
Research Article
An Enhanced Artificial Bee Colony Algorithm with Solution
Acceptance Rule and Probabilistic Multisearch

AlkJn Yurtkuran and Erdal Emel

Department of Industrial Engineering, Uludag University, Görükle Campus, 16059 Bursa, Turkey

Correspondence should be addressed to Alkın Yurtkuran; alkin@uludag.edu.tr

Received 3 July 2015; Accepted 9 September 2015

Academic Editor: Ezequiel López-Rubio

Copyright © 2016 A. Yurtkuran and E. Emel. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The artificial bee colony (ABC) algorithm is a popular swarm based technique, which is inspired from the intelligent foraging
behavior of honeybee swarms. This paper proposes a new variant of ABC algorithm, namely, enhanced ABC with solution
acceptance rule and probabilistic multisearch (ABC-SA) to address global optimization problems. A new solution acceptance rule
is proposed where, instead of greedy selection between old solution and new candidate solution, worse candidate solutions have
a probability to be accepted. Additionally, the acceptance probability of worse candidates is nonlinearly decreased throughout
the search process adaptively. Moreover, in order to improve the performance of the ABC and balance the intensification and
diversification, a probabilistic multisearch strategy is presented. Three different search equations with distinctive characters
are employed using predetermined search probabilities. By implementing a new solution acceptance rule and a probabilistic
multisearch approach, the intensification and diversification performance of the ABC algorithm is improved. The proposed
algorithm has been tested onwell-known benchmark functions of varying dimensions by comparing against novel ABC variants, as
well as several recent state-of-the-art algorithms. Computational results show that the proposed ABC-SA outperforms other ABC
variants and is superior to state-of-the-art algorithms proposed in the literature.

1. Introduction

Optimization techniques play an important role in the field
of science and engineering. Over the last five decades,
numerous algorithms have been developed to solve complex
optimization algorithms. Since more and more present-day
problems turn out to be nonlinear, multimodal, discontin-
uous, or dynamic in nature, derivative-free, nonexact solu-
tion methods attract ever-increasing attention. Evolutionary
biology or swarm behaviors inspired most of these methods.
There have been several classes of algorithms proposed in
this evolutionary or swarm intelligence framework including
genetic algorithms [1, 2], memetic algorithms [3], differential
evolution (DE) [4], ant colony optimization (ACO) [5],
particle swarm optimization (PSO) [6], artificial bee colony
algorithm (ABC) [7], cuckoo search [8], and firefly algorithm
[9].

The ABC is a biologically inspired population-based
metaheuristic algorithm that mimics the foraging behavior

of honeybee swarms [7]. Due to its simplicity and ease of
application, the ABC has been widely used to solve both
continuous and discrete optimization problems since its
introduction [10]. It has been shown that ABC tends to
suffer poor intensification performance on complex prob-
lems [11–13]. To improve the intensification performance
of ABC, many researchers have focused on the search
rules as they control the tradeoff between diversification
and intensification. Diversification means the ability of an
algorithm to search for unvisited points in the search region,
whereas intensification is the process of refining those points
within the neighborhood of previously visited locations
to improve solution quality. Various new search strategies,
mostly inspired fromPSO andDE, have been proposed in the
literature. Zhu and Kwong [14] proposed a global best guided
ABC, which utilizes the global best individual’s information
within the search equation similar to PSO. Gao et al. [15]
introduced another variant of global best ABC. Inspired
by DE, Gao and Liu [13] introduced a modified version of

Hindawi Publishing Corporation
Computational Intelligence and Neuroscience
Volume 2016, Article ID 8085953, 13 pages
http://dx.doi.org/10.1155/2016/8085953

http://dx.doi.org/10.1155/2016/8085953

2 Computational Intelligence and Neuroscience

the ABC in which ABC/Best/1 and ABC/Rand/1 were
employed as local search equations. Kang et al. [16] described
the Rosenbrock ABC, which combines Rosenbrock’s rota-
tional method with the original ABC. To improve diversifica-
tion, Alatas [11] employed chaotic maps for initialization and
chaotic searches within a search strategy. Akay and Karaboga
[17] introduced a modified version of the ABC in which
frequency of perturbation is controlled adaptively and the
ratio of variance operator was introduced. Liao et al. [18]
proposed a detailed experimental analysis and comparison
of an ABC variant with different search equations. Gao
et al. [19] introduced two new search equations for onlooker
and employed bee phases and a new robust comparison
technique for candidate solutions. ABC. Qiu et al. [20]
were inspired from DE/current-to-best/1 strategy in DE
algorithm and proposed a modified ABC. Banitalebi et al.
[21] proposed an enhanced compact ABC, which did not
store the actual population of candidate solution; instead
their approach employed probabilistic representation. Wang
et al. [22] presented multistrategy ABC, in which a pool of
different search strategies was constructed and various search
strategies were used during the search process. Gao et al. [23]
introduced a bare bones ABC with parameter adaptation and
fitness-based neighborhood to improve the intensification
performance of standard ABC. Ma et al. [24] reduced the
redundant search moves and maintained the diversity of the
swarm by introducing hybrid ABC with life cycle and social
learning. Furthermore, ABC has been successfully applied
to solve various types of optimization problems, such as
production scheduling [25, 26], vehicle routing [27], location-
allocation problem [28], image segmentation [29], wireless
sensor network routing [30], leaf-constrained minimum
spanning tree problem [31], clustering problem [32], fuel
management optimization [33], and many others [34–36].
Readers can refer to Karaboga et al. [10] for an extensive
literature review of the ABC and its applications.

This study presents an enhanced ABC with solution
acceptance rule and probabilistic multisearch (ABC-SA) in
order to solve global optimization problems efficiently. In
ABC-SA, three search mechanisms with different diversifica-
tion and intensification characteristics are employed. More-
over, search mechanism selection probabilities 𝑝

𝑠1
, 𝑝
𝑠2
, and

𝑝
𝑠3
are introduced to control the balance between diversifica-

tion and intensification. In our proposed approach, a search
mechanism is established using the selection probabilities
to generate a new neighbor solution from the current one.
Additionally, a solution acceptance rule is implemented, in
which not only better solutions but also worse solutions may
be accepted by using a probability function. A nonlinearly
decreasing acceptance probability function is employed, thus
allowing worse solutions to be more likely accepted in the
early phases of the search. Therefore, ABC-SA algorithm
explores the search space more widespread, especially in the
early phases of the search process. By using solution accep-
tance rule and implementing different search mechanisms of
contrasting nature, ABC-SA balances the trade-off between
diversification and intensification efficiently. The proposed
approach is tested on six different benchmark functions
with varying dimensions and compared to novel ABC, PSO,

and DE variants. Computational results reveal that ABC-
SA outperforms competitor algorithms in terms of solution
quality.

The main contributions of the proposed study are as
follows:

(i) Three different search mechanisms are employed
with varying diversification and intensification abil-
ities. Probabilistic multisearch with predetermined
probability values are employed to determine the
search mechanism to be used to generate candidate
solutions. Therefore, ABC-SA explores and exploits
the search space efficiently.

(ii) Instead of a greedy selection, a new candidate solution
acceptance rule is integrated, where a worse solution
may have a chance to be accepted as new solution.
By the help of this new acceptance rule, ABC-SA
achieves better diversification performance, specifi-
cally in the early phases of the search.

The remainder of this paper is structured as follows: Section 2
presents the traditional ABC; Section 3 introduces the pro-
posed framework; the instances, parameter settings, and
computational results are presented in Section 4 and finally
Section 5 concludes the paper.

2. Artificial Bee Colony Algorithm

TheABChas inspired from the organizational nature and for-
aging behavior of honeybee swarms. In the ABC algorithm,
the bee colony comprises three kinds of bees: employed bees,
onlooker bees, and scout bees. Each bee has a specialized task
in the colony to maximize the nectar amount that is stored
in the hive. In ABC, each food source is placed in the 𝐷-
dimensional search space and represents a potential solution
to the optimization problem. The amount of nectar in the
food source is assumed to be the fitness value of a food source.
Generally, the number of employed and onlooker bees is the
same and equal to the number of food sources.

Each employed bee belongs to a food source and is
responsible for mining the corresponding food source. Then,
employed bees pass the nectar information to onlooker bees
in the “dance area.” Onlooker bees wait in the hive and select
a food source to mine based on the information coming
from the employed bees. Here, more beneficial food sources
will have higher selection probabilities to be selected by
onlooker bees. In ABC, in order to decide if a food source
is abandoned or not, trial counters and a predetermined limit
parameter are used. If a solution represented by a food source
does not improve during a number of trials (limit), the food
source is abandoned. When the food source is abandoned,
the corresponding employed bee will become a scout bee and
randomly generate a new food source and replace it with the
abandoned one.

The ABC algorithm consists of four main steps: initial-
ization, employed bee phase, onlooker bee phase, and scout
bee phase. After the initialization step, the other three main
steps of the algorithm are carried out repeatedly in a loop

Computational Intelligence and Neuroscience 3

until the termination condition is met. The main steps of the
ABC algorithm are as follows.

Step 1 (initialization). In the initialization step, the ABC
generates a randomly distributed population of SN solu-
tions (food sources), where SN also denotes the number
of employed or onlooker bees. Let 𝑥

𝑖
= {𝑥
𝑖,1

, 𝑥
𝑖,2

, . . . , 𝑥
𝑖,𝐷

}

represent the 𝑖th food source, where 𝐷 is the problem size.
Each food source is generated within the limited range of 𝑗th
index by

𝑥
𝑖,𝑗

= 𝑥
min
𝑗

+ 𝜑
𝑖,𝑗

(𝑥
max
𝑗

− 𝑥
min
𝑗

) , (1)

where 𝑖 = 1, 2, . . . , 𝑆𝑁, 𝑗 = 1, 2, . . . , 𝐷, 𝜑
𝑖,𝑗

is a uniformly
distributed random real number in [0, 1], and 𝑥

min
𝑗

and
𝑥
max
𝑗

are the lower and upper bounds for the dimension 𝑗,
respectively. Moreover, a trial counter for each food source is
initialized.

Step 2 (employed bee phase). In the employed bee phase,
each employed bee visits a food source and generates a
neighboring food source in the vicinity of the selected
food source. Employed bees search a new solution, V

𝑖
, by

performing a local search around each food source 𝑖 =

1, 2, . . . , 𝑆𝑁 as follows:

V
𝑖,𝑗

= 𝑥
𝑖,𝑗

+ 𝜙 (𝑥
𝑖,𝑗

− 𝑥
𝑟1,𝑗

) , (2)

where 𝑗 is a randomly selected index 𝑗 ∈ {1, 2, . . . , 𝐷} and
𝑟1 ∈ {1, 2, . . . , 𝑆𝑁} is a randomly chosen food source that
is not equal to 𝑖; that is, (𝑟1 ̸= 𝑖). 𝜙 is a random number
within the range [−1, 1] generated specifically for each 𝑖 and
𝑗 combination. A greedy selection is applied between 𝑥

𝑖
and

V
𝑖
by selecting the better one.

Step 3 (onlooker bee phase). Unlike the employed bees,
onlooker bees select a food source depending on the probabil-
ity value 𝑝, which is determined by nectar amount associated
with that food source.The value of𝑝

𝑖
is calculated for 𝑖th food

source as follows:

𝑝
𝑖
=

fit
𝑖

∑
𝑆𝑁

𝑗=1
fit
𝑗

, (3)

fit
𝑖
=

{

{

{

1

1 + 𝑓
𝑖

, 𝑓
𝑖
≥ 0

1 + abs (𝑓
𝑖
) , 𝑓

𝑖
< 0,

(4)

where fit
𝑖
is the fitness value of solution 𝑖 and calculated as

in (4) for minimization problems. Different fitness functions
are employed for maximization problems. By using this type
of roulette wheel based probabilistic selection, better food
sources will more likely be visited by onlooker bees. There-
fore, onlooker bees try to find new candidate food sources
around good solutions. Once the onlooker bee chooses the
food source, it generates a new solution using (2). Similar
to the employed bee phase, a greedy selection is carried out
between 𝑥

𝑖
and V
𝑖
.

Step 4 (scout bee phase). A trial counter is associated with
each food source, which depicts the number of tries that the
food source cannot be improved. If a food source cannot be
improved for a predetermined number of tries (limit) during
the onlooker and employed bee phases, then the employed
bee associated with that food source becomes a scout bee.
Then, the scout bee finds a new food source using (1). By
implementing the scout bee phase, the ABC algorithm easily
escapes from minimums and improves its diversification
performance.

It should be noted that, in the employed bee phase, a
local search is applied to each food source, whereas in the
onlooker bee phase better food sources will more likely be
updated. Therefore, in ABC algorithm, the employed bee
phase is responsible for diversification whereas the onlooker
bee phase is responsible of intensification. The flow chart of
the ABC is given in Figure 1.

3. Proposed Framework

In this section, the proposed algorithm is described in detail.
First, a solution acceptance rule is presented. Second, a novel
probabilisticmultisearchmechanism is proposed. Finally, the
complete ABC-SA mechanism is given.

3.1. Solution Acceptance Rule. In order to strengthen the
diversification ability of ABC-SA mechanism, a solution
acceptance rule is proposed. Instead of greedy selection
in both employed and onlooker bee phases, an acceptance
probability is given to worse solutions. The main idea behind
this acceptance probability is not to restrict the search moves
to only better solutions. By accepting a worse solution, the
procedure may escape from a local optimum and explore
the search space effectively. In ABC-SA algorithm, if a worse
solution is generated, it is accepted if the following condition
holds:

𝑟 < 𝑝
𝑎

(5)

𝑝
𝑎

= 𝑝
𝑜

1 + cos ((iter/Max.iter) 𝜋)

2
, (6)

where 𝑟 is a random real number within [0, 1], 𝑝
𝑎
is the

acceptance probability, 𝑝
𝑜
denotes the initial probability, and

iter and Max.iter represent the current iteration number and
the maximum iteration number, respectively. According to
(6), the acceptance probability 𝑝

𝑎
is nonlinearly decreased

from 𝑝
0
to zero during the search process. As can be seen

from (6), 𝑝
𝑎

= 0 when iter = Max.iter and the range of 𝑝
𝑎
is

[0, 𝑝
0
]. A typical𝑝

𝑎
graph is given in Figure 2 andAlgorithm 1

presents the implementation of the solution acceptance rule.
At this point, it is important to note that the trial counter is
incremented, whether a worse candidate solution is accepted
or not.

3.2. Probabilistic Multisearch Strategy. In standard ABC, a
candidate solution is generated using the information of
the parent food source with the guidance of the term

4 Computational Intelligence and Neuroscience

Set control
parameters and
initialize food

source positions

Evaluate initial
population

All
employed bees

distributed?

Yes

Yes

Yes

Yes

No
No

No

No
Select a new food

source and
produce a new

food source

Memorize best
solution and best

food source
position

All
onlooker bees
distributed?

Select a new food
source according

to probability
values

Scout
bee phase

Any abandoned
food source?

Produce new food
source and

evaluate

Calculate
probability values

Produce new food
source randomly

and evaluate

Termination
criteria met?

Stop and print best
solution and best food

source position

Update food
source position if

necessary

Evaluate the new
food source and

update food
source position if

necessary

Employed
bee phase

Onlooker
bee phase

Figure 1: Flowchart of ABC.

𝜙
𝑖,𝑗

(𝑥
𝑖,𝑗

− 𝑥
𝑟1,𝑗

) in (3). However, there is no guarantee that a
better individual influences the candidate solution; therefore,
it is possible to have a poor convergence speed and intensi-
fication performance. In fact, studying search equations is a
trending topic to improve the ABC’s performance. Recently,
numerous search equations have been proposed, such as [13–
16, 19, 20, 37, 38]. It is well known that the balance between

diversification and intensification is the most critical part of
any metaheuristic algorithm.

In ABC-SA approach, instead of employing a single
search mechanism throughout the search process, a prob-
abilistic multisearch mechanism with three different search
rules is used. A probabilistic selection is employed using
predefined probability parameters to select the search rule

Computational Intelligence and Neuroscience 5

Iteration

Acceptance probability

0 Iter.Max
0

p0

p
a

Figure 2: Acceptance probability curve.

Input: 𝑥
𝑖
, V
𝑖
, trial
𝑖
, 𝑝
0

Output: 𝑥
𝑖

(1) Evaluate 𝑥
𝑖
and V

𝑖
. //Set 𝑓(V

𝑖
) and 𝑓(𝑥

𝑖
)

(2) if 𝑓(V
𝑖
) ≤ 𝑓(𝑥

𝑖
) then

(3) set 𝑥
𝑖
= V
𝑖

(4) trial
𝑖
= 0

(5) else
(6) Calculate 𝑝

𝑎
. //Use (6).

(7) Produce a random number 𝑟 within the range [0, 1]
(8) if 𝑟 < 𝑝

𝑎
then

(9) set𝑥
𝑖
= V
𝑖

(10) trial
𝑖
= trial

𝑖
+ 1

(11) else
(12) trial

𝑖
= trial

𝑖
+ 1

(13) end if
(14) end if

Algorithm 1: Solution acceptance rule.

within both employed and onlooker bee phases. The three
search rules which were proposed by [7, 13, 14], respectively,
are presented as follows:

V
𝑖,𝑗

= 𝑥
𝑖,𝑗

+ 𝜙 (𝑥
𝑖,𝑗

− 𝑥
𝑟1,𝑗

) , (7)

V
𝑖,𝑗

= 𝑥
𝑖,𝑗

+ 𝜙 (𝑥
𝑖,𝑗

− 𝑥
𝑟1,𝑗

) + 𝜓 (𝑥
𝑔𝑏𝑒𝑠𝑡,𝑗

− 𝑥
𝑖,𝑗

) , (8)

V
𝑖,𝑗

= 𝑥
𝑙𝑏𝑒𝑠𝑡,𝑗

+ 𝜙 (𝑥
𝑖,𝑗

− 𝑥
𝑟1,𝑗

) , (9)

where 𝑖 is a food source, 𝑗 is a randomly selected index for
all 𝑖 = 1, 2, . . . , 𝑆𝑁, and 𝑗 ∈ {1, 2, . . . , 𝐷}, respectively. 𝑟1 is a
randomly chosen food source where 𝑟1 ̸= 𝑖. 𝑔𝑏𝑒𝑠𝑡 stands for
the global best solution, whereas 𝑙𝑏𝑒𝑠𝑡 is the best solution in
the current population. 𝜙 represents a real random number
within the range of [−1, 1] [7]. Finally, 𝜓 is a real random
numberwithin the range of [0, 𝐶]where𝐶 is a predetermined
number [13].

Equation (7) is the original search rule, which was
discussed in previous sections. Equation (8) is presented to
improve the intensification capability of ABC. Equation (8)
uses the information provided by the global best solution
which is similar to PSO. In (9), 𝑙𝑏𝑒𝑠𝑡 guides the searchwith the
random effect of the term 𝜙(𝑥

𝑖,𝑗
− 𝑥
𝑟1,𝑗

). Equation (7) has an
explorative character, whereas (9) favors intensification. On
the other hand, (8) explores the search space using the second
term and exploits effectively by the third term. Therefore,
(8) balances diversification and intensification performance.
In summary, the proposed ABC-SA uses three different
search rules to achieve a trade-off between diversification and
intensification. In ABC-SA, search probabilities 𝑝

𝑠1
, 𝑝
𝑠2
, and

𝑝
𝑠3

are introduced such that ∑
𝑘

𝑝
𝑠𝑘

= 1 and 𝑘 = 1, 2, 3

to select a search rule to be used in the employed and the
onlooker bee phases. A roulette wheel method is employed
with three cumulative ranges 0 ≤ 𝑝

𝑠1
≤ 𝑃
𝑠1
, 0 ≤ 𝑝

𝑠2
<

𝑃
𝑠2

− 𝑃
𝑠1
, and 0 ≤ 𝑝

𝑠3
≤ 𝑃
𝑠3

− 𝑃
𝑠2

assigned to (7), (8),
and (9), respectively, where 𝑃

𝑠3
= 1. Algorithm 2 shows the

mechanism of probabilistic multisearch.

3.3. Proposed Approach. Algorithm 3 summarizes the ABC-
SA framework. The novel parts of the ABC-SA mechanism
are the probabilistic multisearch (Lines 9 and 19) and the
solution acceptance rule (Lines 10 and 20) sections.

4. Computational Results

4.1. Test Instances. In literature, many test functions with
different characters were used to test algorithms [11, 13,
15, 17, 19–21, 34, 37–40]. Unimodal functions have one
local minimum as the global optimum. These functions are
generally used to test the intensification ability of algorithms.
Multimodal functions have one or more local optimums
which may be the global optimum.Therefore, diversification
behavior of algorithms is analyzed on multimodal instances.
Separable functions can be written as sum of 𝑛 functions
with one variable, whereas nonseparable functions can not
be reformulated as subfunctions. In this study, to analyze the
performance of the proposed ABC-SA algorithm, 13 scalable
benchmark functions with dimensions𝐷 = 50, 𝐷 = 100, and
𝐷 = 200 are used and listed in Table 1. They are Rosenbrock,
Ackley, Rastrigin, Weierstrass, Schwefel 2.26, Shifted Sphere,
Shifted Schwefel 1.2, Shifted Rosenbrock, Shifted Rastrigin,
Step, Penalized 2, and Alpine. In Table 1, function label,
name, formulation, type (UN: unimodal and nonseparable,
MS: multimodal and separable, and MN: multimodal and
nonseparable), range, and optimal values (𝑓(𝑥

∗

)) are given.

4.2. Parameters Settings. Parameter settings may have a
great influence on the computational results. The ABC-SA
mechanism has seven control parameters such as maximum
iteration number (Max.iter), limit, population size (𝑆𝑁), 𝑝

𝑠1
,

𝑝
𝑠2
,𝜓, and 𝑝

0
. Maximum iteration number is the termination

condition, and 𝑝
0
is the initial acceptance probability. First,

Max.iter is set to 4,000, limit = 0.2 × 𝐷 × 𝑆𝑁, where 𝐷 is the
dimension of the problem [21], 𝑆𝑁 is taken to be 40 for 50𝐷

and 100𝐷 problems and 50 for 200𝐷 problems [40], and 𝜓

is set to be a random real number within (0, 1.5) [14]. Then,

6 Computational Intelligence and Neuroscience

Input: 𝑥
𝑖
, 𝑃
𝑠1
, 𝑃
𝑠2
, lbest, gbest

Output: V
𝑖

(1) Produce a random number 𝑟 within the range [0, 1]
(2) if 𝑟 =< 𝑃

𝑠1
then // 𝑃

𝑠1
and 𝑃

𝑠2
are cumulative probabilities

(3) Produce a new neighbor solution V
𝑖
by (7)

(4) elseif 𝑟 =< 𝑃
𝑠2
then

(5) Produce a new neighbor solution V
𝑖
by (8)

(6) Else // 𝑟 is in the range of (𝑃
𝑠2
, 1)

(7) Produce a new neighbor solution V
𝑖
by (9)

(8) end if

Algorithm 2: Probabilistic multisearch.

(1) set control parameters: SN, Max.iter, limit, 𝑃
𝑠1
, 𝑃
𝑠2
, 𝜓, 𝑝
0
.

(2) Generate initial population //Use (1).
(3) Evaluate initial population //Calculate 𝑓(𝑥), record local and global best.
(4) set iter = 1
(5) for each food source 𝑖 do, Set trial

𝑖
= 0 end for

(6) do while iter ≤ Max.iter
(7) //∗∗∗∗EMPLOYED BEE PHASE∗∗∗∗
(8) for each food source 𝑖 do
(9) Generate a neighbor solution V

𝑖
from 𝑥

𝑖
by Algorithm 2.

(10) Make a selection between 𝑥
𝑖
and V

𝑖
by Algorithm 1.

(11) end for
(12) //∗∗∗∗ONLOOKER BEE PHASE∗∗∗∗
(13) Calculate cumulative probability values 𝑃

𝑖
//Use (3).

(14) set 𝑡 = 0, 𝑖 = 1

(15) while 𝑡 < PopSize do
(16) Produce random number 𝑟 within the range [0, 1]
(17) if 𝑟 ≤ 𝑃

𝑖
then

(18) set 𝑡 = 𝑡 + 1

(19) Generate a neighbor solution V
𝑖
from 𝑥

𝑖
by Algorithm 2.

(20) Make a selection between 𝑥
𝑖
and V

𝑖
by Algorithm 1.

(21) end if
(22) set 𝑖 = 𝑖 + 1

(23) if 𝑖 > PopSize then set 𝑖 = 1 end if
(24) end while
(25) //∗∗∗∗SCOUT BEE PHASE∗∗∗∗
(26) set 𝑖 = index of maximum(trial) //Find the index that has the maximum trial value.
(27) if limit =< trial

𝑖
then

(28) Replace 𝑥
𝑖
with a new randomly generated solution //Use (1)

(29) set trial
𝑖
= 0

(30) end if
(31) Save necessary information //Record local and global best.
(32) set iter = iter + 1
(33) end while

Algorithm 3: ABC-SA framework.

preliminary experiments were conducted with appropriate
combinations of the following parameter values to determine
the best settings:

𝑝
0
= 0.25, 0.20, 0.15, 0.10, and 0.05,

𝑝
𝑠1
= 0.2, 0.4, and 0.6,

𝑝
𝑠2
= 0.2, 0.4, and 0.6,

𝑝
𝑠3
= 0.2, 0.4, and 0.6.

From the results of the pilot studies, 𝑝
0

= 0.10, 𝑝
𝑠1

= 0.20,
𝑝
𝑠2

= 0.60, and 𝑝
𝑠3

= 0.20 settings achieved the best results.
Therefore, these parameter settings are used for further
experiments.

4.3. Comparison with ABC Variants. In this section, afore-
mentioned ABC-SA is implemented and evaluated by bench-
marking with other well-known ABC variants including

Computational Intelligence and Neuroscience 7

Ta
bl
e
1:
Te
st
fu
nc
tio

ns
us
ed

in
ex
pe
rim

en
ts.

La
be
l

N
am

e
Fo

rm
ul
at
io
n

Ty
pe

Ra
ng
e

𝑓
(𝑥
∗

)

F1
Ro

se
nb

ro
ck

𝑓
1

(
𝑋

)
=

𝐷
−
1

∑ 𝑖=
1

[
1
0
0

(
𝑥
𝑖
+
1

−
𝑥
2 𝑖
)
2

+
(𝑥
𝑖
−

1
)2

]
U
N

[−
2.
04

8,
2.
04

8]
𝐷

0

F2
Ac

kl
ey

𝑓
2

(
𝑋

)
=

−
2
0
ex
p

(
−

0
.2

√
1 𝐷

𝐷 ∑ 𝑖=
1

𝑥
2 𝑖
)

−
ex
p

(
1 𝐷

𝐷 ∑ 𝑖=
1

co
s(

2
𝜋

𝑥
𝑖
))

+
2
0

+
𝑒

M
S

[−
32
.76

8,
32
.76

8]
𝐷

0

F3
Ra

st
rig

in
𝑓
3

(
𝑋

)
=

𝐷 ∑ 𝑖=
1

[
𝑥
2 𝑖

−
1
0
co
s(

2
𝜋

𝑥
𝑖
)

+
1
0
]

M
S

[−
5.
12
,5
.12

]𝐷
0

F4
G
rie

w
an
k

𝑓
4

(
𝑋

)
=

1

4
0
0
0

𝐷 ∑ 𝑖=
1

𝑥
2 𝑖

−

𝐷 ∏ 𝑖=
1

co
s(

𝑥
𝑖

√
𝑖
)

+
1

M
N

[−
60

0,
60

0]
𝐷

0

F5
W
ei
er
str

as
s

𝑓
5

(
𝑋

)
=

𝐷 ∑ 𝑖=
1

(

𝑘
m
ax

∑ 𝑘=
0

[
𝑎
𝑘

co
s(

2
𝜋

𝑏
𝑘

(𝑥
𝑖
+

0
.5

))
]
)

−
𝐷

𝑘
m
ax

∑ 𝑘=
0

[
𝑎
𝑘

co
s(

2
𝜋

𝑏
𝑘

0
.5

)
]

,
𝑎

=
0
.5

,
𝑏

=
3
,

𝑘
m
ax

=
2
0

M
S

[−
0.
5,
0.
5]
𝐷

0

F6
Sc
hw

ef
el
2.
26

𝑓
6

(
𝑋

)
=

4
1
8
.9

8
2
9

×
𝐷

−

𝐷 ∑ 𝑖=
1

−
𝑥
𝑖
sin

(
√

 𝑥
𝑖

)
M
S

[−
50
0,
50
0]
𝐷

−
4
1
8
.9

8
×

𝐷

F7
Sh

ift
ed

Sp
he
re

𝑓
7

(
𝑋

)
=

𝐷 ∑ 𝑖=
1

𝑧
2 𝑖

−
𝑓
bi
as

,
𝑧

=
𝑥

−
𝑜
,

𝑓
bi
as

=
−

4
5
0

U
S

[−
10
0,
10
0]
𝐷

𝑓
bi
as

F8
Sh

ift
ed

Sc
hw

ef
el
1.2

𝑓
8

(
𝑋

)
=

𝐷 ∑ 𝑖=
1

(

𝑖

∑ 𝑗=
1

𝑧
𝑗
)

+
𝑓
bi
as

,
𝑧

=
𝑥

−
𝑜
,

𝑓
bi
as

=
−

4
5
0

U
N

[−
10
0,
10
0]
𝐷

𝑓
bi
as

F9
Sh

ift
ed

Ro
se
nb

ro
ck

𝑓
9

(
𝑋

)
=

𝐷
−
1

∑ 𝑖=
1

(
1
0
0

(
𝑧
2 𝑖

−
𝑧
𝑖
+
1
)
2

+
(𝑧
𝑖
−

1
)2

)
+

𝑓
bi
as

,
𝑧

=
𝑥

−
𝑜

+
1
,

𝑓
bi
as

=
3
9
0

M
N

[−
10
0,
10
0]
𝐷

𝑓
bi
as

F1
0

Sh
ift
ed

Ra
st
rig

in
𝑓
1
0

(
𝑋

)
=

𝐷 ∑ 𝑖=
1

[
𝑧
2 𝑖

−
1
0
co
s(

2
𝜋

𝑧
𝑖
)

+
1
0
]

+
𝑓
bi
as

,
𝑧

=
𝑥

−
𝑜
,

𝑓
bi
as

=
−

3
3
0

M
S

[−
5,
5]
𝐷

𝑓
bi
as

F1
1

St
ep

𝑓
1
1

(
𝑋

)
=

𝐷 ∑ 𝑖=
1

(
⌊
𝑥
𝑖
+

0
.5

⌋
2

)
U
S

[−
10
0,
10
0]
𝐷

0

F1
2

Pe
na
liz
ed

2
𝑓
1
2

(
𝑋

)
=

1 1
0

{
sin
2

(𝜋
𝑥
1
)

+

𝐷
−
1

∑ 𝑖=
1

(𝑥
𝑖
−

1
)2

[
1

+
sin
2

(3
𝜋

𝑥
𝑖
+
1
)]

+
(𝑥
𝑛

−
1
)2

}

[1
+
sin
2

(2
𝜋

𝑥
𝑖
+
1
)]

+

𝐷 ∑ 𝑖=
1

𝑢
(𝑥
𝑖
,
5
,
1
0
0
,
4
)

M
N

[−
50
,5
0]
𝐷

0

F1
3

A
lp
in
e

𝑓
1
3

(
𝑋

)
=

𝐷 ∑ 𝑖=
1

 𝑥
𝑖
⋅
sin

(𝑥
𝑖
)

+
0
.1

⋅
𝑥
𝑖

M
S

[−
10
,1
0]
𝐷

0

8 Computational Intelligence and Neuroscience

Table 2: Comparisons of ABC-SA and ABC variants on 50𝐷 problems.

Func. ABC-SA ABC GABC IABC
Mean Std. Dev. Mean Std. Dev. Sign Mean Std. Dev. Sign Mean Std. Dev. Sign

F1 3.10𝐸 + 01 1.18𝐸 + 01 3.84𝐸 + 01 1.07𝐸 + 01 = 3.32𝐸 + 01 6.71𝐸 + 00 = 3.25𝐸 + 01 1.75𝐸 + 01 =

F2 5.30𝐸 − 14 4.10𝐸 − 15 1.17𝐸 − 13 1.62𝐸 − 14 + 7.96𝐸 − 14 1.18𝐸 − 15 + 7.44𝐸 − 14 9.63𝐸 − 15 +

F3 0.00𝐸 + 00 0.00𝐸 + 00 2.02𝐸 − 11 7.11𝐸 − 12 + 8.53𝐸 − 14 4.16𝐸 − 14 + 8.53𝐸 − 14 3.58𝐸 − 14 +

F4 1.11𝐸 − 16 2.17𝐸 − 16 4.78𝐸 − 12 2.61𝐸 − 13 + 6.11𝐸 − 16 3.62𝐸 − 16 + 1.26𝐸 − 13 6.80𝐸 − 14 +

F5 0.00𝐸 + 00 0.00𝐸 + 00 3.84𝐸 − 14 1.90𝐸 − 14 + 8.53𝐸 − 15 9.94𝐸 − 15 + 1.71𝐸 − 14 8.99𝐸 − 15 +

F6 −2.09𝐸 + 04 2.51𝐸 − 15 −2.09𝐸 + 04 6.09𝐸 + 00 + −2.09𝐸 + 04 4.05𝐸 − 11 = −2.09𝐸 + 04 5.57𝐸 − 14 =

F7 −4.50𝐸 + 02 0.00𝐸 + 00 −4.50𝐸 + 02 6.36𝐸 − 14 = −4.50𝐸 + 02 2.84𝐸 − 14 = −4.50𝐸 + 02 4.92𝐸 − 14 =

F8 1.92𝐸 + 04 5.19𝐸 + 03 3.22𝐸 + 04 1.79𝐸 + 03 + 3.61𝐸 + 04 5.89𝐸 + 03 + 2.92𝐸 + 04 5.21𝐸 + 03 +

F9 3.98𝐸 + 02 3.11𝐸 + 00 5.03𝐸 + 02 3.96𝐸 + 00 + 4.13𝐸 + 02 2.45𝐸 + 01 + 4.23𝐸 + 02 2.48𝐸 + 01 +

F10 −3.30𝐸 + 02 0.00𝐸 + 00 −3.30𝐸 + 02 3.14𝐸 − 14 = −3.30𝐸 + 02 0.00𝐸 + 00 = −3.30𝐸 + 02 1.02𝐸 − 14 =

F11 0.00𝐸 + 00 0.00𝐸 + 00 0.00𝐸 + 00 0.00𝐸 + 00 = 0.00𝐸 + 00 0.00𝐸 + 00 = 0.00𝐸 + 00 0.00𝐸 + 00 =

F12 4.69𝐸 − 15 1.90𝐸 − 16 5.90𝐸 − 14 9.82𝐸 − 15 + 1.93𝐸 − 14 4.77𝐸 − 15 + 8.77𝐸 − 15 7.43𝐸 − 15 +

F13 3.69𝐸 − 24 9.34𝐸 − 26 2.95𝐸 − 23 3.01𝐸 − 23 + 7.71𝐸 − 24 3.90𝐸 − 25 + 6.53𝐸 − 24 1.66𝐸 − 25 +

Table 3: Comparisons of ABC-SA and ABC variants on 100𝐷 problems.

Func. ABC-SA ABC GABC IABC
Mean Std. Dev. Mean Std. Dev. Sign Mean Std. Dev. Sign Mean Std. Dev. Sign

F1 7.65𝐸 + 01 4.76𝐸 + 01 1.26𝐸 + 02 3.55𝐸 + 01 + 1.35𝐸 + 02 2.95𝐸 + 01 + 1.34𝐸 + 02 2.27𝐸 + 01 +

F2 6.16𝐸 − 13 9.63𝐸 − 14 6.97𝐸 − 07 3.25𝐸 − 07 + 4.56𝐸 − 12 1.18𝐸 − 12 + 7.06𝐸 − 11 1.31𝐸 − 14 +

F3 2.27𝐸 − 13 5.41𝐸 − 13 3.97𝐸 − 01 5.81𝐸 − 01 + 2.37𝐸 − 11 5.97𝐸 − 11 + 1.21𝐸 − 12 6.69𝐸 − 13 +

F4 1.58𝐸 − 14 2.64𝐸 − 14 1.30𝐸 − 04 7.13𝐸 − 04 = 7.73𝐸 − 10 3.90𝐸 − 09 = 3.54𝐸 − 12 9.27𝐸 − 12 +

F5 1.48𝐸 − 13 4.40𝐸 − 14 1.64𝐸 − 04 4.98𝐸 − 05 + 7.62𝐸 − 13 3.24𝐸 − 13 + 1.20𝐸 − 10 1.25𝐸 − 11 +

F6 −4.19𝐸 + 04 6.84𝐸 + 01 −4.06𝐸 + 04 2.61𝐸 + 02 + −4.16𝐸 + 04 1.53𝐸 + 02 + −4.19𝐸 + 04 6.24𝐸 + 01 =

F7 −4.50𝐸 + 02 1.90𝐸 − 14 −4.50𝐸 + 02 1.81𝐸 − 13 = −4.50𝐸 + 02 8.53𝐸 − 14 = −4.50𝐸 + 02 4.90𝐸 − 14 =

F8 8.85𝐸 + 04 1.00𝐸 + 03 1.61𝐸 + 05 2.43𝐸 + 04 + 1.60𝐸 + 05 1.15𝐸 + 04 + 1.95𝐸 + 05 7.92𝐸 + 03 +

F9 3.89𝐸 + 02 9.55𝐸 + 00 3.95𝐸 + 02 1.04𝐸 + 01 + 4.14𝐸 + 02 4.12𝐸 + 01 + 4.10𝐸 + 02 1.76𝐸 + 01 +

F10 −3.30𝐸 + 02 0.00𝐸 + 00 −3.22𝐸 + 02 9.41𝐸 − 04 + −3.30𝐸 + 02 7.20𝐸 − 07 = −3.30𝐸 + 02 5.68𝐸 − 14 =

F11 1.17𝐸 + 01 5.24𝐸 + 00 4.32𝐸 + 01 6.43𝐸 + 00 + 9.10𝐸 + 01 6.92𝐸 + 00 + 2.08𝐸 + 01 9.52𝐸 + 00 +

F12 9.12𝐸 − 13 1.04𝐸 − 15 5.54𝐸 − 11 7.27𝐸 − 13 + 8.71𝐸 − 13 6.90𝐸 − 14 − 1.15𝐸 − 12 3.91𝐸 − 13 +

F13 1.52𝐸 − 20 5.48𝐸 − 19 8.14𝐸 − 19 9.17𝐸 − 20 + 7.03𝐸 − 20 4.45𝐸 − 19 = 8.44𝐸 − 20 1.06𝐸 − 19 =

the original ABC [7], GABC [14], and IABC [13] on problems
F1–F13.

The parameters of test algorithms are set to their original
values given in their corresponding papers, except for the
maximum number of function evaluations, population size,
and limit, which are set to the same values for all ABC
variants. ABC-SA, ABC, and GABC implement random
initialization mechanisms whereas IABC employs a chaotic
initialization as described in [13]. All algorithms have been
simulated in MATLAB environment and executed on the
same computer with Intel Xeon CPU (2.67GHz) and 16GB
of memory.

The computational results are presented in Table 2 for
50𝐷 problems, Table 3 for 100𝐷 problems, and Table 4 for
200𝐷 problems. In Tables 2–4, results are given in terms of
mean and standard deviation of the objective values due to
the repetitive runs for the global best solutions. All algorithms
were run 30 times with random seeds and the stopping

criteria set to 4,000 iteration, whichmeans that 320,000 func-
tions evaluations for 50𝐷 and 100𝐷 problems and 400,000
function evaluations for 200𝐷 problems approximately. For
a precise and pairwise comparison, statistical significances
of the differences between the means of two algorithms are
analyzed using 𝑡-tests where significance level is set to 0.05. In
Tables 2–4, “+” in the columns next to competing algorithms
shows that ABC-SA outperforms the competitor algorithm,
“=” indicates that the difference between the ABC-SA and the
compared algorithm is not statistically significant, and “−”
depicts that the competitor algorithm is better than ABC-SA
at a level of 0.05 significance.

Tables 2–4 show that, according to pairwise 𝑡 tests, ABC-
SA obtains statistically better results on 25, 28, and 28 cases
out of 39 comparisons for each of the 50𝐷, 100𝐷, and 200𝐷

problem types, respectively. Specifically, ABC-SA is inferior
to IABC on F6 and F9 with 200𝐷 and GABC on F12 with
100𝐷. There is no significant difference on the results that

Computational Intelligence and Neuroscience 9

Table 4: Comparisons of ABC-SA and ABC variants on 200𝐷 problems.

Func. ABC-SA ABC GABC IABC
Mean Std. Dev. Mean Std. Dev. Sign Mean Std. Dev. Sign Mean Std. Dev. Sign

F1 4.06𝐸 + 02 3.34𝐸 + 01 4.32𝐸 + 02 4.21𝐸 + 01 = 4.47𝐸 + 02 5.89𝐸 + 01 + 4.58𝐸 + 02 6.77𝐸 + 01 +

F2 1.85𝐸 − 05 3.30𝐸 − 05 4.44𝐸 − 02 2.13𝐸 − 02 + 6.68𝐸 − 05 1.65𝐸 − 05 + 1.47𝐸 − 04 3.69𝐸 − 05 +

F3 8.27𝐸 − 06 2.53𝐸 − 05 3.17𝐸 + 01 5.89𝐸 + 00 + 6.51𝐸 + 00 1.74𝐸 + 00 + 4.02𝐸 + 00 1.03𝐸 + 00 +

F4 6.05𝐸 − 10 2.26𝐸 − 09 5.75𝐸 − 04 2.58𝐸 − 03 = 1.79𝐸 − 08 5.29𝐸 − 08 = 6.05𝐸 − 08 4.68𝐸 − 08 +

F5 6.42𝐸 − 03 4.93𝐸 − 04 1.24𝐸 − 01 1.35𝐸 − 02 + 9.76𝐸 − 03 1.21𝐸 − 03 + 1.83𝐸 − 02 1.40𝐸 − 03 +

F6 −8.19𝐸 + 04 1.00𝐸 + 02 −7.63𝐸 + 04 7.61𝐸 + 02 + −7.89𝐸 + 04 4.20𝐸 + 02 + −8.37𝐸 + 04 3.68𝐸 + 02 −

F7 8.56𝐸 + 05 1.81𝐸 + 04 8.60𝐸 + 05 1.46𝐸 + 04 = 8.73𝐸 + 05 2.49𝐸 + 04 + 8.62𝐸 + 05 1.75𝐸 + 04 =

F8 2.89𝐸 + 06 9.10𝐸 + 04 2.91𝐸 + 06 2.07𝐸 + 05 = 2.93𝐸 + 06 3.13𝐸 + 05 = 2.98𝐸 + 06 3.90𝐸 + 05 =

F9 7.63𝐸 + 11 4.37𝐸 + 08 8.02𝐸 + 11 5.05𝐸 + 09 + 7.87𝐸 + 11 4.72𝐸 + 08 + 7.61𝐸 + 11 4.93𝐸 + 08 −

F10 3.74𝐸 + 03 4.19𝐸 + 01 3.78𝐸 + 03 5.94𝐸 + 01 + 3.76𝐸 + 03 5.55𝐸 + 01 + 3.76𝐸 + 03 4.60𝐸 + 01 =

F11 7.34𝐸 + 02 4.40𝐸 + 02 8.82𝐸 + 03 9.22𝐸 + 02 + 5.39𝐸 + 03 9.03𝐸 + 02 + 1.04𝐸 + 03 6.01𝐸 + 02 +

F12 3.79𝐸 − 11 4.90𝐸 − 13 1.91𝐸 − 09 9.41𝐸 − 14 + 4.88𝐸 − 11 2.25𝐸 − 12 + 6.22𝐸 − 11 3.89𝐸 − 12 +

F13 9.55𝐸 − 18 1.04𝐸 − 18 5.02𝐸 − 15 1.55𝐸 − 15 + 4.44𝐸 − 16 5.03𝐸 − 17 + 1.92𝐸 − 17 7.33𝐸 − 18 +

Table 5: The comparisons of ABC-SA and DE variants on 30𝐷 problems.

Func. Max.FE ABC-SA jDE JADE SaDE
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

F1 300,000 1.19E − 01 7.91E − 02 1.30𝐸 + 01 1.40𝐸 + 01 3.20𝐸 − 01 1.10𝐸 + 00 2.10𝐸 + 01 7.70𝐸 + 01

F2 50,000 3.01E − 09 7.44E − 10 2.37𝐸 − 04 7.10𝐸 − 05 3.35𝐸 − 09 2.84𝐸 − 09 3.81𝐸 − 06 8.26𝐸 − 07

F3 100,000 2.77E − 09 6.09E − 10 2.37𝐸 − 04 7.10𝐸 − 05 3.35𝐸 − 09 2.84𝐸 − 09 3.81𝐸 − 06 8.26𝐸 − 07

F4 50,000 7.23𝐸 − 09 4.11𝐸 − 09 7.29𝐸 − 06 1.05𝐸 − 05 1.57𝐸 − 08 1.09𝐸 − 07 2.52E − 09 1.24E − 09
F6 100,000 8.63E − 11 4.94E − 11 1.70𝐸 − 10 2.62𝐸 − 10 2.62𝐸 − 04 3.59𝐸 − 04 1.13𝐸 − 08 1.08𝐸 − 08

F11 10,000 4.41E + 00 3.90E + 00 6.13𝐸 + 02 1.72𝐸 + 02 5.62𝐸 + 00 1.87𝐸 + 00 5.07𝐸 + 01 1.34𝐸 + 01

F12 50,000 1.41E − 10 7.23E − 11 1.80𝐸 − 05 1.42𝐸 − 05 1.87𝐸 − 10 1.09𝐸 − 09 1.93𝐸 − 09 1.53𝐸 − 09

F13 300,000 4.99E − 11 2.49E − 10 6.08𝐸 − 10 8.36𝐸 − 10 2.78𝐸 − 05 8.43𝐸 − 06 2.94𝐸 − 06 3.47𝐸 − 06

are obtained by ABC and ABC-SA on F1 (50𝐷 and 100𝐷),
F4 (100𝐷 and 200𝐷), F7 (all dimensions), F8 200𝐷, F10
50𝐷, and F11 50𝐷. Moreover, on F1 50𝐷, F6 50𝐷, F4 (100𝐷

and 200𝐷), F7 (50𝐷 and 100𝐷), F8 200𝐷, F10 (50𝐷 and
100𝐷), F11 50𝐷, and F13 100𝐷, GABC and ABC-SA perform
statistically similar. Further, ABC-SA and IABC perform
equally well, namely, on F1 50𝐷, F6 (50𝐷 and 100𝐷), F7 (all
dimensions), F8 200𝐷, F10 (all dimensions), F11 50𝐷, and
F13 100𝐷. Standard deviation of the results also indicates that
ABC-SA has a stable performance. According to the results of
Tables 2–4, one can safely conclude that ABC-SA significantly
surpasses ABC, GABC, and IABC on 50𝐷, 100𝐷, and 200𝐷

problems.
To vividly describe the effectiveness of ABC-SA frame-

work, the convergence curves of some benchmark problems
are given in Figure 3. According to the figure, ABC-SA shows
better convergence behavior on the majority of test cases
when compared to ABC, GABC, and IABC.

Furthermore, mean acceptance rate curves for solution
acceptance rule in ABC-SA framework are given in Figure 4
and the acceptance rate is determined as follows:

acceptance rate

=
number of accepted worse solutions
total number of worse solutions

.

(10)

The curves in Figure 4 clearly coincide with the acceptance
probability curve given in Figure 2. Figure 4 also shows
the nonlinear decreasing of acceptance rate throughout the
search process.

4.4. Comparison with PSO and DE Variants. The perfor-
mance of ABC-SA is also tested against novel and powerful
variants of DE and PSO. The competitor algorithms are
self-adapting DE (jDE) [41], adaptive DE with optional
external archive (JADE) [42], self-adaptive DE (SaDE) [43],
comprehensive learning PSO (CLPSO) [44], self-organizing
hierarchical PSO with time-varying acceleration coefficients
(HPSO-TVAC) [45], and fully informed particle swarm
(FIPS) [46].The results of these algorithms are taken directly
from corresponding studies. The experimental results for
30𝐷 problems are shown in Tables 5 and 6 for DE and
PSO variants, respectively. Some of the benchmarks prob-
lems are not included in the comparisons, since results on
these problems were not reported in competitor studies.
The previous parameter setting for ABC-SA is used, but
this time maximum function evaluation number (Max.FE)
is employed as the stopping criteria. Since the results of
competitor algorithms are taken directly from corresponding
studies, statistical significance tests could not be applied.
Therefore, in this part of the analysis, mean and standard

10 Computational Intelligence and Neuroscience

0 1000 2000 3000 4000
2

4

6

8

10

Iteration
0 1000 2000 3000 4000

Iteration
0 1000 2000 3000 4000

Iteration

0 1000 2000 3000 4000
Iteration

0 1000 2000 3000 4000
Iteration

0 1000 2000 3000 4000
Iteration

0 1000 2000 3000 4000
Iteration

0 1000 2000 3000 4000
Iteration

0 1000 2000 3000 4000
Iteration

0 1000 2000 3000 4000
Iteration

0 1000 2000 3000 4000
Iteration

0 1000 2000 3000 4000
Iteration

0 1000 2000 3000 4000
Iteration

0 1000 2000 3000 4000
Iteration

0 1000 2000 3000 4000
Iteration

0 1000 2000 3000 4000
Iteration

0 1000 2000 3000 4000
Iteration

0 1000 2000 3000 4000
Iteration

lo
g f

(x
)

lo
g f

(x
)

lo
g f

(x
)

lo
g f

(x
)

lo
g f

(x
)

lo
g f

(x
)

lo
g f

(x
)

lo
g f

(x
)

lo
g f

(x
)

lo
g f

(x
)

lo
g f

(x
)

lo
g f

(x
)

lo
g f

(x
)

lo
g f

(x
)

lo
g f

(x
)

lo
g f

(x
)

lo
g f

(x
)

lo
g f

(x
)

F1 50D

4

6

8

10

12 F1 100D

6

8

10

12 F1 200D

−40

−20

0

20 F2 50D

−30

−20

−10

0

10 F2 100D

−15

−10

−5

0

5 F2 200D

−40

−20

0

20 F3 50D

−30

−20

−10

0

10 F3 100D

−20

−10

0

10 F3 200D

−40

−20

0

20 F4 50D

−40

−20

0

20 F4 100D

−20

−10

0

10 F4 200D

−40

−20

0

20 F5 50D

−30

−20

−10

0

10 F5 100D

−10

−5

0

5

10 F5 200D

8

8.5

9

9.5

10 F6 50D

8

9

10

11 F6 100D

8

9

10

11

12 F6 200D

ABC-SA
IABC

ABC
GABC

ABC-SA
IABC

ABC
GABC

ABC-SA
IABC

ABC
GABC

Figure 3: Convergence curves for ABC-SA and ABC variants.

Computational Intelligence and Neuroscience 11

Table 6: The comparisons of ABC-SA and PSO variants on 30𝐷 problems.

Func. Max.FE ABC-SA FIPS HPSO-TVAC CLPSO
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

F1 200,000 7.61E + 00 2.18E − 01 2.51𝐸 + 01 5.10𝐸 − 01 2.39𝐸 + 01 2.65𝐸 + 01 1.13𝐸 + 01 9.85𝐸 + 00

F2 200,000 4.01𝐸 − 13 1.05𝐸 − 13 2.33𝐸 − 07 7.19𝐸 − 08 7.29E − 14 3.00E − 14 3.66𝐸 − 07 7.57𝐸 − 08

F3 200,000 6.91E − 10 9.44E − 11 6.51𝐸 + 01 1.33𝐸 + 01 9.43𝐸 + 00 3.48𝐸 + 00 9.05𝐸 − 05 1.25𝐸 − 04

F4 200,000 8.89E − 12 6.56E − 13 9.01𝐸 − 12 1.84𝐸 − 11 9.75𝐸 − 03 8.33𝐸 − 03 9.02𝐸 − 09 8.57𝐸 − 09

F6 200,000 1.79E − 12 8.89E − 11 9.93𝐸 + 02 5.09𝐸 + 02 1.59𝐸 + 03 3.26𝐸 + 02 3.82𝐸 − 04 1.28𝐸 − 05

F11 200,000 0.00𝐸 + 00 0.00𝐸 + 00 0.00𝐸 + 00 0.00𝐸 + 00 0.00𝐸 + 00 0.00𝐸 + 00 0.00𝐸 + 00 0.00𝐸 + 00

F12 200,000 5.03𝐸 − 23 1.44𝐸 − 24 2.70𝐸 − 14 1.57𝐸 − 14 2.79E − 28 2.18E − 28 1.25𝐸 − 12 9.45𝐸 − 12

0 1000 2000 3000 4000
0

0.02

0.04

0.06

0.08

0.1

0.12

Iteration

M
ea

n
ac

ce
pt

an
ce

 ra
te

Mean acceptance rates on 50D
problems

0.1

0 1000 2000 3000 4000
Iteration

0

0.02

0.04

0.06

0.08

0.12

0.14

0.16
M

ea
n

ac
ce

pt
an

ce
 ra

te
Mean acceptance rates on 100D

problems

0.02

0.04

0.06

0.08

0.12

0.14

M
ea

n
ac

ce
pt

an
ce

 ra
te 0.1

0 1000 2000 3000 4000
Iteration

0

Mean acceptance rates on 200D
problems

Figure 4: Mean acceptance rates.

deviations of results are compared directly. In Tables 5 and
6, the winner algorithms are indicated in bold character
according to the mean results of 30 independent runs. As
can be seen from Tables 5 and 6, ABC-SA outperforms other
algorithms on all cases, except in the case of F2, F4, and
F12. SaDE performs better than the ABC-SA on F4 and
HPSO-TVACoutperformsABC-SA on only F2 and F12. ABC
achieves better results on the majority of the instances in
terms of robustness according to the standard deviations of
the results. These results also indicate the effectiveness of
ABC-SA when compared to other novel swarm based and
evolutionary algorithms.

5. Conclusion and Future Work

This paper presents a modified ABC algorithm, namely, the
ABC-SA, enhanced with a solution acceptance rule and a
probabilistic multisearch strategy. In ABC-SA, instead of a
greedy selection, a new acceptance rule is presented, where
a worse candidate solution has a probability to be accepted.
Furthermore, to balance the diversification and intensifica-
tion tendency of the algorithm, a probabilistic multisearch
mechanism is employed. In the probabilistic multisearch, a
search rule is selected among three alternatives according to

their predetermined probabilities.The proposed algorithm is
very effective as compared to other novel ABC variants and
state-of-the-art algorithms. Several experimental studies are
conducted and results show that ABC-SA outperforms all
other competitor algorithms on the majority of the test cases.
Future research will be along the line of implementing the
ABC-SA to solve complex engineering problems.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] D. E. Golberg, Genetic Algorithms in Search, Optimization, and
Machine Learning, vol. 1989, Addison-Wesley, 1989.

[2] J. H. Holland, Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Applications to Biology, Control, and
Artificial Intelligence, MIT Press, 1992.

[3] P. Moscato, “On evolution, search, optimization, genetic algo-
rithms and martial arts: towards memetic algorithms,” C3P
Report 826, Caltech Concurrent Computation Program, 1989.

12 Computational Intelligence and Neuroscience

[4] R. Storn and K. Price, “Differential evolution—a simple and
efficient heuristic for global optimization over continuous
spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341–
359, 1997.

[5] A. Colorni, M. Dorigo, and V. Maniezzo, “Distributed opti-
mization by ant colonies,” in Proceedings of the 1st European
Conference on Artificial Life, vol. 142, pp. 134–142, Paris, France,
1991.

[6] R. C. Eberhart and J. Kennedy, “New optimizer using particle
swarm theory,” in Proceedings of the 6th International Sympo-
sium on Micro Machine and Human Science, vol. 1, pp. 39–43,
New York, NY, USA, October 1995.

[7] D. Karaboga and B. Basturk, “A powerful and efficient algo-
rithm for numerical function optimization: artificial bee colony
(ABC) algorithm,” Journal of Global Optimization, vol. 39, no. 3,
pp. 459–471, 2007.

[8] X.-S. Yang and S. Deb, “Engineering optimisation by cuckoo
search,” International Journal of Mathematical Modelling and
Numerical Optimisation, vol. 1, no. 4, pp. 330–343, 2010.

[9] I. Fister Jr., X.-S. Yang, and J. Brest, “A comprehensive review of
firefly algorithms,” Swarm and Evolutionary Computation, vol.
13, pp. 34–46, 2013.

[10] D. Karaboga, B. Gorkemli, C. Ozturk, and N. Karaboga, “A
comprehensive survey: artificial bee colony (ABC) algorithm
and applications,”Artificial Intelligence Review, vol. 42, no. 1, pp.
21–57, 2014.

[11] B. Alatas, “Chaotic bee colony algorithms for global numerical
optimization,” Expert Systems with Applications, vol. 37, no. 8,
pp. 5682–5687, 2010.

[12] A. Banharnsakun, B. Sirinaovakul, and T. Achalakul, “Job shop
scheduling with the best-so-far ABC,” Engineering Applications
of Artificial Intelligence, vol. 25, no. 3, pp. 583–593, 2012.

[13] W. Gao and S. Liu, “Improved artificial bee colony algorithm for
global optimization,” Information Processing Letters, vol. 111, no.
17, pp. 871–882, 2011.

[14] G. Zhu and S. Kwong, “Gbest-guided artificial bee colony
algorithm for numerical function optimization,” Applied Math-
ematics and Computation, vol. 217, no. 7, pp. 3166–3173, 2010.

[15] W. Gao, S. Liu, and L. Huang, “A global best artificial bee colony
algorithm for global optimization,” Journal of Computational
and Applied Mathematics, vol. 236, no. 11, pp. 2741–2753, 2012.

[16] F. Kang, J. Li, and Z.Ma, “Rosenbrock artificial bee colony algo-
rithm for accurate global optimization of numerical functions,”
Information Sciences, vol. 181, no. 16, pp. 3508–3531, 2011.

[17] B. Akay andD. Karaboga, “Amodified artificial bee colony algo-
rithm for real-parameter optimization,” Information Sciences,
vol. 192, no. 1, pp. 120–142, 2012.

[18] T. Liao, D. Aydin, and T. Stützle, “Artificial bee colonies for
continuous optimization: experimental analysis and improve-
ments,” Swarm Intelligence, vol. 7, no. 4, pp. 327–356, 2013.

[19] W.-F. Gao, S.-Y. Liu, and L.-L. Huang, “Enhancing artificial
bee colony algorithm using more information-based search
equations,” Information Sciences, vol. 270, no. 1, pp. 112–133,
2014.

[20] J. Qiu, J. Wang, D. Yang, and J. Xie, “An artificial bee colony
algorithm with modified search strategies for global numerical
optimization,” Journal of Theoretical & Applied Information
Technology, vol. 48, no. 1, pp. 293–302, 2013.

[21] A. Banitalebi,M. I. A. Aziz, A. Bahar, and Z. A. Aziz, “Enhanced
compact artificial bee colony,” Information Sciences, vol. 298, pp.
491–511, 2015.

[22] H. Wang, Z. Wu, S. Rahnamayan, H. Sun, Y. Liu, and J.-S.
Pan, “Multi-strategy ensemble artificial bee colony algorithm,”
Information Sciences, vol. 279, pp. 587–603, 2014.

[23] W. Gao, F. T. Chan, L. Huang, and S. Liu, “Bare bones artificial
bee colony algorithm with parameter adaptation and fitness-
based neighborhood,” Information Sciences, vol. 316, pp. 180–
200, 2015.

[24] L. Ma, K. Hu, Y. Zhu, and H. Chen, “A hybrid artificial bee
colony optimizer by combining with life-cycle, Powell’s search
and crossover,”AppliedMathematics and Computation, vol. 252,
pp. 133–154, 2015.

[25] Q.-K. Pan, M. F. Tasgetiren, P. N. Suganthan, and T. J. Chua,
“A discrete artificial bee colony algorithm for the lot-streaming
flow shop scheduling problem,” Information Sciences, vol. 181,
no. 12, pp. 2455–2468, 2011.

[26] J.-Q. Li, Q.-K. Pan, and K.-Z. Gao, “Pareto-based discrete artifi-
cial bee colony algorithm for multi-objective flexible job shop
scheduling problems,” The International Journal of Advanced
Manufacturing Technology, vol. 55, no. 9–12, pp. 1159–1169, 2011.

[27] W. Y. Szeto, Y. Wu, and S. C. Ho, “An artificial bee colony algo-
rithm for the capacitated vehicle routing problem,” European
Journal of Operational Research, vol. 215, no. 1, pp. 126–135, 2011.

[28] A. Yurtkuran and E. Emel, “A modified artificial bee colony
algorithm for p-center problems,” The Scientific World Journal,
vol. 2014, Article ID 824196, 9 pages, 2014.

[29] M. Ma, J. Liang, M. Guo, Y. Fan, and Y. Yin, “SAR image
segmentation based on artificial bee colony algorithm,” Applied
Soft Computing, vol. 11, no. 8, pp. 5205–5214, 2011.

[30] D. Karaboga, S. Okdem, and C. Ozturk, “Cluster based wireless
sensor network routing using artificial bee colony algorithm,”
Wireless Networks, vol. 18, no. 7, pp. 847–860, 2012.

[31] A. Singh, “An artificial bee colony algorithm for the leaf-
constrained minimum spanning tree problem,” Applied Soft
Computing, vol. 9, no. 2, pp. 625–631, 2009.

[32] D. Karaboga and C. Ozturk, “A novel clustering approach:
Artificial BeeColony (ABC) algorithm,”Applied SoftComputing
Journal, vol. 11, no. 1, pp. 652–657, 2011.

[33] I. M. S. De Oliveira and R. Schirru, “Swarm intelligence of arti-
ficial bees applied to in-core fuel management optimization,”
Annals of Nuclear Energy, vol. 38, no. 5, pp. 1039–1045, 2011.

[34] W.-F. Gao, S.-Y. Liu, and F. Jiang, “An improved artificial
bee colony algorithm for directing orbits of chaotic systems,”
AppliedMathematics and Computation, vol. 218, no. 7, pp. 3868–
3879, 2011.

[35] W.-C. Hong, “Electric load forecasting by seasonal recurrent
SVR (support vector regression) with chaotic artificial bee
colony algorithm,” Energy, vol. 36, no. 9, pp. 5568–5578, 2011.

[36] S. K. Kumar, M. K. Tiwari, and R. F. Babiceanu, “Minimisation
of supply chain cost with embedded risk using computational
intelligence approaches,” International Journal of Production
Research, vol. 48, no. 13, pp. 3717–3739, 2010.

[37] W.-F. Gao and S.-Y. Liu, “A modified artificial bee colony
algorithm,” Computers & Operations Research, vol. 39, no. 3, pp.
687–697, 2012.

[38] W.-F. Gao, S.-Y. Liu, and L.-L. Huang, “A novel artificial bee
colony algorithm with Powell’s method,” Applied Soft Comput-
ing Journal, vol. 13, no. 9, pp. 3763–3775, 2013.

[39] D. Karaboga and B. Akay, “A comparative study of artificial bee
colony algorithm,” Applied Mathematics and Computation, vol.
214, no. 1, pp. 108–132, 2009.

Computational Intelligence and Neuroscience 13

[40] D. Karaboga and B. Basturk, “On the performance of artificial
bee colony (ABC) algorithm,” Applied Soft Computing, vol. 8,
no. 1, pp. 687–697, 2008.

[41] J. Brest, S. Greiner, B. Bošković, M. Mernik, and V. Zumer,
“Self-adapting control parameters in differential evolution: a
comparative study on numerical benchmark problems,” IEEE
Transactions on Evolutionary Computation, vol. 10, no. 6, pp.
646–657, 2006.

[42] J. Zhang and A. C. Sanderson, “JADE: adaptive differential
evolution with optional external archive,” IEEE Transactions on
Evolutionary Computation, vol. 13, no. 5, pp. 945–958, 2009.

[43] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evo-
lution algorithm with strategy adaptation for global numerical
optimization,” IEEE Transactions on Evolutionary Computation,
vol. 13, no. 2, pp. 398–417, 2009.

[44] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar,
“Comprehensive learning particle swarm optimizer for global
optimization of multimodal functions,” IEEE Transactions on
Evolutionary Computation, vol. 10, no. 3, pp. 281–295, 2006.

[45] A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, “Self-
organizing hierarchical particle swarm optimizer with time-
varying acceleration coefficients,” IEEE Transactions on Evolu-
tionary Computation, vol. 8, no. 3, pp. 240–255, 2004.

[46] R. Mendes, J. Kennedy, and J. Neves, “The fully informed
particle swarm: simpler, maybe better,” IEEE Transactions on
Evolutionary Computation, vol. 8, no. 3, pp. 204–210, 2004.

