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Introduction

In recent years, there has been a lot of news about out-
breaks and diseases in the world, which negatively affects 
human life, including coronavirus, influenza, hepatitis, 
Salmonella, and Escherichia coli infections.1–3 Therefore, 
consumers focused extremely on medical products and 
then, as a natural consequence, the use of textiles on medi-
cal, hygiene, and health care fields has become signifi-
cantly widespread with new antimicrobials, functional 
fibers, new chemical finishes, and technologies.4 As a 
result of all these, Medical Textiles Market is estimated to 
be valued at 10.5 billion USD by 2022,5 and medical tex-
tiles are one of the most dynamically growing sectors 
because of changes in demographics, aging, growth of 

population, global warming, and health risks. Furthermore, 
the applications in medical textiles are also fairly exten-
sive, for example, biocompatible tissues and implants, 
bandages and wound dressings, and prosthetics.6–11 For 
medical textiles, the textile industry has focused on devel-
oping novel antibacterial chemicals, fibers, and materials 
since the demand for antibacterial products is growing in 
including hospitals, military, and personal care products.
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The textile materials and also human skin can support 
the growth of microorganisms, transmission, or cross-
infection of diseases. Natural fibers such as cotton have 
been particularly known as a suitable environment to 
accelerate the growth of microorganisms, and therefore, 
microbial attacks easily occur on these surfaces. Synthetic 
fibers such as polyester strongly resist attacks by microor-
ganisms owing to their molecular and hydrophobic struc-
ture. However, synthetic fibers and their blends cause 
more perspiration wetness, and as a result, microbial 
growth on the human body and textile surfaces occurs 
quickly. Meanwhile, the functionalization of inert surfaces 
such as polyester is also a big challenge because of the lack 
of tethering groups. Consequently, the antibacterial appli-
cations for synthetics have become extremely important, 
and the antibacterial agents used in textiles have also dra-
matically increased for the last years. For getting antibac-
terial activity, chemical agents such as chitosan, quaternary 
ammonium salts (quats), N-halamines, and halogenated 
phenols have been extensively used in surface functionali-
zation, with antibacterial and fungicidal properties.12–21 
Antibacterial applications have also been reported in other 
systems22–26 and also poly(ethylene terephthalate) (PET) 
surfaces could be a promising matrix for metacomposites 
with negative electromagnetic parameters.27–30

Triclosan is a member of halogenated phenoxy phe-
nols31,32 and also an aromatic compound that has ethers, 
phenols, and chlorines in its structure. It shows broad-spec-
trum antibacterial and antifungal activities. For example, 
sutures with triclosan reduced the infection rate by 30%. 
Therefore, many healthcare products, such as toothpaste, 
soaps, and creams, include triclosan. Detergents, including 
2% triclosan, are generally tolerated, and handwash goods 
do uncommonly have allergic reactions. Triclosan is also 
extremely recommended for textile wet treatments because 
of its low toxicity to human skin.15,16,21,33–38

In this study, the antibacterial properties and durabil-
ity of triclosan on polyester, polyester/cotton, and cotton 
surfaces for medical applications were investigated. 
Triclosan was treated on surfaces with different concen-
trations through pad-dry method. The presence of tri-
closan in the chemical solution was investigated by gas 
chromatography–mass spectrometry (GC-MS). The 
structure of treated surfaces was characterized by Fourier 
transform infrared (FTIR), and the morphological 
changes were observed by scanning electron microscope 
(SEM). The antibacterial performances and durability of 
triclosan and treated surfaces were also studied accord-
ing to different standard methods against S. aureus and 
E. coli.

Materials and methods

PET (90 g/m2) as polyester, polyester/cotton blends (PET/
CO, 50/50, 110 g/m2), and cotton (CO, 120 g/m2) fabrics 

were obtained from Testfabrics Inc. All starting chemi-
cals, pure triclosan (TCS 1, Cas number 3380-34-5), and 
its derivative (TCS 2, mixture of diphenylalkane and tri-
closan) were taken from Sigma-Aldrich and Rudolf 
Duraner.

For getting antibacterial property on textiles, the solu-
tions of TCS 2 were prepared as 45, 60, and 80 g/L of 
chemical concentration with water/methyl alcohol mix-
tures (80/20) and they were applied to fabrics (~6 g) by the 
pad-dry process with Mathis rollers. The samples were 
dried at 90°C for 6 min. The weight change on polyester, 
polyester/cotton, and cotton fabrics after treatments were 
determined as 0.023, 0.026, and 0.038 g, respectively.

The TCS 1 and TCS 2 were analyzed by Agilent GC-MS 
6890, and carrier gas was helium.

The morphological changes on the surface were inves-
tigated with JEOL 6060 SEM, and all surfaces were coated 
with gold for 200 s before running.

The surface spectra were taken from Thermo Nicolet 
iS50 FTIR spectrometer. The scanned frequencies, number 
of scan times, and resolution were from 4000 to 400 cm−1, 
32, and 2 cm−1, respectively.

For TCS 1 and TCS 2, minimum inhibitory concentra-
tion (MIC) and minimum bactericidal concentration 
(MBC) were calculated according to the CLSI M07 A9. 
During studies, the corresponding supplementary sheets 
were strictly followed. Tests were applied on 96-well 
plates. Each well was filled with 100 mL of defined anti-
bacterial dilution and 10 µL of bacteria. The turbidity in 
wells after 24 h was evaluated as to whether bacteria are 
present or not. For the determination of the MBC, the solu-
tion in the wells was transferred onto agar and evaluated 
for growth after 24 h.

For qualitative antibacterial evaluation, the tests were 
run according to ISO 20645. The activity was measured by 
microbial growth around the surface. For quantitative anti-
bacterial evaluation, the tests were run according to ASTM 
2149. The efficiency was calculated by the percentage 
reduction rate (R) of bacteria. S. aureus (ATCC 6538) and 
E. coli (ATCC 35218) were used in all antibacterial tests. 
Reduction rate (R%) of bacteria was calculated using the 
formula (equation (1))

R
B A

B
(%) =

−




×100  (1)

where A is the number of bacteria recovered from inocu-
lated treated test sample in jar incubated for 24 h, and B is 
the number of bacteria recovered from inoculated treated 
test sample at “0” contact time.

The durability of chemicals on surfaces against repeated 
washing cycles was tested according to AATCC 61. 
Samples (2.54 cm × 5.08 cm) were subjected to repeated 
washes in vessels with 50 balls and 150 mL (of 0.15% 
AATCC detergent) solution. Vessels rotated at 42 r/min 
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and 50°C for 45 min. This one washing cycle is equivalent 
to five machine washing cycles. After washings, samples 
were tested according to ASTM 2149.

Results and discussion

The triclosan-containing chemicals were analyzed by 
GC-MS. TCS 1 and TCS 2 were dissolved in 1 mL of 
methyl alcohol with 1, 5, 10, 20, 40, and 80 µL concentra-
tions, and these solutions were shaken for 2 min. The gas 
chromatograms, gas spectra, and mass spectra values were 
given in Figures 1 and 2 and Table 1, respectively. For TCS 
1, the peak has sharply emerged around 12.02–12.18 min, 
which means the main peak of triclosan (Figures 1(b) and 
2(b), Table 1). While focusing on TCS 2, four peaks 

represented by different chemicals such as diphenylalkane 
and triclosan in the TCS 2 solution at different retention 
times. The peak at 12.04 min can be thought of as triclosan 
(Figures 1(a) and 2(a), Table 1). This result confirmed that 
triclosan was present in the TCS 2 solution.

The morphological changes were observed by SEM, and 
pictures are given in Figure 3. PET fibers in Figure 3(a) had 
around a relatively smooth, uniform, and cylindrical surface 
morphology, but some residuals can be viewed on the fiber 
surfaces. It can be clearly seen from Figure (c) that PET/CO 
surfaces have more impurities because of the cotton fibers in 
their own structure while comparing the PET fibers in Figure 
3(a). CO fibers in Figure 3(e) had naturally rougher, more 
residuals, visible grooves, and irregular shaped cross-sec-
tions on the surfaces. The fiber surfaces were 

Figure 1. Gas chromatogram of (a) TCS 2 and (b) TCS 1.

Figure 2. Gas spectra of (a) TCS 2 and (b) TCS 1.

Table 1. Mass spectra values of TCS 1 and TCS 2.

Sample (min) (mz−1) Relative intensity Proposed structure (triclosan, %)

TCS 1 12.180 287.91520 288.00/84.60 97.00
TCS 2 12.040 287.91700 288.00/83.80 90.00

TCS: triclosan.
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homogeneously covered by TCS 2 after treatments. The 
coating effect on the fibers could be seen in Figure 3(b, d, f) 
because triclosan can quickly crystallize.

The changes on the surface after treatments were ana-
lyzed by FTIR, and spectra and specific wavenumber are 
shown in Figure 4 and Table 2, respectively. The FTIR 
spectra of TCS 2 were only given for avoiding repetition 
here since similar results are obtained after treated with 
TCS 1. The aromatic rings in the structure are easily 
detected from C–H and C=C–C vibrations. According to 

TCS 2 spectrum in Figure 4(a), the peaks between 1596 
and 1348 cm−1 were the result of C–C stretching in the ben-
zene ring, when the peaks between 1286 and 1098 cm−1 
corresponded bending of the aromatic ring C–H bonds.39 
Triclosan might precisely be identified through the peaks 
at 1473 and 862 cm−1, which referred to the vibration of 
hydrogen atoms in the aromatic ring and C–C stretching of 
benzene rings. The carbon-halogen bond has strong 
absorption, and the major bands of aromatic compounds 
occur between 1000 and 670 cm−1. The C–Cl stretching 

Figure 3. SEM pictures of (a) PET, (b) PET treated with TCS 2, (c) PET/CO, and (d) PET/CO treated with TCS 2, (e) CO, and (f) 
CO treated with TCS 2.
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Figure 4. FTIR spectra of (a) TCS 2, (b) PET, (c) PET treated with TCS 2, (d) CO, and (e) CO treated with TCS 2.

Table 2. FTIR absorption bands representing structural features.

Sample Chemical bond Specific wavenumber (cm−1)

TCS 2 Benzene ring 1596,1473, 1348, 1286, 1098, 862
C–Cl 1348, 1098, 862, 792

PET treated with TCS 2 C=O Between 1792 and 1761
Benzene ring Between 1653 and 1636, 1541, 1488, 1438, 1387
C–Cl 900

CO treated with TCS 2 Benzene ring Between 1597 and 1244 (1472)
C–Cl 1345, 1103, 863, 792

CO: cotton; FTIR: Fourier transform infrared; TCS: triclosan; PET: poly(ethylene terephthalate).
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should theoretically occur in the range 746–720 cm−1. 
Meanwhile, the interaction with C=C in chlorinated aro-
matics can raise as high as 845 cm−1.40 Previous studies 
had reported the C–Cl stretching mode at 890 cm−1.41,42 
The peaks at 1348, 1098, 862, and 792 cm−1 can be attrib-
uted to aromatic C–Cl stretching, while O–H in-plane 
bending was linked in the peaks at 1420 and 1348 cm−1. 
The large band occurred at 2866 cm−1 and this can be 
linked to C–H bond in diphenylmethane in TCS 2.

For PET in Figure 4(b), the aromatic ring vibrations 
typically occurred at peaks of 1578, 1505, 1408, 1242, 
1016, 872, 847, 792, and 722 cm−1, respectively. The 
PEt also has the following main vibration peaks at 2968 
(C–H stretching); 1712 (C=O stretching); 1471, 1455, and 
1339 (O–C–H and CH2 bending, CH2 wagging); 1095 
(C–O stretching); and 969 cm−1 (O–CH2 stretching and 
C(=O)–O stretching). After treating with TCS 2 in Figure 
4(c), the aromatic groups and C–Cl vibrational stretching 
bands of TCS 2 could not clearly be distinguished since 
they overlapped with the carbonyl stretching bands of the 
PET. However, new peaks were detected between 1792 
and 1761, 1653, 1636, 1541, 1488, 1438, 1387, and 
900 cm−1. The shifted and wider band at 900 cm−1 was 
detected after treated with TCS 2 and this band attributed 
to the C–Cl vibrational bands of TCS 2. In Table 2, these 
new bands can link to TCS 2 on the surface of PET.

It has been known that CO has numerous hydroxyl 
groups (Figure 4(d)). The broad peak around 3300 cm−1 
and a weak band at 1640 cm−1 are appointed to a hydroxyl 
group and by the water of hydration, respectively. After 
treatment (Figure 4(e)), the new peaks appeared at 1597 

and 1244 (1472) cm−1, which can be attributed to benzene 
ring vibrations. CO showed the typical peak at 1160 cm−1, 
but this spectrum changed when TCS 2 is deposited on CO 
because of C–O–C in cellulose at 1103 cm−1. The intense 
peaks of TCS 2 on CO were visible in the spectra at 1345, 
1103, 863, and 792 cm−1. These new C–Cl stretching peaks 
confirmed that TCS 2 had been successfully coated onto 
CO surface after treatments and SEM pictures also sup-
ported them. The stretching bands also lost their intensity 
after treatments. This can be because TCS 2 is attached to 
surfaces.

MIC and MBC values are important to determine the 
resistance of microorganisms to an antibacterial agent. In 
vitro, triclosan shows bacteriostatic activity at lower con-
centrations,43 and it also has bactericidal activity at higher 
concentrations44 since it causes enormous damage to cell 
membranes and disrupts protein and lipid by inhibiting the 
enzyme enoyl reductase.33,34 Meanwhile, the activity is 
also higher to Gram-positive bacteria than Gram-negative 
bacteria.45 Previous studies showed that MIC values of 
TCS 1 tested in broth and agar generally range between 
0.01 and 4 mg/L against S. aureus,36,46,47 and between 0.09 
and 8 mg/L against E. coli.33,48 However, the concentration 
in commercial products vary, and it is usually used in liq-
uid soaps of 2–5 mg/L, in hand disinfectants of 2–20 mg/L, 
and in toothpaste of 3 mg/L.49,50

For determining MIC and MBC, TCS 1 and TCS 2 were 
prepared in concentration of 10 mg/L, and results tested in 
broth and agar are shown in Table 3 and Figure 5. MIC and 
MBC values for TCS 1 were obtained from 0.1 to 5.0 mg/L, 
and 0.2 to 5.0 mg/L depending on bacteria. TCS 2 

Table 3. MIC and MBC values of TCS 1 and TCS 2 against S. aureus and E. coli.

Sample S. aureus E. coli

MIC (mg/L) MBC (mg/L) MIC (mg/L) MBC (mg/L)

TCS 1 0.1 0.2 2.5 2.5
TCS 2 2.5 2.5 5.0 5.0

MIC: minimum inhibitory concentration; MBC: minimum bactericidal concentration; TCS: triclosan.

Figure 5. MIC and MBC of TCS 2 against (a) S. aureus and (b) E. coli.
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displayed 25-, 2-, 12.5-, and 2-fold increased MIC and 
MBC values against S. aureus and E. coli, respectively. 
Both chemicals are effective on bacteria when studied in 
concentrations common in practice. Comparing with S. 
aureus, E. coli generally have higher MIC and MBC. The 
study showed that MIC and MBC results given in here are 
consistent with the literature previously reported.

Antibacterial activity was qualitatively tested according 
to ISO 20645. For determination, the absence of bacterial 
growth underneath the sample (20 mm × 20 mm) and the 
presence of inhibition zone confirm the antibacterial 

activity. Considering antibacterial protection, the zone 
should at least be H ⩾ 1 mm. Here, the significant differ-
ences between diameters of inhibition zones underneath 
all samples treated with TCS 2 after taking samples from 
agar plates were precisely observed. It can also be seen 
that the zone sizes (antibacterial activity) enlarged with the 
increase in chemical concentrations, whereas the untreated 
samples showed no such zones (no antibacterial activity) 
(Table 4 and Figure 6). Even at the lowest concentrations, 
samples treated with TCS 2 inhibited the bacteria with the 
zones of between 13, 17, and 18 for S. aureus and between 
12, 13, and 13 mm for E. coli, respectively. Triclosan not 
only prevented the growth under the surfaces but also 
leached continuously out from the surface by restricting 
the growth of organisms. As a result, these studies have 
indicated that triclosan killed bacteria on the surface and 
had good antibacterial activity against both bacteria.

Antibacterial activity was quantitatively tested accord-
ing to ASTM E2149. Considering antibacterial protection, 
the reduction rate (R) of bacteria should be more than 
90%. It can be viewed that untreated PET, PET/CO, and 
CO samples did not exhibit any significant antibacterial 
efficacy. The antibacterial property slightly increased 
depending on chemical concentrations and displayed a 
remarkable effect on bacteria, even at lower concentra-
tions for 3 h, 95.42%, 96.95%, 97.86%, 91.21%, 92.31%, 
and 93.41% for bacteria (Tables 5 and 6). It is understood 
that triclosan targeted fatty acid synthesis by inhibiting the 
enzyme enoyl reductase, and this inhibition was slow.35,51–54 
At higher concentrations, the bisphenol is likely to damage 
the bacterial membrane.55 In brief, it was also found that 
triclosan had good antibacterial and biocidal activities on 
bacteria and also had more efficiency against S. aureus 
than E. coli. It is well known that Gram-negative bacteria 

Table 4. Qualitative antibacterial activity according to ISO 
20645.

Sample name Zone of inhibition (mm)

S. aureusa E. colia

PET No zone No zone
PET + TCS 2 (45 g/L) 13 12
PET + TCS 2 (60 g/L) 17 15
PET + TCS 2 (80 g/L) 22 20
PET/CO No zone No zone
PET/CO + TCS 2 (45 g/L) 17 13
PET/CO + TCS 2 (60 g/L) 19 16
PET/CO + TCS 2 (80 g/L) 25 22
CO No zone No zone
CO + TCS 2 (45 g/L) 18 13
CO + TCS 2 (60 g/L) 20 17
CO + TCS 2 (80 g/L) 25 23

CO: cotton; CFU: colony-forming unit; PET: poly(ethylene terephthal-
ate); TCS: triclosan.
aEach agar medium was inoculated with 0.5 Mcfarland (≈ 108 CFU/mL) 
of bacteria.

Figure 6. The inhibition zones of (a) PET, (b) PET treated with TCS 2, (c) CO, and (d) CO treated with TCS 2.
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have an extra outer membrane formed of phospholipids, 
polysaccharides, and proteins and are therefore known to 
be generally more resistant to biocides.56,57 These findings 
are consistent in the literature.

For medical applications, the antibacterial efficacy on the 
surface should remain constant for as long as possible, prefer-
entially for the lifetime of the textiles. The durability to 
washes depends substantially on the chemical concentration 

on the surface, and the reduction of concentration results 
obviously in loss of effectiveness. The treatments were per-
formed before and after washes according to AATCC 61, as 
presented in Table 7. The treated samples lost their antibacte-
rial properties after washes. The bacterial reductions of S. 
aureus and E. coli were about 91.60% and 87.91%, respec-
tively, and fabrics showed good antibacterial (bactericidal) 
properties also after 10 washes. However, the antibacterial 

Table 5. Antibacterial activity against S. aureus according to ASTM E2149.

Sample name S. aureusa

3 h 6 h 24 h

Bacteria reduction

(%) Log (%) Log (%) Log

PET –4.58 –0.02 –8.40 –0.04 –31.30 –0.16
PET + TCS 2 (45 g/L) –95.42 –1.34 –99.69 –2.52 –100.00 –5.77
PET + TCS 2 (60 g/L) –99.71 –2.54 –99.86 –2.86 –100.00 –5.77
PET + TCS 2 (80 g/L) –99.94 –3.21 –99.98 –3.64 –100.00 –5.77
PET/CO –0.76 0.00 6.87 0.03 10.69 0.04
PET/CO + TCS 2 (45 g/L) –96.95 –1.52 –99.77 –2.64 –100.00 –5.77
PET/CO + TCS 2 (60 g/L) –99.79 –2.67 –99.92 –3.12 –100.00 –5.77
PET/CO + TCS 2 (80 g/L) –99.96 –3.42 –99.98 –3.82 –100.00 –5.77
CO 5.34 0.02 16.03 0.06 19.08 0.08
CO + TCS 2 (45 g/L) –97.86 –1.67 –99.91 –3.04 –100.00 –5.77
CO + TCS 2 (60 g/L) –99.82 –2.76 –99.95 –3.27 –100.00 –5.77
CO + TCS 2 (80 g/L) –99.98 –3.64 –99.99 –4.12 –100.00 –5.77

CO: cotton; PET: poly(ethylene terephthalate); TCS: triclosan; CFU: colony-forming unit. 
aBacteria concentration was adjusted to 5.95x105 (log 5.77) CFU/mL for each sample 
The positive values of bacterial reduction (%) demonstrate an increase in bacterial growth, and also, the negative values of bacterial reduction (%) 
show a decrease in bacterial growth. The value of (−) 100% indicates that all the bacteria on the surface were killed.

Table 6. Antibacterial activity against E. coli according to ASTM E2149.

Sample name E. colia

3 h 6 h 24 h

Bacteria reduction

(%) Log (%) Log (%) Log

PET 9.89 0.04 4.40 0.02 2.20 0.01
PET + TCS 2 (45 g/L) –91.21 –1.06 –94.51 –1.26 –100.00 –5.62
PET + TCS 2 (60 g/L) –95.60 –1.36 –99.01 –2.00 –100.00 –5.62
PET + TCS 2 (80 g/L) –99.45 –2.26 –99.92 –3.11 –100.00 –5.62
PET/CO 7.69 0.03 13.19 0.05 23.08 0.09
PET/CO + TCS 2 (45 g/L) –92.31 –1.11 –95.60 –1.36 –100.00 –5.62
PET/CO + TCS 2 (60 g/L) –96.70 –1.48 –99.12 –2.06 –100.00 –5.62
PET/CO + TCS 2 (80 g/L) –99.58 –2.38 –99.93 –3.18 –100.00 –5.62
CO 9.89 0.04 15.38 0.06 30.77 0.12
CO + TCS 2 (45 g/L) –93.41 –1.18 –96.70 –1.48 -100.00 -5.62
CO + TCS 2 (60 g/L) –97.80 –1.66 –99.24 –2.12 –100.00 –5.62
CO + TCS 2 (80 g/L) –99.68 –2.50 –99.97 –3.48 –100.00 –5.62

CO: cotton; PET: poly(ethylene terephthalate); TCS: triclosan; CFU: colony-forming unit.
aBacteria concentration was adjusted to 4.14x105 (log 5.62) CFU/mL for each sample. 
The positive values of bacterial reduction (%) demonstrate an increase in bacterial growth, and also, the negative values of bacterial reduction (%) 
show a decrease in bacterial growth. The value of (−) 100% indicates that all the bacteria on the surface were killed.
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properties decreased to about 70.99% and 69.23% for both 
bacteria after 20 washes, and fabrics exhibited satisfactory 
antibacterial activity (bacteriostatic) to washes. Consequently, 
the treated samples showed satisfactory durability to washes.

Conclusion

In recent years, the increasing demand for medical textiles 
and antimicrobial finishings has occurred rapidly because 
of the increased health and hygiene interests of the con-
sumers. Chitosan, quats, N-halamines, and halogenated 
phenols have been widely used as antibacterial agents in 
textile finishing treatments.

In this study, the processing, characterization, and anti-
bacterial activity of triclosan on polyester, polyester/cot-
ton, and cotton surfaces were investigated. SEM and FTIR 
studies proved that triclosan could be introduced into the 
surface, and fiber surface was coated by triclosan after 
treatments. Triclosan was found to be effective and stable 
on getting antibacterial textile surfaces for medical appli-
cations, and triclosan-added surfaces provided significant 
inactivation and long-term activity against S. aureus and 
E. coli of about 105 colony-forming unit (CFU)/mL, even 
at a lower concentration, while the untreated surfaces did 
not show any antibacterial activity. This study showed that 
triclosan is one of the most effective antibacterial chemi-
cals, and it gave new opportunities for medical applica-
tions, with incorporated bactericidal effects.
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