METHODE DE DETERMINATION DU PROFIL DE LA CONSTANTE DIELECTRIQUE A PARTIR DE LA CONNAISSANCE DU CHAMP ELECTRIQUE*

Ali OKTAY**

RESUME

La détermination d'un profil de constante diélectrique est un problème de grand intéret susceptible d'applications nombreuses dans la conception de composants micro-ondes. L'objet de cet étude est de reconstruire un profil de constante diélectrique dans un guide d'onde rectangulaire rempli inhomogènement de matériaux diélectrique, à partir de la connaissance de la configuration du champ électrique.

Cette mèthode donne un moyen technique pour connaitre des propriétés d'un matériaux diélectriques traités par des hyperfréquences en vue de réaliser des applicateurs assurant un transfert efficace d'énergie.

ABSTRACT

Determine of a dielectric constant profile is a very important probleme that is susceptible to several applications in microwave devices. The purpose of this contribution is to reconstruct a dielectric constant profile in a rectangular waveguide that filled an inhomogeneous dielectric materials by means of electric field configuration.

This method gives a technical mean for known the properties of a dielectric materials those treated by microwaves in order to realize the applicators insuring an effective transfert of energy.

ÖZET

İçinde homojen olmayan dielektrikler bulunan bir hacimdeki elektromagnetik dalga yayılımı, ortamın dielektrik sabiti profiline bağlı olarak değişir. Çeşitli dielektriklerin karışımları veya farklı dielektrik malzemelerin yanyana birleştirilmeleriyle oluşturulan homojen olmayan ortamların dielektrik sabiti profilinin (dielektrik profilinin) bilinmesi ve bunun elektromagnetik alan değerlerine göre değişiminin tayin

^{*} Partie expérimentale a été faite à l'U.S.T.O – Algérie.

^{**} Doc. Dr.; Dept. de Génie Electronique Université Uludağ Bursa - Turquie.

edilmesi, bu ortamlardaki elektromagnetik dalgaların yayılma özelliklerinden yararlanarak mikrodalga tekniğinde kullanılan yeni eleman ve düzenlerin gerçekleştirilmesi mümkün olmaktadır.

Bu çalışmada, homojen olmayan dielektriklerle doldurulmuş bir transmisyon borusunda elektrik alanı bilindiğine göre dielektrik profilinin tayin edilmesi incelenmektedir. Bunun için, izotrop ve homojen olmayan bir dielektrikle doldurulmuş dikdörtgen kesitli bir transmisyon borusunda belirli bir dielektrik profili gözönüne alınarak LSE₁₀ moduna göre dalga yayılımı incelenerek dalga denklemi elde edilmektedir. Fourier serisi açılımı kullanılarak, dalga denklemi Fourier serisi katsayıları cinsinden bir Lineer denklem sistemine dönüştürülmektedir. Geliştirilen bir nümerik program yardımıyle, belirli bir elektrik alanı dağılımı için Fourier katsayıları hesaplanarak buna ilişkin dielektrik profili elde edilmektedir. Bu metod yardımıyla, kapalı bir hacim (örneğin bir transmisyon borusu veya rezonatör) içinde homojen olmayan bir dielektrik olduğu zaman dielektrik profiline uygun elektrik alan profili veya tersine elektrik alan profiline uygun dielektrik profilini bulmak mümkün olmaktadır.

Çalışmanın deneysel kısmı, dikdörtgen kesitli R37 standart transmisyon borusu (66,34x29,50 mm) bilinen dielektriklerle kısmen doldurularak borunun geniş yüzeyi üzerine enine açılmış bir yarık vasıtasıyle yapılan elektrik alan ölçmelerine dayanır. Gerçekleştirilen ölçme düzeniyle, borunun enine elektrik alan dağılımının belirli değerleri (eşit aralıklı 7 alan değerleri) ölçülerek, nümerik program vasıtasıyla bu dağılıma ilişkin dielektrik profili bulunmaktadır. Bu yolla bulunan dielektrik profili ile teorik dielektrik profili arasında tam bir uygunluk bulunmaktadır. Borunun yüzeylerine yaklaştıkça ve dielektriğin süreksiz olduğu noktalar civarında, elektrik alan ölçmesindeki belirsizlik arttığından hesaplanan profil değerlerinde belirsizlik de artmaktadır. Bu belirsizliği, süreksizlik noktalarında daha sık aralıklarla ölçmeler yapmak suretiyle en aza indirgemek mümkündür.

Bu metod yardımıyle, kapalı bir hacimde (örneğin bir mikrodalga fırınında pişirilen veya kurutulan bir malzeme) elektromagnetik enerji ışımasına tabi tutulmuş dielektrik malzemelerin bazı fiziksel büyüklüklerinin (sıcaklığı, nemliliği...) zamanla değişimlerini, elektrik alanını ölçmek suretiyle kontrol etmek mümkün olur.

INTRODUCTION

La propagation des ondes électromagnétiques dans les guides remplis inhomogènement de diélectriques est d'un grand intérét depuis plusieurs années. Elle trouve des applications intéressantes dans la conception de composants micro-ondes (déphaseurs, adaptateurs, isolateurs, circulateurs...). Cette inhomogéneité peut résulter soit d'un phénomène naturel lié aux propriétés même des matériaux, soit à la juxtaposition de milieux de natures différentes...

La reconstruction d'un profil de constante diélectrique est un problème actuel de grande importance susceptible d'applications nombreuses. Cette technique est un outil de choix pour connaître les propriétés des matériaux:

- En vue de la fabrication d'équipements hyperfréquences destinés aux radars et aux télécommunications,

- En vue de traitement de ces matériaux par des moyens hyperfréquences (cuisson, chauffage). Il s'agit dans ce cas de connaître leurs propriétés aux différents stades du processus afin de pouvoir réaliser des applicateurs assurant un transfert efficace d'énergie,

- Pour controler un paramètre physique, par exemple l'humidité, pendant le déroulement d'un traitement,

- 44 -

- En médecine, il est possible de diagnostiquer certaines maladies qui produisent un changement du contenu en eau des tissus.

Dans tous les cas la connaissance de la distribution du champ électrique dans ces matériaux suppose celle de la constante diélectrique lorsque l'on assimile leur perméabilité à celle du vide.

L'objet de notre étude est de reconstruire un profil de constante diélectrique dans un guide d'ondes rectangulaire rempli inhomogènement de matériaux diélectriques, à partir de la connaissance de la configuration du champ électrique.

ETUDE GENERALE

Nous considérons un guide d'onde rectangulaire rempli par un diélectrique inhomogéne et isotrope dont la constante diélectrique ϵ (x) est variable dans un plan transverse suivant la direction x (fig. 1).

Fig.: 1

Dans un tel milieu démuni des courants et des charges, les équations de Maxwell s'ecrivent:

$$\operatorname{rot} \vec{\mathbf{E}} = -\operatorname{i} \omega \,\mu_0 \,\vec{\mathbf{H}} \tag{1}$$

$$\operatorname{rot} \vec{H} = j \omega \epsilon (x) \vec{E}$$
(2)

div
$$\vec{D} = 0$$
 (3)

$$\operatorname{div} \mathbf{H} = \mathbf{0} \tag{4}$$

A partir de expression (1) et (2), on déduit les équations de propagation de champ électrique et magnétique:

$$\Delta E - \gamma^2 (x) \stackrel{\rightarrow}{E} = -\operatorname{grad} \left[\stackrel{\rightarrow}{E} \cdot \frac{\operatorname{grad} \epsilon (x)}{\epsilon (x)} \right]$$
(5)

$$\Delta H - \gamma^2 (x) \vec{H} = \operatorname{rot} \vec{H} \Lambda \frac{\operatorname{grad} \vec{\epsilon} (x)}{\epsilon (x)}$$
(6)

- 45 -

ou $\gamma^2(\mathbf{x}) = -\omega^2 \mu_0 \epsilon(\mathbf{x})$ est la constante de propagation.

Dans les guides inhomogènes, les modes de propagation que nous aurons à considérer n'appartiennent pas en général aux types \vec{E} ou \vec{H} mais sont une combinaison linéaire de ces deux modes et que d'une façon générale on obtient les modes de propagation de base à partir des potentiels de Hertz électrique et magnétique dont les composantes sont toujours dans le plan de section droite et dirigées normalement au plan YOZ.

A partir du potentiel de Hertz magnétique nous obtenons une solution ne comportant pas de composante électrique normale au plan YOZ, la composante longitudinale existe seule, un tel mode est dit L.S.E (Longitudinal Section Electric). On définit de la même maniére le mode L.S.M (Longitudinal Section Magnétique) en considérant le potentiel de Hertz électrique [1], [5].

Pour le mode L.S.E, le champ électrique peut s'écrire à partir d'une fonction vectorielle Φ appelée ''potentiel magnétique de Hertz''.

$$\vec{E} = rot \vec{\Phi}$$

$$H = -\frac{1}{j \omega \mu_0} \text{ rot rot } \Phi$$

De la même manière, le champ magnétique peut être défini à partir d'une fonction vectorielle $\vec{\psi}$ applée "potentiel électrique de Hertz"

$$\vec{\mathbf{H}} = \operatorname{rot} \vec{\Psi}$$

$$\vec{\mathbf{E}} = \frac{1}{j \,\omega \,\epsilon \,(\mathbf{x})} \operatorname{rot} \operatorname{rot} \vec{\Psi}$$
(8)

(7)

EQUATION DE PROPAGATION DU MODE LSE

Nous proposons une méthode qui permet de trouver le profil de la constante diélectrique à partir de la mesure de la variation de composante E_y du champ électrique en fonction de la position x dans un dispositif simple compremant un guide d'onde rectangulaire rempli d'un milieu inhomogène en mode fondamentale LSE₁₀.

La composante génératrice du mode LSE est le potentiel magnétique de Hertz dirigé suivant le grand côté du guide:

$$\Phi(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \Phi(\mathbf{x}, \mathbf{y}) \exp(-\gamma_{g} \mathbf{z}) \mathbf{u}_{\mathbf{x}}$$
(9)

et donc l'équation de propagation s'écrit:

$$\Delta\phi(\mathbf{x},\mathbf{y}) + \left[\gamma_{g}^{2} - \gamma^{2}(\mathbf{x})\right]\phi(\mathbf{x},\mathbf{y}) = 0$$
(10)

où γ_g est la constante de propagation guidée.

L'équation caractérisque du mode LSE se présente sous la forme d'une équation différentielle du second ordre à deux variables. En utilisant la méthode de sépa-

- 46 -

ration des variables et en respectant les conditions aux limites, l'équation (10) devient:

$$\frac{d^2 \phi(x)}{dx^2} + \left[\gamma_g^2 - \gamma^2 (x) - \left(\frac{p\pi}{b}\right)^2 \right] \phi(x) = 0$$
(11)

Avec le changement de variable suivant

$$\xi = \frac{\pi x}{2a} \tag{12}$$

$$\frac{d^2 \phi(x)}{dx^2} = \left(\frac{\pi}{2a}\right)^2 \frac{d^2 \phi(\zeta)}{d \zeta^2}$$
(13)

et l'équation de propagation s'écrit:

$$\frac{d^2 \phi(\zeta)}{d \zeta^2} + g(\zeta) \phi(\zeta) = 0$$
(14)

g
$$(\zeta) = (\frac{2a}{\pi})^2 \left[\gamma_g^2 - \gamma^2 (\zeta) - (\frac{p\pi}{b})^2 \right]$$
 (15)

L'équation (14) est identifiée a l'équation de Hill où le coéfficient g (ζ) répresente une fonction définie sur une intervalle de largeur π . Cette fonction peut être décomposée en une série de Fourier.

Ainsi on pourra écrire

$$g(\zeta) = 1 + 2 \sum_{n=1}^{\infty} g_n \cos 2n \zeta$$
 (16)

g (ζ) est fonction de l'inhomogénéité.

Dans notre étude, nous traitons le cas où le diélectrique est sans perte:

$$\gamma_{\rm g} = j \beta_{\rm g} \tag{17}$$

$$\gamma(\zeta) = j \,\omega \sqrt{\mu_0 \,\epsilon_0 \,\epsilon_r}\,(\zeta) \tag{18}$$

Pour le mode LSE10, l'équation de propagation devient:

$$\frac{\mathrm{d}^2 \phi(\zeta)}{\mathrm{d} \, \zeta^2} + \left(\frac{2\mathrm{a}}{\pi}\right)^2 \left[\beta_0^2 \, \epsilon_{\mathbf{r}}\left(\zeta\right) - \beta_{\mathbf{g}}^2\right] \phi\left(\zeta\right) = 0 \tag{19}$$
$$\beta_0^2 = \omega^2 \, \mu_0 \, \epsilon_0$$

De (16) et (19), on peut écrire:

$$\left(\frac{2\mathbf{a}}{\pi}\right)^2 \left(\beta_0^2 \ \epsilon_{\mathbf{r}} \left(\zeta\right) - \beta_g^2\right) = 1 + 2 \sum_{n=1}^{\infty} g_n \cos 2n \ \zeta \tag{20}$$

Les conditions aux limites:

$$\phi(\zeta) = 0 \qquad \text{pour} \quad \begin{vmatrix} \zeta = 0 \\ \zeta = \pi/2 \end{vmatrix}$$
(21)

- 47 -

qui permet à chercher une solution en sin $(2 \text{ m}\zeta)$ ce qui revient à mettre le champ E_V sous forme de sinus à periode complète.

On peut écrire:

$$\phi(\zeta) = \sum_{m=1}^{\infty} C_m \sin(2m\zeta)$$
(22)

et l'équation de propagation se trouve:

 $\sum_{m=1}^{\infty} [(1-4m^2)] C_m \sin(2m\zeta) + \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} g_n C_m [\sin 2(m+n)\zeta + \sum_{m=1}^{\infty} m g_n C_m] S_m C_m [\sin 2(m+n)\zeta + \sum_{m=1}^{\infty} m g_n C_m] S_m C_m [\sin 2(m+n)\zeta + \sum_{m=1}^{\infty} m g_n C_m] S_m C_m] S_m C_m [\sin 2(m+n)\zeta + \sum_{m=1}^{\infty} m g_n C_m] S_m C_m] S_m C_m [\sin 2(m+n)\zeta + \sum_{m=1}^{\infty} m g_n C_m] S_m

$$\sin 2 (m-n) \zeta = 0$$
 (23)

En faisant une identification des termes en sin $(2 \text{ m}\xi)$, on obtient un système d'équation homogène:

$$C_{m} (1-4 m^{2}) + \sum_{j=1}^{\infty} [(g_{m-j} - g_{m+j})] \cdot C_{j} = 0$$
 (24)

Ce système représentera une équation pour chaque valeur de m avec comme conditions $g_0 = 0$ et $g_{-k} = g_k$. Le système d'équation (24) peut s'écrire:

$$C_{m} + \sum_{j=1}^{\infty} \frac{g_{m} + j - g_{m} + j}{1 - 4 m^{2}} C_{j} = 0$$
 (25)

- 48 --

ou encore on peut écrire sous la forme:

$$\begin{bmatrix} \delta_{m,j} + \frac{g_{m-j} - g_{m+j}}{1 - 4 m^2} \end{bmatrix} X \begin{bmatrix} C_1 \\ \vdots \\ C_m \end{bmatrix} = 0$$
(26)

$$\delta_{\mathbf{m}, \mathbf{j}} = \begin{bmatrix} \mathbf{1} & \sin \mathbf{m} = \mathbf{j} \\ \mathbf{0} & \sin \mathbf{m} \neq \mathbf{j} \end{bmatrix}$$

La résolution de ce système d'équations infinies impose un déterminant nul:

Det
$$[\delta_{m,j} + \frac{g_{m-j} - g_{m+j}}{1 - 4m^2}] = 0$$
 (27)

ANALYSE NUMERIQUE DE LA METHODE

Soit un profil de champ électrique mesuré dans un guide rectangulaire rempli inhomogénement par un diélectrique (fig. 3).

Après avoir le calcul de Cm (25), le champ électrique s'écrit sous la forme:

$$E_{y}(\xi) = 1 + \sum_{m=1}^{\infty} C_{m} \sin(2m \xi)$$
 (28)

Dans notre étude, la décomposition en série de Fourier est limité à huit termes $(C_1 \ a \ C_8)$. Comme le champ est nul sur les bords du guide $(\xi = 0 \ et \ \xi = \pi/2)$, le système se réduit à 7 équations:

$$E_{y}(m) = \sum_{j=1}^{7} C(j) \sin(2j.m.\frac{\pi}{16})$$
 (29)

- 49 -

A partir de la connaissance des coefficients C_m, le systeme (25) s'écrit sous la forme:

$$[G(m, j)] X [g(m)] = [C(m)]$$
(30)

ou

$$\begin{vmatrix} G(m, j) = G_0(m, j) / 4 m^2 - 1 \\ G_0(m, j) = C(m + j) + \begin{vmatrix} C(m - j) & j < m \\ -C(j - m) & j > m \end{vmatrix}$$

Par la résolution du système déquations (30), on obtient les coefficients gn qu'ils permettent à reconstituer le profil de la constante diélectrique

$$\epsilon_{\rm r}(\zeta) = \frac{\beta_{\rm g}^2 + (\pi/2{\rm a})^2 \left[1 + 2\frac{\sum_{\rm n} \sum_{\rm m} g_{\rm n} \cos 2{\rm n} \zeta\right]}{\omega^2 \,\mu_0 \,\epsilon_0} \tag{31}$$

On a étudié particulairement un exemple de profil donné par la figure 4 où

$$\epsilon = \epsilon_0 \left[2 - \frac{9}{8} \cos(2\zeta) + \frac{1}{8} (6\zeta) \right]$$
 (32)

Fig. 4 - Profil diélectrique décomposé en série de FOURIER

A partir de la connaissance de la permittivité décomposée en série de Fourier, on a obtenu le profil du champ dans un guide d'onde rectangulaire à l'aide d'un programme devellopé (fig. 4). Nous avons reconstitué le champ électrique à partir de la connaissance du profil de la constante diélectrique décomposée en série de Fourier (fig. 5). Dans cette reconstitution du champ électrique, nous avons considéré le profil diélectrique donné à la figure 4.

/ RECONSTITUTION DU CHAMP ELECTRIQUE / / A PARTIR DE LA CONNAISSANCE DU // PROFIL DE LA CONSTANTE DIELECTRIQUE / / DECOMPOSEE EN SERIE DE FOURIER /

0

INTRODUCTION DES DONNEES DE BASE F=5 A=30 Y=1 N=16 EM=2 /// MATRICE X(7+1) ///

LL=3.49314613 POUR X=1.0614676 DETER=-2.03712826E-07 N0=7 X(1)=-.202377295 X(2)=.0137558943 X(3)=3.64293928E-03 X(4)=-6.09987654E-04 X(5)=3.41740128E-05 X(6)=4.33900983E-06 X(7)=-6.42595174E-07

 \mathbf{O}

EYMIN=0

0

0

EYMAX=1.066

0

TZETA=0 E	Y(0)=0
T2ETA=.049	EY(1)=.064
TZETA=.098	EY(2)=,127
TZETA= .147	EY(3)=.191
TZETA= . 196	EY(4)=.255
TZETA= . 245	EY(5)=.32
TZETA= . 295	EY(6)=.385
TZETA= . 344	EY(7)=.45
TZET4= . 393	EY(8)=.515
TZETA= . 442	EY(9)=.58
T2ETA= . 491	EY(10)=.645
TZETA=.54	EY(11)=.709
TZETA= . 589	EY(12)=.772
TZETA= . 638	EY(13)=.832
ZETA= . 687	EY(14)=.889
T2ETA= .736	EY(15)=.941
12874=.795	EY(16)=.986
12E A= .834	EY(17)=1.022
72ETA=.884	EY(18)=1.049
TZETA= . 933	EY(19)=1.064 ·
ZETA= . 982	EY(20)=1.066
TZETA=1.031	EY(21)=1.053
ZETA=1.08	EY(22)=1.024
TZETA=1.129	EY(23)=.98
ZETA=1.178	EY(24)=,92
TZETA=1.227	EY(25)=.844
TZETA=: .276	EY(26)=.753
ZETA=1.325	EY(27)=.65
ZETA=1.374	EY(28)=.534
2ETA=1.424	EY(29)=.409
ZETA=1.473	EY(30)=.277
ZETA=1.522	EY(31)=.14
ZETA=: .571	EY(32)=0

Fig. 5

0

ୢ

0₅

Décomposition en série de Fourier du champ REM ****** PARTIE 1 ******

RESOLUTION DE (GO(N=N))*(X(N=1))=(CD(N=1)) - X(N=1) INCONNU -

N=7

1

VALEURS DE L'AMPLITUDE DU CHAMP .255385081 .514850469 .772131697 .985629778 1.06557394 .919673381 .534265574 MATRICE X(7+1) *********** X1=.999999042 X2=-.20237905 X3=.0137535853 X4=3.64043758E-03 X5=-6.12296594E-04 X6=3.24061566E-05 X7=3.38159139E-06

*** VERIFICATION ***

VERIF=.255385081	CO(1)=.255385081
VERIF=.514850469	CO(2)=.514850469
VERIF=.772131697	CO(3)=.772131697
VER1F=.985629778	CO(4)=.985629778
VERIF=1.06557394	CO(5)=1.06557394
VER1F=.91967338	CO(6)=.919673381
UER1F=.534265574	CO(7)=.534265574

- 52 -

1 REM

****** PARTIE 2

PROGRAMME DE SYNTHESE /
 DU PROFIL A PARTIR DE /
 A CONNAISSANCE DU /
 CHANP ELECTRIQUE /
 SUIVANT L'AXE Y

INTRODUCTION DES DONNEES DE BASE

100 F = 05:LG = 56.5:A1 = 30:EE = EI:N = 16

150 LG = 56.5

C0(1)=1 C0(2)=-.20237905 C0(3)=.0137535853 C0(4)=3.64043758E-03 C0(5)=-6.12296594E-04 C0(6)=3.24061566E-05 C0(7)=3.38159139E-06 C0(8)=0

ENT 60 E1=2.00101775 LL=3.49314612

FIN CHARGEMENT GO

-2.25039763 1.15810736E-95 .249653268 1.47367762E-04 -9.94657018E-05 4.91496448E-04 2.62096689E-04 7.16835869E-04 1.37838748E-04 6.75994551E-04 1.35670473E-04 5.96438723E-04 1.35872555E-04 6.96953306E-04 1.36704722E-04 6.79108713E-04

coefficients g_n

Inversement, pour pouvoir reconstituer le profil diélectrique à partir de la connaissance du champ électrique, nous avons prit 7 valeurs du champ comme indiqué sur la figure 5. A partir de ces valeurs de l'amplitude du champ, nous avons calculé le profil diélectrique (fig. 6) en déterminant les coefficients g_n à l'aide du programme numérique.

DETER=4.68932561E-10

	EPR(min)=1	EPR(Max)=3	źr
77FT0=0FPF(0)="	· · · · · · · · · · · · · · · · · · ·	4 7 166 a m 1	internet at
1157A= .05FPR(:)=1	The second second		
77FT4=.1EPR(2)=1			
T2ETA= 5EPR(3)=:			
TZETA=.2EPR(4)=1.01			
TZETA=.25EPR(5)=1.02	Chan I and a faith of a	「「キャン」を整めて、1992年、大家、5年15条後会はション」、メー	
TZETA=,29EPR(6)=1.04		美国 医后颈侧骨间的 网络道路	
T2ET4=.34EPR(7)=1.07		$\label{eq:product} \begin{split} & = \left\{ \left\{ {{{\mathbf{x}}_{i}},{{\mathbf{y}}_{i}}} \right\},\left\{ {{\mathbf{y}}_{i}} \right\},\left\{ {{\mathbf$	
-ZETA=.39EPR(8)=1.12			
73576=.44EPR.9)=:.18		2. \$P\$ 1	
TZETA=.49EPR(10)=1.25	6		
TIETA=.54EPR(11)=1.35		and the second	
T2ETA=.59EPR(12)=1.46		A Star A Star	
T2ETA=.64EPR(13)=1.58			
T2ETA=.69EPR(14)=1.71	1		
TIET4=.74EPR(15)=1.85	0	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
TZETA=.79EPR(16)=2	5	1111日 「「「「「「」」」」	
TIETA=.83EPR(17)=2.15		Service and the service of the servi	
T2ETA=.88EPR(18)=2.29		14 14 34 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
TZETA=.935PR(19)=2.42		and the strate of the second	
TZETA=.98EPR(20)=2.55		1. · · · · · · · · · · · · · · · · · · ·	
TZETA=:.03EPR(21)=2.66			
T2ETA=1.08EPR(22)=2.75	1		
T2ETA=1.13EPR(23)=2.83	de la companya de la		
TZETA=1.18EPR(24)=2.89		Magnet and Anna and A	
TZETA=:.23EPR(25)=2.93	Assistant reactions	1991 C	
TZETA=1.28EPR(26)=2.96	1	in the second	
"ZETA=).33EPR(27)=2.98	i. I		
TZETA=1.37EPR(28)=2.99			
T2ETA=1.42EPR(29)=3		24 CA	
725TA=1.47EPR(30)=3			
TZETA=1.52EPR(31)=3	1.60		
T2ETA=1.57EPR(32)=3	1	sen us	
		P 1	

Fig. 6 – Reconstition du profil de la constante dielectrique a l'aide du champ electrique suivant l'axe y

TECHNIQUE DE MESURE ET RESULTATS EXPERMENTAUX

La partie expérimentale consiste à mesurer le champ électrique dans la section transversale d'un guide d'onde rectangulaire. Le guide utilisé (R37) de dimensions 66,34 X 29.50 mm travaille dans une gamme de fréquences allant de 2,82 à 4,29 GHz. En mode fondamental la fréquence est de 3 GHz tandis que sa longueur guidée est de 153 mm. Pour éviter les problèmes de rayonnement par les fentes, nous avons ouvert une fenêtre sur le grande face du guide comme l'indique la figure (7) et placé l'antenne sur une plaque pouvant coulisser le long de cette ouverture.

Fig. 7 – Guide ouvert su la grande face, l'anten est placée sur la plaque coulissante

Fig. 8a - Banc de mesure

Dans un premier lieu nous nous sommes intéressé au guide rempli d'air. A l'aide du dispositif réalisé, nous avons pris des mesures qui nous ont permis de tracer le profil du champ en mode fondamental (fig. 9). Une comparasion avec la courbe théorique ($E = E_m \sin \pi x/a$) est donnée dans la figure 10.

Les resultats obtenus à l'aide de la méthode de reconstruction présentent une certaine stabilité quand on s'éloigne des parois latérales. Celà est dû aux perturbations du champ à proximité des parois.

Resultats du programme de reconstition

1 REM	*****	PARTIE	1 **	****
			.,	
RESOLUTION DE (G	0(N#N))#(X(N#1))	=(CO(N#1)) -)	((N#1) INC	INNU -
147				
VALEURS DE L'AMP	LITUDE DU CHAMP	A. H. Wing . Stor		
.197805003				
.344894947				
.451936901				
.488626617				
463109679	State States			
366441581	100822007			
21445338		and the second		
MATRICE Y(7+1)				

¥1= 498904144				
¥2=- 018493499				
X3= .0117751791				
¥4=-1 91889984E-	03			
X5=4 5930442E-03				
¥4=7 04170258E-0	5			
X7=3.09541574E-0	3			

1 REM

PARTTE 2 ********

/ PROGRAMME DE SYNTHESE / / DU PROFIL A PARTIR DE / / LA CONNAISSANCE DU 1 1 CHAMP ELECTRIQUE 1 SUIVANT L'AXE Y 1 1

INTRODUCTION DES DONNEES DE BASE *****************************

100 F = 03:LG = 153:A1 = 66:EE = EI:N = 16

150 LG = 153

CO(1)=1 CO(2)=-.010693699 CO(3)=.0117751791 CO(4)=-1.91889986E-03 CO(5)=4.5930462E-03 CO(6)=7.96179258E-05 CO(7)=3.09541576E-03 CO(8)=0

LE LISSAGE A ETE FAIT POUR UN PAS DE .4125 ET POUR 16 POINTS

X(2)=.825 EY(2)=.197805003 X(3)=1.2375 EY(3)=.271793765 X(4)=1.65 EY(4)=.344894947 X(5)=2.0625 EY(5)=.407437189 X(6)=2.475 EY(6)=.451936901 X(7)=2.8875 EY(7)=.477691212 X(8)=3.3 EY(8)=.488626617 X(9)=3.7125 EY(7)=.477691212 X(9)=3.7125 EY(10)=.463109679 X(11)=4.5375 EY(11)=.42156483 X(12)=4.95 EY(12)=.366441581 X(13)=5.3625 EY(13)=.298447169 X(14)=5.775 EY(14)=.21665338 X(15)=6.1875 EY(15)=.161534439 X(16)=6.6 EY(16)=.060439381

1

X(1)=.4125 EY(1)=.089150343

X=.4125 V(1)=.089150343 X=.825 V(2)=.197805003 X=1.2375 V(3)=.271793765 X=1.65 V(4)=.344894947 X=2.0625 V(5)=.407437189 X=2.475 V(6)=.451936901 X=2.8875 U(7)=.477691212 X=3.3 V(8)=.488626617 X=3.7125 V(9)=.485227565 X=4.125 U(10)=.463109679 X=4.5375 V(11)=.42156483 X=4.95 V(12)=.366441581 X=5.3625 V(13)=.298447169 X=5.775 V(14)=.21665338 X=6.1875 V(15)=.161534439 X=6.6 V(16)=.060439381

Fig. 12 – Decomposition en serie de Fourier du champ E

١.

₩=7

120 DATA .187,.346,.452,.489,.452,.346,.187

PROGRAMME DE SYNTHESE DU PROFIL A PARTIR DE LA CONNAISSANCE DU CHAMP ELECTRIQUE SUIVANT Y

INTRODUCTION DES DONNEES DE BASE

100 F = 03:LG = 153:A1 = 66:EE = EI:N = 16

150 LG = 153

```
C0(1)=1
C0(2)=-7.79988713E-11
C0(3)=-2.42462819E-05
C0(4)=2.82748269E-11
C0(5)=-1.83192496E-04
C0(6)=3.71334387E-11
C0(7)=-1.79793733E-06
C0(8)=0
```

El=.995 LL=3.95743559

	and a start of the start	ale angener ta	EPR(MIN)=.89	EPR(MAX)=1.07
12514=0	FPR(0)= 89	and a specification of the	C. S. M. Partine .	
T2FTA= .05	FPR(1)=.94	and the second second	the same links over	where which have not
TZETA= 1	FPR(2)=1.02		(4) (编句a) (古明句a) (1) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	Man Name and and
TZETA= 15	EPR(3)=1.07	The data and the part of the	A.S. A.S. 《《新门的》	
77FTA= .2	FPR(4)=1.07	all the star of the second	"外,一位而且"的原因	Fight Strack Strategies .
17FTA= 25	EPR(5)=1.05	the taken of the second		AND THE TOTAL
17FTA= .29	EPR(6)=1.04	and the second s		Example to investig in the
T7FTA= 34	FPR(7)=1.02	1		Shitter the state
TZETA= . 39	EPR(8) = .99			14-11、14、1964年1月1日日日
17FTA= . 44	FPR(9) = .97			· 建立、自己的公司的公司。 · · · · · · · · · · · · · · · · · · ·
17FTA= . 49	FPR(10) = .98			The second states and the
T2FTA= 54	EPR(11)=.99	1		A12 24 24 20 1. 60
12FTA= .59	FPR(12)=.99	COLUMN THE PARTY		The state of the second
17FTA= . 64	EPR(13)=.99			52- West States and States
17FTA= . 69	EPR(14) = .98			1944
12FTA= .74	EPR(15)=.98			
17FTA= . 79	EPR(16)=1			
T2FTA= .83	EPR(17)=1.02			
T7FTA= .88	FPR(18)=1.03	the state of the state of the state of the	·····································	《圣圣》的《张帝书》字书书》 一 " .
T7FTA= .93	EPR(19)=1.01			
TZETA= . 98	EPR(20)=1.01			
T2FTA=1.03	EPR(21)=1.02	Section of the		
T7FTA=1.08	B EPR(22)=1.04	particular in a based	- martine and Michael	CAREA DUE SU
T7FT4=1.1	EPR(23)=1.03	distant out the second state of a	the section is a state of a	TRACTAR IN CONTRACTOR
12FTA=1.1	B EPR(24)=1.01	and the second second second second	The same in the same for the same	and the second of the second second
T7FTA=1.2	3 EPR(25)=1	and the second second second		
T2FTA=1 2	8 FPR(26)=.97			
T7FTA=1 3	3 EPR(27)=.93	1	STREAM STREAM	A SPACE A STATE A DOCTOR OF
17FTA=1 3	7 EPR(28)=.92		新闻 法义	And the set of the second
T2FTA=1 4	2 EPR(29)=.94	1	ングのたまたらったでい	111月中日 キャーモデルダイモー ション・ション
17FTA=1.4	7 EPR(30)=.96	1		
T7FTA=1 5	2 FPR(31)= 97		法公司得关部(法)=	NUSS 2 1 1-129 - 111
1/FTA=1.5	7 EPR(32)=.97			
		EPR	(moyen)=1.03615385	

and the state of the

Fig. 13 - Reconstition du profil dielectrique dans le guide vide.

En passant par un lissage (Interpolation de NEWTON) de la coube pratique (fig. 11) nous avons pu y remédier et obtenu des résultats plus intéressants, les résultats sont montrés aux figures 12, 13.

Nous avons également fait des mesures en remplissant inhomogénement le guide d'onde avec le plexiglas ($\epsilon_r = 2.56$). Des mesures du champ électrique sont montrées à la fig. 14. Le calcul de profil diélectrique à partir de la connaissance

Fig. 14 - Guide rempli inhomogènement par le plexiglas

du champ électrique a été fait par la même méthode. Mais, nous n'avons pas obtenu des resultats éscomptés. Par ce fait, nous constatons que la méthode de détermination du profil de la constante diélectrique à partir de la connaissance du champ électrique décomposé en série de Fourier ne donne pas des resultats appréciés dans les cas des discontinutés abrupts.

CONCLUSION

A partir de quelques mesures physiques en propagation quidée (fréquence, longueur d'onde guidée, quelques valeurs discrètes de \vec{E}_y en LSE₁₀) il est possible de reconstituer le profil ϵ_r et aussi de caractériser un matériau inhomogène par une technique micro-ondes.

Le reconstitution d'un profil de constante de diélectrique dans des milieux inhomogene est d'un grand intêret. Toutefois la mèthode étudiée pouma etre ameliorée pour traiter le cas general d'un guide rempli d'un milieu inhomogène et avec perte.

Une mesure du champ suivant la composante $\vec{E_y}$ avec eventuellement une acquisition des données peut permettre une reconstruction automatique de profil.

BIBLIOGRAPHIE

- 1. R. COLLINS: Theory of Waveguides, McGraw-Hill, 1960.
- 2. A.R. VON HIPPEL: Les diélectriques et leurs applications, Dunod, 1961.
- E. MATAR: Contribution à l'étude de la propagation libre et guidée dans les diélectriques homogènes et inhomogènes. Thèse de 3 éme Cycle, E.N.P., Toulouse, 1981.
- D.A. HOLMES: Propagation in rectangular waveguides containing inhomogeneous, anisotropic dielectric. IEEE Trans. on Microwave Theory and Technics. Vol. MTT 12, 1964.

- 5. A. WEXELER and D.A. HOLMES: Acceptable mode types for inhomogeneous media, IEEE Trans. Microwave Theory and Technics. Vol. MTT 13, 1965.
- 6. K.F. CASEY: On inhomogeneosly filled rectangular waveguides IEEE Trans on Microwave Theory Technics. Aout. 1973.
- 7. E.T. WITTAHER and G.N. WATSON: A course of modern analysis. Cambridge Univ. Press, London, 1963.
- 8. W. MAGNUS: Infinite determinants associated with Hill's equation, I. Math. vol. 5.1955.
- 9. S. BELKECEMI: Contribution a la mesure en hyperfréquences de permittivité de materiaux diélectriques. Thèse de 3 éme cycle ENSEEIHT Toulouse, 1981.
- 10. A. BABA-HAMED: Mesure de constantes diélectriques à inhomogenité monodimensionnell. Thèse de Magister, Université de Tlemcen, 1984.
- 11. C. NOWAKOWSKI: Méthodes de calcul numerique. Edit. P.S.I., 1981.

and the State of the

12. S. LEFEUVRE: Hyperfrequences, Dunod, 1976.