it can be deduced that
when the FG index decreases, the response of the composite
Fig. 4 Effect of boundary conditions on the vibration frequencies for differ-
ent deformable boundary conditions

Table 2 Comparisons of the first ten frequencies for a cantilever FG
nanorod with b = 1.00 and b = 2.00

b = 1 b = 2

Mode FEM Present FEM Present

1 4.8096 4.8049 5.0419 5.0368
2 14.4292 14.4146 15.1256 15.1103
3 24.0487 24.0243 25.2094 25.1838
4 33.6681 33.6339 35.2930 35.2573
5 43.2877 43.2435 45.3769 45.3304
6 52.9071 52.8527 55.4605 55.4036
7 62.5265 62.4620 65.5443 65.4766
8 72.1461 72.0709 75.6282 75.5493
9 81.7656 81.6797 85.7118 85.6218
10 91.3850 91.2881 95.7956 95.6940

FEM, finite-element method.

1034
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show higher axial vibration frequencies for nanorods with greater
index b

( )
. This is because of the fact that the stiffness of the

inner material is much less than that of the selected outer material.
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5.3. Effect of deformable boundary conditions: It can be observed
in (40) that the free axial frequency of the FG nanorod is a
function of five parameters, the deformable boundary conditions
S0, SL
( )

, FG index and the non-local parameter e0a
( )

. The
simultaneous effects of these two major parameters, S0 and SL, on
the first six axial frequency of the FG nanorod is depicted in
Fig. 5. It can be seen that axial frequencies increase with
Micro & Nano Letters, 2018, Vol. 13, Iss. 7, pp. 1031–1035
doi: 10.1049/mnl.2018.0181
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Fig. 5 Effect of FG index b
( )

for different modes
S0 = SL = 28× 102nN/nm
( )
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increasing mode number. It is also concluded that the influences of
deformable boundary conditions on higher order modes reveal
greater than lower order modes.
It may be useful to present a physical interpretation on the non-

local deformable boundary conditions (28) and (29) for FG nanorod
which are totally new with respect to the nanorod.

6. Conclusion: Idealised boundary conditions (fixed-free,
fixed-fixed) on real nanosized structures rarely meet mathematical
assumptions exactly. Boundary conditions resist axial
deformation in one or two direction. Due to this fact elastic
spring boundary conditions are used in this study. This
mathematical model bridges the gap between rigid and
deformable boundary conditions for FG materials. In this Letter,
a general coefficient matrix for eigenvalue analysis with two
undetermined coefficients of FG restrained nanorod is obtained
first. By using Fourier sine series and Stoke transformation, this
Letter presents an analytical approach for free vibration analysis
of FG restrained nanorod with general elastic boundary
conditions. Then, the results by existing studies are used to verify
the reliability and correctness of the approach presented in this
study. By using solved examples, the influence of elastic
boundary conditions, non-local parameter and material index on
vibration frequencies is demonstrated.
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