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ABSTRACI' 

Elastic and geometric stiffness matrices for a structural stiffener member are obtained using the 

differential equations given by Chen and Atsuta4
. Presence of additional elements over the conventional 

form is observed in the geometric Stiffness matrix . The known transformatian matrix is used to express the 

elements displacements with respect to the middle surface of the st iffened plate. 

INTRODUCTION 

Elastic and geometric stiffness matrices are obtained by Akkoush 1
, Barsoum2

, Tebedge8
, and 

Rajasekaran5 using the approximate displacement field along the element length. Chaudhary3
, Krajcinovic 7 

and Chen and Atsuta4 obtained the stiffness matrix of the beam columns using the beam differential equa

tions. 

This work deals with the derivation of the elastic and geometric stiffness matrices using the exact 

displacement functions. The solution of the beam differential equations is given by Chen and Atsuta4
• In 

reality, u nder the general conditions of loading, the differential equations of the beam columns are coupled 

with each other. These equatiQns are uncoupled assuming that the axial force is applied at the shear center 

of the beam column or the seetion of the element has double symetry . 

DIFFERENTIAL EQUA TION SOLUTION 

Figure 1 shows a beam with a unsymetric cross seetion subjected to an axial force of magnitude N 

at the shear center. 
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Figure 1 - Beaın subjected to axial force 

Then, the differential equation can be written as4
• 

~Aw " = O 

EI u ' v + rlu " = O y 

EI IV . 11 xv + Nv o 

EJ ,/)' V - ( GK + K) (:) " = o 

( 1) 

( 2) 

(3) 

(4) 

In which u, v and w are the displacements of the shear center along the x, y and z axes; respecti

vely; and 8 is the counterclockwise rotation of the cross ~ction about the z axis. Other terms in Eqs. 1,2, 

3 and 4 are 

K .Nr2 

2 <-t) ( lx+ly) + 
2 2 

r = X + Yo o 

GK 1 ~ 3 ) G bi ti 

Forces and displacements at the nodes are related by the stiffness· relationship. Since warping is . 

considered only in the z direction of the element, there are seven forces and seven displacements at each 
node, as shown in Fig. 2. 

The element stiffness matrix K (14x14) is computed by solving the uncoupled Eqs. 1, 2, 3 and 4 

separately. Further, the seetion properties are as,sumed to be constant w ith in the element. Solution of the 
above differential equations are as follows : 
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Figure 2 -- Forces and displacements of an element 

1. Axial Deformation 

The element 1-2 is subjected to the axial and forces Fz1 and Fz2 and the node displacements are 

Wz1 and W z2 as shownin Fig. 2. Equation 1 is the differential equation of the axial deformation. The gene

ral solution of Eq. 1 is 

(5) 

Where D 1 and D2 are arbitrary constants. The nodal displacements and forces can be written in 

terms of these constants. 

The displacements at the nodes 

( 6 ) 

and nodal forces 

ı F z 1ı = EA f -W ı (O) ı = EA [ O -
1 ı ı D 1 ı 

F 2 l W ı ( L) O 1 l D2 z . 

{7) 

Eliminating the arbitrary constants between Eqs. 6 and 7, the axial stiffness re lationship is 

(:::ı = Et [_: -: ]{::} 1 
( 8 ) 

2 . Bending and Shear Deformation 

Equations 2 and 3 are the governing differential equations of the beam element for the 

bending and shear deformation u nder the applied axial loacl P. The general solution of the Eq. 2 is 
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( 9) 

where 

(10) 

and N is the axial compressive force, 

(11) 

Similarly, nodal forces F x 1• F x2• My 1 and My2 and the nodal displacemen~ can be wrltten 
in terms of arbitrary constants as 

and 

EI 

where 

u( O) 1 

- u '(O) o 

= 
u(.1 ) 

-u' ( 1 ) 

u'"{ o ) + k~ u 1 ( o ) . 

u"(O) 

y -u'"(1) - k 2u '(1) y 

' -u"(L) 

o 

-k y 

-k s y y 

o 

-1 

o 

Cy 

o 1 

-1 o 

1 1 
( 12) 

-1 o 

o 1 o 

o o o 
( 13) 

o -1 o 

o o 

(14) 

Eliminating A 1 • ••••• A4 between Eqs. 12 a:nd 13, the bending and shear stiffness relation about 

they axis is 

•. 
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( Fx1 s k (Cy-1) - s k y y yy 

( Cy-1 )k~ (1-Cy)k~ M EI k2 (k;.cY-sY)kY y1 
= y y 

.Fx2 
2- 2C -k LS - s k y y y y y (1-C )k Syky 

fviy 2 J 

y y 

( Gy-1 )k~ ( sY-kYL )kY (1-C )k2 
y y 

r1 
gy1 

l " 2 

()y2 

Ina similar way the bending and shear stiffness relationship about the x axis is 

Fy1 

Mx1 

Fy2 

liix2 

Sxkx 

EI k2 
X X 

{1-Cx)k~ 
= 

2- 2C -k~S X X - s k X X 

2 
(1-Cx)kx 

where 

kx = ıfF 
X 

and 

(1-Cx) 

( Sx-kxLCx)kx 

( cx-1) 

(kxL-Sx)kx 

and Sx = Si nk~ 

-s k X X 

2 
(Cx-1)kx 

Sxkx 

( C -1)k2 
X X 

c _;1 
y 

( sy-k;.)ky 

(1-Cy) 

k~(c - s ) y y 

(1 5 ) 

(1-Cx) 

(kxL-Sx)kx 

( cx-1) 

(Sx-k~Cc}kx 

( 16) 

( 17) 

( 18 ) 
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3. Torsion and Warping Deformation 

Equation 4 is the governing differential equation of the beam element for the torsional deforma

tion. The general solution of (q. 4 is 

( 19) 

where 

( 20 ) 

and the arbitrary constants can be determined in terms of nodal displacements of the element as 

Gz1 r(Olt 1 o o 1 B1 ) 

w1 8~(0) o kz 1 o B2 

@z2 ·[e.<L> J 
( 21) 

ez sz L 1 B3 

411 ' 8~(L) kZSZ kZCZ o B4 2 

and the nodal forces 

"•1\ 
f)ırı (O)-k2 (j.'(O) o o -1 0 - B1 z z .z 

Mfııl1 -8"(0) -1 o o o B2 z 2 EIW = kzEiw ( 22) 

"•2 J -tfııı (L) +k2 (}' (L) o o 1 o B3 z z z 

rvıt.J 2 @"(L) ez s z o o B4 z 

where 

sz = SinhkzL and ez = eo ehkzL ( 23) 

Eliminating B1 ••••••••• 8 4 between Eqs. 21 and 22, the torsion and warping stiffness relationship is 

... 
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Jvlz1 Szkz 

2 
M~1 2 ( C -1)k 

kzEiw 
z z 

= 

Mz2 
2- 2C +k LS -s k z z z z z 

M~2 ( Cz- 1)kz 

( Cz- 1) 

(kzLCz-Sz)kz 

(1-Cz ) 

( Sz-kzL)kz 

w 
1 

-s k z z 

(1-C )k2 
z z 

Szkz 

(1-C z)k~ 

c -1 z 

(Sz- kzL)kz 

(1-Cz)kz 

( kzLCz- Sz)kz 

( 24) 

Summing up the above stiffness relationships together the total stiffness matrix for a thin-walled 

element is obtained, which isa matrix of 14th order [K(14x14)l. The nonzero elements of this matrix are 

1xı k ı, 1 u, 

Fy1 k2 , 2 v , 

1 zı k3, 3 SYMETRI C w, 

Mx1 k4, 2 k4,4 $x1 

My1 k5,1 k5,5 8y 1 

Mz1 kfi, 6 $z1 

\.ı k7,7 w, ( 25 ) 

1x2 ka , ı k8,5 ka,a u2 

Fy2 k9,2 k9,4 k9,9 v2 

1 z2 k10,3 kıo, ıo w2 

~2 k11,2 k11 ,4 k11, 9 k11,1 1 ~2 
My 2 k12 , 1 k1 2 , 5 k1 2 ,8 k12,1 2 ~2 
~'~z2 k13,6 k13,7 k13 , 13 ~2 
1\,2 k14 , 6 k14,7 k14 . 14 w2 
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where 
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k 1, 1 = ks,s = 

k2,2 k9,9 = 

k3,3 = k10, 10 = 

k4,4 = k1 1, 11 

k5,5 = k 12, 12 = 

k = k14 ,14 -7 , 7 

k 2 = - k11, 9 = 4, 

Eilk~Sl 
2- 2Cy-kyLSY 

3 
EIXkXSX 

· 2- 2Cx-kx1Sx 

EA 
ı;--

EI k (S -k~Cx) X X X 

2- 2Cx-k~Sx 

EI k (S - k LCY) 
l l l l 

2- 2C - kyLSY y . 

Eiwkz(kzLCz- Sz) 

2- 2Cz+kz1Sz 

-Eiwk~( cz-1 ) 
2- 2Cz+kz1Sz 

/ 



-Eiwkz(kzL-Sz) 

2-2Cz+kzLSz 
( 26) 

Using the Taylor series expansions for the terms Cx, Cy, Cz, Sx, Sy and Sz in Eqs. 26, the nonzero 

elements of the elastic and geometric stiffness matrices are obtained as 

12EI 6N kE(1,1) = kE(8,8) = 7 kG(1,1) = kG(8,8) =-
51 

kE(2 , 2) kE(9,9) 
12EIX 

kG(2,2) ka(9,9) 6N 
= = 

L3 
=-

5L 

kE( 3, 3) kE( 10, 10) AE . kG(3, 3) kG ( 10, 10) = o = =- = 
L 

kE(4,4) kE( 11 , 11) 
4Elx 

kG(4,4) kG ( 11 , 11) 2NL 
= = = 

L 15 

kE(5,5) kE(12,1 2) 
4EIY 

kG(5,5) kG( 12,1 2) 2N1 
= = = 

L 15 

12EJW ~ 2GK -
kE(6,6) kE(13,13)= kG(6,6) kG( 13, 13) 12K 

13 + 10L 
= 

101 

4Elw 2GK -2K 
kE(7,7) kE( 14, 14)= -- + kG(7,7) = kG ( 14 , 14 ) = -

1 151 ·151 

6Eix 
= = 

p 

k.r;( 4, 2) -kE(11,9) 1 2 
kG(4, 2) = -kG(11, 9) 

10 

6EI;l P · 
kE(5 ,1) -kE( 12 ,8) = ., kG(5,1) = -kG( 1_2, 8) = ~ 2 10 J.J 

2EIX 1 
kE(11 ,4) = kG( l1 ,4) = 

L 30 

. .. 

2EI;l 1 ' 
kE(1 2,5) = kG(1 2,5) = 

lı 30 
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2Erw 6KL KL kE{14, 7) = -- kG{1 4,7J = - -
L 30 30 

6Eıw 3GK K kE{14 ,6) = L2 + --- kG{ 14, 6) 
30 10 

And the geometric stiffness matrix can be constructed as fo llows: 

6 
;!; 

6 
;!; 

o 

1 2L SYMETRIC - ıu 1'5 
- 1 2L 
- ıu T5 

6r 2 
n-

2r 2 

[ kGj a(N) 
m 

6 1 6 -;r; -ıu ;!; 

6 1 6 -- 1'U ;r; :>L 

o 1 o 
TO 

1 L 1 2L 
1'U -'3'0' - m 1'5 

1 1 2L 1'U - '3'0' 1'5 
6r2 

6r 2 
- ;r ;r 

r2 r~ 2r2 

10 w .1 15L 

CONCLUSIONS 

E tastic [KE) and geometric [KG] stiffness matrices are obtained using the exact displacement func

tion of the thin-·walled beam elements. The eli}stic stiffness matrix obtained in this study is exact, and also 

includes the St. Yenant and Wagner torsional rigidity effects. The fı rst order terms in geometric stiffness 

matrix are exact to the solutions giYen in (1) and (5 ). The residual terms in geometric stiffness matrix which 

are not shown here are the d ifference between the solut ions by using the exact and approximate displace

ment fu nctions. 

Generally, in nurnerical solutions of the stiffened plate using the e tastic and geometri c st iffness 

matrices are easier. For this reason, elast ic and geometric stiffness matrices are obtained in this study using 

the exact displacement functions. 
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APPENDIX II . 

NOTATION 

The following symbols are used in this paper: 

A = cross-sectional area 

E = modulus of elasticity 

G = rigidity modulus 

lw= warping constant 

lx, Iy = moment of inertia about x and y axis, respectively 

K = St. Yenant torsion constant 

K = bimoment 

L = length of the beam 

N = axial force 
u,v = displacement of shear center in x and y direction, respectively 

x,y,z = co-ordinate axes. 
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