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ABSTRACT 

... _ 
In this study (E, H) fields have been calculated by applying the inversion 

method on the ray paths in the quasi-optical seattering phenomena of infinite and· 
finite sourred elettromagnetic waves from perfectly conducting curved surfaces. 

ÖZET 
Elektromagnetik Dalgalann DüzgOn Elrfsel MOkemmet lletken 
Yflzeylerden Optik Benzeri SaçılmaslDda Enversiyon Yöntemi 

Bu çalışmada, sonsuz ve sonlu kaynaklı elektromagnetik dqjg'!J.ann dilzgan 
etisel makemmel iletken yilzeylerden optik benzeri saçılmasında (E, H) alanianna 
ait bilyilklilk/er, optik ışın yollan azerine enversijo~ yiJntemi uygulanarak bulun­
muştu~. 

INTRODUCTION 

A quasi-optical seattering problem, by using of the iiıversion method can 
be transformed in to a problem which can be easily solved or a know solution in 
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illuıninated region. After having solved the siınple problem the solutions of the 
original problem can be found by an inverse transformation. 

On the other hand, a quasi-optical seattering problem, a geometrical in­
version and a physical inversion are applieable in order to find the field expres­
sions of reflected waves from a perfectly conducting seattering surfaces. This 
method is applied for the first time in this study for quasi-optical seattering prob 
lems and physical inversion is based upon the equiphase curves on specific plane 
of equiphase surfaces. The physical inversion, in ~e quasi-optical solution is ha­
sed upon the proj,erty of the reflected waves from a perfectly conducting curved 
surface. The curved surface does not change their directian and magnitude al­
though the coordinates of the coordinate of the source is transformed or chan­
ged. 

The coordinate transformatian which is mentioned in this study is being 
realized according to the integral transformatian in the applicatioıi of Poisson­
Summation formula for the exact solution. The physical inversion can be consi­
dered boundary conditions in the quasi-optical solution. Briefly, in the physical' 
inversion.; it has been shown that linear and circular equiphase curves occur in 
the direction of reflected wave. As a result of the field companent pertaining to 
waves reflected from the perfectly conducting surface has been obtained. 

ı. 'IWO DIMENSIÖNAL GEOMETRIC INVERSION 

In this study, two dimentional inversion is considered. On the other hand 
this ınay also be called "Inversion on the planeft. For example, the two dimensio­
nat geometrical in version is obtained by the making use of a circle at he ( oxy) 
pi\lne of clrcular cylindirical ooordinates system and at the plane ct> = constant 
iş s.phe"rical .cöor.dinates system. As shown in Figure ı a is defined as the distan­
~2 betw~n .the points. A and O (the center of the circle) and tben relationship 
R = ·ab b.olds, b is the distance between B and O, then the points A and B are 

·the iiıverses of each other respect to the inversion center O. The point O is called 
· a.S the ra~us R is defıned as the inversion radius1• 

Figure: 1 • Invers points A and B respect to the inversion center O 

- 134. 



The inversion of a circle with respect to an inner tangent circle: 

hi h 
:fhalsoe inversion of a circle with respect to an inner tangent circle is a circle 

w c ıs tangent from inside. 

In Figure _2 three circles with given geometry and inner tangent are consi­
dered. By the usıng the geometry in Figure 2. 

_ 2_=_1_ + _ 1_ 
Rz R ı R 3 1.1 

is obtain~d. Consequently, the inversion of the circle A n with respect to the cir­
cle Dn wıth respect to the center O as R taken as the inversion radius is the cir­
cle B~. ~he~efor~, the in~ersion of a circle with respect to anather circle tangeı:ıt 
from ınsıde ıs a cırcle whıch is tangent at the tangent point. 

Fıg. 2 • The R3 circle which is the inve rsion 
of the Rı circle with respect to O 
inversion center 
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Fig. 3 • The lined being the inversion 
of the circle Rı which is passing 
through the O inversion center 

The inversion of circle which passes from the inversion center is a line 
which in normal to the directian of the center. When the radius of the circle R3 
given in Figure 2 goes to infınity, a line which is perpendicular to the center line 
at point A is obtained. Respect to the geometryR3- oo is given in Figure 3. At 
this case, as R3 goes to infinity 

2 ı 
1.2 --=--

R 2 Rı 

is obtained. Therefore, it has been shown ~at the inverse of a circle which 
passes from the inversion center is a line which is tangent to that circle. 

Briefly, the inversion of a cin;le passing from the inversion center is a line 
and reversely the inversion of a line is a curve passing from the inversion center. 
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In fact in two dimensional inversion infinite cylinder and infinite plane 
are considered. But, in this study, by defining the equiphase curves, the circle 
and the cylindre axis have been considered on the two dimentional inversion. 

2. THE PHYSICAL INVERSION OF WA VES IN 
QUASI-OPTICAL SCAITERING 

Physical inversion with geometric inversion must be included in order to 
solve a problem by inversion. 

Physical inversion is based upon the property reflected waves from a per­
fectly counducting surface. _The coordinates transformatia n mentioned in this 
smdy have been realized in the integral transformatia n which belongs to the 
Poisson-Summation formula in the exact-solution. By this coordinates transfor­
mation circular equiphase curves occur in the direction of reflected wave and 
pass through reflection point and which have the center at a specific point and 
this reflected ray. 

In quasi-optical seattering problems, TEM, TE and TM modes occur lo­
calized plane waves for reflection from perfectly conducting seattering surfaces. 

It can be shown by the examples in the exact solution that localized plane 
waves have equiphase curve lines. For the ray propagate in only the one direc­
tion, there must be an equiphase line normal to this ray or normal to the center 
line at the intersection point of the ray and the circle. Therefore, a circular equi­
phase curve can be transformed in to an equiphase curve only at this case waves 
can propagate in the desired directian of reflection. For the localized plane 
waves to propagate in the directian of reflection, the circle which is the inver­
sion of this circle with respect to the tangent must be consired as the equiphase 
curve. In fact, this is the inverse transform when goes back to the original coor­
dinates system. 

On the other hand, the theorem of reflection states that: The incident ray, 
the reflected ray and the normal of the surface all lie on the plane. The angle 
between the incident ray and the normal of the surface equals the angle between 
the reflected ray and the normal of the surface. Also the inversion at the TE and 
TM modes is taken in to consideration at the two dimentional plane. In quasi­
optical seattering problem which mean an application of Poisson-Summation 
formula in the exact solution, the reflection from the seattering surface is based 
upon the existance of equiphase curves produced on a plane. 

3. THE PHYSICAL INVERSION OF T HE REFLECI'ED WA VES IN 
QUASI~OPTICAL SCATTERING PROBLEMS WITH INFINITE 
SOURCE 

By using the g~ometry in Figure 4 and defıning a as the radius of curva­
ture of the surface; F' as the tangential component of the magncf ic or electric 
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field of the incident plane waves to the reflection point A of tb ed .. ..& 

Tb · la · e curv swıace. e equation re ting there is as follows: 

F i -ikacosa 
=e 

Here, the magnitude of the wave has been taken as a unit. 

The ray of plane wave 

Figure: 4 • The retleetion of the plane wave ray from the regular 
cuıv• ::d surfa<."e. 

3.1 

By considering t he reflection boundary condition for the rays reflected 
from the perfectly conducting surface the value of the tangential component of 
the reflected field over ı1ıe surface can be expressed as follows: 

F =e ikacosa 
1 

3.2 

Since the expressiion denotas for the propagation of a plane wave, it indi­
cates a line normal to the direction of the ray reflected as an equiphase curve 
fro~ the reflection point. 

On the other hand', with respect the inversion of this equiphase line, ha­
ving its center on the reflected ray passing from the reflection point and with a 
radios of kacosa, is a circite of radios ka/z cosa as been given in the first part of 
this study. It is supposed tl'ıat the new equiphase line is excited by the lı current. 
'J1e~ equiphase liner are shown in Figure 5. For the tangential companent of 
(E, H) fields proportional t.o the quantily can be written as follows: 

3.3 

This equivalr~nt equiıphase surface is supposed to produce the same field 
at the retleetion po.int, it can be expressed as follows: 
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, ka 
ı-2-cosa 

e- ikacoscx = Iz .:.e--:====­
j ka cosa 

2 

This for lı current it is found that 

. 3ka 
-ı--cosa 

e 2 ka 
I = -- cosa --;:::;:=======-

2 
2 j k; cosa 

For the reflected far field, with f = a/2 cosa it holds true that 

ik(~ + f) 
e 

~=I 2 

cırcuıar equlphase line o f kacoscr raoıus 

Figure: S • The inversion of linear equiphase line wi.th respect ıo the 
circular equiphase line of kacosa radius. 

3.4 

3.5 

Finally, the reflected far field in two dimensioınal problems is obtained as 
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Fs - Jkacosa 
2 

eik(~-kacosa) 
3.6 



Note that, in the asimptotic computation of inverse integral the current lı 
is taken as a constant. 

4. THE 1-HYSICAL INVERSION OF THE REFLECTED WAVES 
IN QUASI-OPTICAL SCA'ITERING PROBLEMS WITH 
FINITE SOURCES 

In quasi-optical problems with fınite sources, the physical inversion used 
for obtaining the field equations concerning the· reflected waves is based upon 
the interaction between the equiphase curve lines of these two simple problems 
which will be mentioned now: 

Tlie side of the reflection point of the seattering surface is filled with a 
perfect conductor, and direction of the ray which is reflected from the plane 
within the field of the finite source, passing from the reflection point A, and d r­
ele with a radius of k!10 with the center on the reflected ray is compasing the 
equiphase line. 

In this case, the quantity which is proportional with the tangential compa­
nent of the cE. li) fietds is given as the tocalized ptane waves as foııows: 

Fl= I A elH o-111'/4 
o 11' r.-::- 4.1 

\1 k Qo 

B 

K 

Figure: 6 • The circular equiphase line on Figure: 7 • Equiphase cuıves at the renect.ion po~nt 
the reflected ray in retleetion or wbich are linear and circular wıth radı us 

the penectly conducting plane ha/2 cosa 

The incident ray froin infinity to the reflection point ~ of the o~ginally 
regular and curved perfectly conducting surface produces a cırcular equı-phasfe 

. . d whi h h a center Jocated on the re • curve which passes from the poınt A an . c a~ . 
lected ray and having a radius ka/2 cosa (This case ıs valıd for free-source) 
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On the other hand, when the field produced at the retleetion point is 
considered by taking the magnitude of the incident ray as unit, the equiphase li­
ner produced at the retleetion point A tangential to the original surface witb 
respect to the perfectly conducting infinite plane, is normal to the reflected ray. 
The field of this equiphase line can be expressed in the form: 

F = eikacosa 
1 

4.2 

The inversion of this equiphase line with respect to the circle having the 
radius kacosa and which is toward the inside of the curved surface beginning 
from the reflection point o~ the reflected ray, is again a circle whicb has radius 
ka/2 cosa and passes through the retleetion of the retlec~ed ray. This circle can 
be defıned as circular equiphase curve in the direction of the retlected ray in the 
case of the regular curved surface with free source. 

This circular equiphase curve has got the same meaning as the circular 
equiphase curve having the radius ka/2 cosa. 

5. INTERACTION BE'IWEEN CIRCULAR EQUIPHASE LINES 

Interaction lines with radius k~0 and ka/2 cosa. The ray direction, thus the 
center is at the ray direction and passes through the retleetion point obtained 
circular equiphase line is 

Figure: 8 - İntetaction between 
equiphase lines 

2k~0 • kacos a kf 1 = --=--_...;,-
2k~o + kacos a 

5.1 

As shown ifi Figure 8 two circles which are innerside tangential equiphase 
lines appears with the radius kfı; are inversion one to another. 
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Therefore the center of the new equiphase line is at the retleetion ray 
point and passes through the retleetion point ~ which has a radius 

kf1 k 20 • kacos a 
kf =-= --"------

2 2k2 0 + kacosa 
5.2 

. 
it is a circular equiphase line. 

On the other hand with the tangential field of the source at the retleetion 
point, and the tangential field of the image source have been considered as 
equal Fı and Fı indicates the proportional quantity of the tangential fields of 
source and image respectively written as: 

~ r2 elk20 - hr / 4 _ /2 elkf-11T f 4 
F 1 - 10 v -7-1T- .ji(To , F 2 - 12 v ~-1T- .Jkf 5.3 

Where lı is a new value of the interaction between two equiphase circu­
lar lines. 

At the retleetion point Fı = Fı, lı must be as fotlows: 

I = I J"+- eik(Qo- f) 
2 o Qo 

5.4 

As given in 5.4 image current of the obtained field of the retleetion ray 
directian has the following form 

. r;) ik (Q + f) -l?T/4 
F =I V --=,;;--2- e 5.5 

2 2 
1T vk <2 + r> 

In the above equation, inversion taken in the plane is invers transforma­
tion for the obtained the current. 

Fmally, the field at the retleetion point can be found us~g the expression 

of f given in equation 5.2 · 
rT ik (2 + 20) -l?T/4 

j (2+20 )acos a 
F -I 

2 - o2 Q 2 + (2 + Q ) acos a 
V+ ~e--::====--

../k (2 + 20 ) o o 

·ın case of far field Q -+ oo is expressed as 

F =I D(a) p 
2 o 1T 

Where D(a) divergence coefficient is 

r acosa: 
D (a) = v -2 Q + a cos a 

o 

5.6 

5.7 

5.8 
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CONCLUSION 

In this paper, the description of the cireular equiphase lines of the plane 
waves are defined. And also, in the condition given above, depending on the 
equiphase line, inversion method is applied on the ray paths whieh is the coordi­
nate transformation. Fırst surface of the perfect conducting curve surface at the 
field of infınite source is considered. 

Taken the radius of the retleetion ray, passes through the retleetion point, 
circular equiphase Iines are occured. Inverse traıisfonnation is realized when ta­
king the equiphase circular lines are obtained with retleetion far field from the 
curve surface. 

In this case, retleetion of the perfect condueting curve surface of the field 
of fınite source is taken. It is proved that the transformation of the solution of 
the original problem is reduced into the two simple problems. One of the sim­
. pler problems at the reflection point and at the source, tangential to the original 
surface is reflection from the infınite perfectly conduetive plane. The other sirn­
pler problem, the incident ray from the infinity, passes through the source point 
refleeting from the original curve surface as can be considered. 

The integration of the equiphase circular lines are obtained. When taking 
the inverse transformation, respect to the normal to the retleetion ray and the li­
near equiphase lines, inverse transformation has been realized. 
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