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SUMMARY

The paper presents the use of a numerical solution procedure for the prediction of steady, in-
compressible and two-dimensional turbulent flow in a pipe, in sudden expansions in pipes, and over a back-
ward-facing step using upwind and hybrid discretisation schemes,

The numerical procedure employs a two-equation turbulence model, which entails the solution of
two differential equations of transport for characteristics of turbulence; namely, the kinetic energy of tur-
bulence and its rate of dissipation. The Reynolds stresses are related to the mean velocity gradients through
a scalar turbulent viscosity, calculated from the above turbulence variables. In the near-wall regions, wall
functions are employed. The predictions results from simultaneous solution of differential equations for
conservation of mass and momentum, together with equations describing the transport of turbulence, by
means of a finite-difference solution procedure.

The predictions obtained using upwind and hybrid discretisation schemes are compared with each
other and with published experimental data. For flows in which recirculation is present, the use of hybrid
scheme results in closer agreement with measurements. In general, the predictions made are in good qualita-
tive agreement with experiment.

1. INTRODUCTION

The present investigation is concerned with the prediction of some turbulent flows using upwind
and hybrid discretisation schemes and the two-equation turbulence model® . Three flow situations have
been considered; namely, axisymmetric developing turbulent flow through a pipe, axisymmetric turbulent
flow through circular-sectioned sudden expansions, and finally plane turbulent flow over a backward-facing
step. These flow situations are depicted in Fig. 3.
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Developing turbulent pipe flow is basically a transition from a boundary layer type flow at the
entrance to a fully developed flow downstream. The free stream in the inlet region is completely surrounded
by the boundary layer, which by diffusion of momentum through laminar and turbulent mechanisms grows
in thickness as the distance from the pipe inlet increases. The growing boundary layer accelerates the free
stream which eventually loses its identity as the boundary layer merges with itself. Following the disap-
pearance of the free stream, further changes occur in the velocity distribution and turbulence structure
until the flow attains fully developed state.

Methods of analysis, whether analytical or numerical, for predicting turbulent pipe flow can be
verified by comparison with experimental data reported in the literature (see, for example, Laufer®, Lawn*,
Richman® and Taylor et al.®). The experimental work of Barbin and Jones” forms the basis for comparison
in the present paper.

On the other hand, the flow field of axisymmetric sudden expansion in a pipe is a complicated
phenomenon characterised by flow separation, flow recirculation, and flow reattachment. As illustrated in
Fig. 3(b), such a flow field may be divided by a dividing surface into two main regions, one being the region
of recirculation flow, the other being the region of main flow. The point at which the dividing surface strikes
the wall is called the reattachment point. In the recirculation zone, the high adverse pressure gradient
results in reverse flow and promotes instability and turbulence. Eddies generated in the recirculation zone
and in the vicinity of the reattachment point can be considered as a highly concentrated source of turbu-
lence . The subsequent convection, diffusion, and decay of the turbulent eddies have a dominant influence
on the characteristics of mean flow.

Considerable experimental and theoretical works on turbulent flow through sudden expansions
have been published in the literature. Among the interesting ones are the works of Chaturvedi®, Moon and
Rudinger’, Yang and Yu'?, Novick et al.'! and Rhode et al.'*-'? In the present study, the experimental
measurements of Chaturvedi® and Moon and Rudinger® have been used to validate the upwind and hybrid
discretisation schemes and the two-equation turbulence model.

Recently separation of turbulent flows hasreceived a great deal of attention because of its practical
importance; however, it is still far from well understood. In many real flows, separation of a boundary layer
is followed downstream by reattachment of the separated layer to a solid wall. Flow over a backward-facing
step considered in the present paper is a typical example of separated flows. The physical situation of this
flow is revealed in Fig. 3(c), which consists of a single backward-facing step in a channel. The separation-
reattachment process in this flow is characterised by complex interaction between the separated shear-
layer and the adjacent flow. Downstream of reattachment, the flow returns slowly to the structure of an
ordinary turbulent boundary layer.

Turbulent flow over a downstream-facing step has been studied both experimentally and theoreti-
cally by a number of researchers, among them are: Denham et al.'*, Atkins et al.'*, Thomas et al.'®,
Taylor et al."” and Kim et al.'® In the present context, the experimental data of Denham et al.'* have
been employed for comparison with the calculations. '

The flows just described above have been predicted through the use of a mathematical model,
which gives the local values of components of velocity, pressure and some useful properties of turbulence.
The model comprises a set of non-linear partial differential equations, the simultaneous solution of which
by means of a finitedifference solution procedure yields the local values of flow properties at all points in
the flow domain. The Reynolds stresses arising from turbulence have been represented by a two-equation
turbulence model, which entails the solution of two differential equations of transport for kinetic energy
of turbulence and its rate of dissipation. :

The remainder of the paper is now outlined. The next section provides the equations in a general
form that govern turbulent flow. These equations are then discretised and the approximations made to
model the convective terms are provided for the upwind and hybrid schemes. The two schemes are then

applied to three turbulent flows in Section 4. Finally conclusions drawn from the present work are pre-
sented in Section §,
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2. THE MATHEMATICAL FORMULATION

2.1. The Equations

The time-averaged equations governing steady, incompressible two-dimensional flow in the cylin-
drical coordinate system can be conveniently cast into the following form:
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in which p is the fluid density, uand vare the velocities in the axial (x) and radial (r) directions respectively;
the general variable ¢ can stand for either of the two velocity components; and for ¢ = 1, the above equation
reduces to the continuity equation. Moreover, the general variable ¢ can represent a turbulence quantity,
such as turbulence kinetic energy, k, and turbulence kinetic energy dissipation rate, €. The s and S's are
respectively the exchange coefficient and source/sink terms associated with each ¢-variable; the expressions
for these quantities are given in Table 1. The equations (1) describe also motions in Cartesian coordinate
system when r and dr are set equivalent to one and dy, respectively.
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The use of time-mean equations and the isotropic effective-viscosity concept implied by Table 1,
is complemented by equations of transport that determine the distribution of the properties of turbulence.

It is to the model of turbulence that attention is now turned.

2.2. The Turbulence Model
The turbulence model employed in the present calculations is the k- model' - ?; it necessitates the
solution of two equations of transport for two turbulence quantities; namely turbulence kinetic energy, k,

and its rate of dissipation, €.
Knowledge of the local values of k and € allows the evaluation of a local effective viscosity from

which the turbulent shear stresses are calculated.



With reference to Table 1, the effective viscosity pege is calculated by

k2

Mece = Uy + U, = My + Cup — (2)

where p and Wy are respectively the density and molecular viscosity. e and pegs are respectively the tur-
bulent and effective viscosities. The quantity Cu and the quantities C,, C;, 0y and o_appearing in Table 1,
are the turbulence model constants. The values of which are given in Table 2, and are the same as those
recommended by Launder and Spalding?.

Table 2 — The Values of the Constants Used in the k€

Turbulence Model.
Cu ¢y C, % ¢
0.09 1.44 1.92 1.0 1.3

The generation rate of turbulence kinetic energy, Gy, is:
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2.3. The Wall Functions

In the near-wall region, there is a steep variation in the fluid properties. To avoid the need for
detailed calculations in these regions, algebraic relations are employed to relate the values of the dependent
variables at a point on the wall to those at a point adjacent to the wall; a logarithmic layer is presumed to
exist between these two points.

The wall functions employed in the present study are those recommended by Launder and Spal-
ding?, they are:

velocity parallel to wall
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in which Up, kp, and €p and yp are the values of the velocity parallel to the wall, turbulence kinetic energy
and dissipation rate of turbulence kinetic energy at a near wall point P, a distance Yp from the wall point
w. At the wall point w, the shear stress, Ty 15 known or calculable; the constants E and k are ascribed the
values of 9.0 and 0.4 respectively.

2.4. The Finite Difference Discretisation

Equations (1) are solved, with their appropriate boundary conditions, by integrating them over
finite-difference control volumes that form the physical integration domain considered ; an example of the
grid arrangement is depicted in Fig. 1 where it is seen that the grid is staggered so that velocity components
are situated mid-way between the grid points. The pressure, viscosity and any general scalar variable such as
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Figure 1 — Control volume specification.

kinetic energy of turbulence, dissipation rate of turbulence kinetic energy are located at the grid points.
The main advantage of this arrangement is that the pressure difference between two adjacent grid points
becomes the natural driving force for the velocity component located between these grid points. Now,
consider a single control volume for ¢, as depicted in Fig. 2; integration of equation (1) over this control

volume gives
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in which the A's denote cell-face areas at four points (e, w, n, s) located mid-way between the grid points.
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Figure 2 — Control volume for a scalar variable

The next step in the formulation of a finite-difference equation is the assumption of the variation
of ¢ between any two grid points. The diffusion terms are formulated using the central difference scheme;
and, since this is common practice, further attention will not be given to them. Attention is given to the
convection terms (e.g., the rpug¢ terms). Furthermore, the schemes that are used to approximate the convec-
tion terms are only applied to the convected variable (i.e., ¢ in Eq. (6)); the convecting velocity is discretised
using the central — difference scheme.

i) The Central — Difference Scheme (CDS)

In the central-difference scheme, the value of ¢ at an interface of the control volume is taken as
the average value of the ¢'s at the grid points that lie on either side of the interface of the control volume.
For velocities that are low enough, central-difference scheme is recommended; however, it has been found
that when the grid Peclet number (uAx/I') is greater than 2, the coefficient matrix becomes non-diagonally
dominant' ?. As a consequence, a semi-implicit-type numerical scheme, as normally used, becomes unstable.

ii) The Upwind — Difference Scheme (UDS)

This scheme recognizes that the weak point in the CDS formulation is the assumption that the
convected property ¢ at an interface is the average of the ¢'s at the grid points that lie on either side of the
interface, and it proposes a better resolution. That is, a piecewise-linear variation of ¢ between grid points
is assumed for the diffusive flux, while for the convective flux the value of ¢ convected across an interface
is taken to be the value of ¢ at the grid point on the upwind side of the face; for example, when the convec-
tive flux is calculated across the east face, e, of the control volume, the value of ¢, is expressed as

$. - HF S0,
g =4 F E (7)
¢E it Ue<0 :

This approximation overcomes the stability Broblem associated with the use of the CDS. In the
present study, the upwind-difference scheme is also employed for velocities that are low enough (i,
Pe < 2), even though CDS would be preferable.

iii) The Hybrid — Difference Scheme (HDS)
The hybrid-difference scheme, which was developed by Spalding??, is a combination of both
CDS and UDS; it permits the value of ¢ at an interface of the control volume to be calculated by allowing

the CDS to prevail when P, <2and UDS for P > 2;and for the latter situation the effect of the diffusion
term in the general equation is assumed to be negligible (i.e., zero).
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2.5. The Finite Difference Equations

By introducing the foregoing formulations for the ¢-distributions at the interfaces of the control
volume, the finite-difference representation of the general differential equation (1) can be formed. For
two-dimensional flow, the finite-difference equations are of the following form:
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in which C's are the coefficients which consist of contributions from convection and diffusion, the former
being obtained with the help of the finite-difference scheme selected (i.e., CDS, UDS, HDS). The S's are
components of the source term. Clearly, the C's and S's are uniquely formulated for each finite-difference
scheme. It is to these formulations that attention is now turned.

i) The Upwind — Difference Scheme

The detailed derivation of the C's and S's for UDS and HDS schemes are given in Patankar®®
here the results of manipulating the equations are presented. With reference to Fig. 2, the C's take the
forms given below:
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The brackets [[ ]] signify that the C's are assigned the maximum of the values contained within them.
The source term S¢ in equation (1) is integrated over the control volume shown in Fig. 2 and

linearised to allow dependence on Pp- The result is:
sp(roaxsr) = 84500, (10)

and Table 3 shows the appropriate S, ¢ and S ? for each of the ¢-values; S ? must be negative to guarantee
numerical stability. If there is no real dependence on ¢p, then S Dis SImpIy set to zero.



Table 3 — The Form of the Components of the Linearised Source Term.
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* In this table, V stands for the cell control volume and Gy, is defined in Eq. (3).

ii) The Hybrid — Difference Scheme
The source terms and the convection and diffusion coefficients for UDS given in the preceding
sub-section are the same for HDS; however, the C's have different definitions as follows
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3. THE NUMERICAL SOLUTION PROCEDURE

The numerical solution procedure employed to solve the finite-difference equations was the
well-known SIMPLE algorithm??-2; this algorithm was embodied in the general two-dimensional com-
puter code, named 2|E|FIX, of Pun and Spalding®*. In this computer code the flow variables are calculated
in a semi-implicit line-by-line fashion over a staggered finite-difference grid system (see Fig. 1). Owing to
the semi-implicit nature of the code, under-relaxation factors are used. Since the present study is primarily
concerned with the outcome of the calculations employing this code and not the code itself, readers who
are interested in the details of the 2|E|FIX code may refer to Pun and Spalding*, and Karasu®®.

4. THE RESULTS OF THE PREDICTIONS

4.1. The Physical Situations Considered

In this section, the results of the predictions are presented. Consideration is given to three turbu-
lent flow situations:



i) axisymmetric developing turbulent flow through a pipe;

ii) axisymmetric turbulent flow through circular-sectioned sudden expansions; and

i) plane turbulent flow over a backward-facing step.

The three physical flow situations considered are revealed in Fig. 3 with their appropriate physical
quantities that characterise each flow situation. In the following, each flow situation is studied separately
and in detail; and for flow situation (i) the UDS, for (ii) the UDS and HDS and for (iii) the HDS are eva-
luated in terms of accuracy and computational expense; this latter term implying the number of iteration
cycles required by the computer code to attain a pre-specified level of convergence (i.e., summing all the
terms in each equation over all control volumes in the computational domain and non-dimensionalising
with respect to the influx of the quantity being considered).
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Figure 3 — Physical situations considered.

4.2. Turbulent Flow Through a Pipe

4.2.1. The physical situation considered

In this case the physical situation considered corresponds to the experimental situation of Barbin
and Jones’. The physical situation and coordinate system employed for the predictions is sketched in
Fig. 3(a). - -

Air enters the pipe with a uniform velocity profile, and the flow of air develops along the pipe.
In the inlet region, the free stream is completely surrounded by the growing boundary layer and accelerates
as the thickness of the boundary layer increases; it loses its identity downstream when the boundary layer
thickness attains a value equal to the pipe radius. Following the disappearance of the free stream, further
changes in the velocity distribution and structure of turbulence occur before a fully developed state is reached.

4.2.2. Boundary conditions

With reference to Fig. 3(a), the boundary conditions for the physical situation here considered
are given below.

At the entrance to the pipe (i.e., x/d = 0), a uniform bulk velocity (Up) corresponding to the
experimental condition is prescribed, while the radial velocity v is specified as zero. The distribution of the
turbulence quantities is prescribed by reference to the pipe radius and the bulk inlet velocity (i.e., k =
0.03Ub2, €= Cuk3/2/0‘03R)' At the exit of the pipe, a condition of zero axial gradient is specified for all
dependent variables (i.e., 3¢/dx = 0) except radial velocity v, which is set equal to zero. At the pipe wall u

=g



and v are set equal to zero. At the symmetry axis, v is set equal to zero, and a condition of zero radial
gradient is specified for all dependent variables, i.e., 3¢/or =0

For the components of velocity in the near-wall region, the specified boundary conditions are the
components of the wall-shear stress in the direction of the velocity. This component is identically zero for
the velocity component normal to the wall, and is calculated from the wall functions described in Section
(2. 3) for the other velocity component.

The value of k for the near-wall grid point is calculated from the regular k-balance equation using
the wall functions described in Section (2. 3), while the value of € is fixed according to Eq. (5).

4.2.3. Some computational details

Since the flow in the pipe is axisymmetric, computations were performed only for half of the pipe
diameter. The computational grid used possessed 34x12 grid points in the x- and r-directions, respectively.
It was distributed non-uniformly in both x- and r-directions, with particularly more grid points placed in
the near wall region where steep gradients of dependent variables were expected. The length of the calcula-
tion domain extended 48 diameters downstream from the pipe inlet. For this grid a well-converged solution
was attained after 25 iteration cycles of the computational flow domain.

The convergence criterion was obtained by specifying that the residuals to each equation, defined by

E‘ (convection + diffusion + source)

all cells

inlet flux of ¢

to be less than 10™* for all equations; to obtain this level of convergence required (for the grid size quoted
above) 43 secs. central processing unit time on Pokey computer of TOPS-20 timesharing operating system
of the University of Southern California.
For this case the under-ralaxation factors used in the predictions for u, v, k, €, p and Heg were
0.6,0.6, 0.8, 0.8,0.5 and 0.3, respectively.

'4.2.4. Presentation and discussion of results

The results of predictions for this case were obtained using the UDS scheme, and are presented in
Figs. 4 to 6 for a Reynolds number of 3.88x10°. The predictions are compared with experimentéi data of
Barbin and Jones’. :

Figure 4 shows the development of radial profiles of axial velocity along the pipe in dimensionless
form u/uy, and radial distance r/R. From the figure it is seen that the predicted profiles compare favourably
with the corresponding experimental ones, although some discrepancies are observed in the core region at
dimensionless axial locations x/d = 28.5 and 40.5. The discrepancies in this region are probably generated
by the UDS scheme, which, for velocities that art large enough, neglects the diffusion (see, for example,
S.V. Patankar?®,and M.A. Leschziner?®).

The development of the axial velocities in the downstream direction, at various axial locations is
revealed in Fig. 5. It is noted that close to the wall, the predicted axial velocities develop far more rapidly
than in the core region of the pipe. This behaviour is in accord with the experimental findings of Barbin
and Jones’. The predicted axial velocities, like the experimental ones of Barbin and Jones’, did not attain
the fully developed state at the last axial location in the pipe; a longer length is needed to reach the fully
developed state.

In Fig. 6, the wall-shear stress dlstrlbutlons in dimensionless form T, /1' wd and axial distance x/d,
are displayed. Here, the wall-shear stress is non-dimensionalised with respect to the wall-shear stress, y,qs

at axial location x/d = 15, where it attained its fully developed value. Agreement between the PT‘-‘d'CtEd
and experlmental distributions is reasonable.
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Figure 5 — Comparison of predicted variation of axial velocity along pipe with experimental data of Barbin
and Jones’.
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For this case the 34x12 grid employed proved adequate and local refinements of the grid did not
result in an appreciable increase in the accuracy of the predictions.

Computations were also performed, with the same 34x12 grid size, using the HDS scheme; however,
the results obtained were exactly the same as those for UDS scheme. For this reason they were not presented.

To test further the performance of UDS and HDS schemes, more severe flow situations are required.
That is, flow situations that possess recirculation zones in which flow reversals are present. It is for this
reason that attention is turned to the turbulent flow through sudden expansions in pipes.

4.3. Axisymmetric Turbulent Flow Through Sudden Expansions in Pipes
4.3.1. The physical situation considered

The physical and flow configuration of the sudden expansion pipe flow is revealed in Fig. 3(b).
Two types of flow configurations were studied: one with an expansion ration of D/d = 2, and the other of
1.428. The former corresponds to the experimental situation of Chaturvedi®, while the latter corresponds
to the experimental situation of Moon and Rudinger®. A§ seen from the figure, the flow is assumed sym-
metric about the centreline axis. Immediately after the step, and bounded by the larger diameter pipe, there
is a recirculation zone in which flow reversal is present. The main flow in the core region, which is initially
surrounded by the inner surface of the recirculation zone, gradually adjusts itself until it attains the fully
developed condition further downstream.

4.3.2. Boundary conditions

)

The boundary conditions for the two types of flow configurations studied are given in the following.
At the inlet to the sudden expansion pipe, a uniform mean axial velocity (Uo) corresponding t0
the experimental conditionis specified, while the radial velocity vis set equal to zero. The turbulence kinetic
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energy k and its dissipation rate € are assigned uniform values (i.e., k = O.OOSUOZ, €= C“k3'f2,’0.03(0/2),
where Uo is the mean axial velocity at the inlet). At the side-wall, velocity components u and v are put
equal to zero. At the exit of the sudden expansion pipe, where the flow is parabolic, a condition of zero
axial gradient is prescribed for all dependent variables (i.e., 3¢/dx = 0) except radial velocity v, which is
set equal to zero. At the top wall u and v are put equal to zero. At the axis of symmetry, a condition of
zero radial gradient is specified for all dependent variables (i.e., 3¢/dr = 0), while radial velocity v is set to
zero.

As described in sub-section (4.2.2), the values of k and ¢ at the nearwall grid points are calculated
using the wall functions described in Section (2.3).

4.3.3. Some computational details

The computational finite-difference grid distribution for experimental flow configuration of
Chaturvedi® is depicted in Fig. 7. It possesses 26x20 grid points in the x- and r-directions, respectively.
Its distribution is non-uniform in both x- and r-directions, with more grid points spaced in the near-wall
regions and recirculation zone of the sudden expansion where steep gradients of deﬁendent variables are
expected. The length of the computational domain in the streamwise direction was taken to be 12.5D
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Figure 7 — Finite-difference grid distribution for axisymmetric sudden expansion of Chaturvedi®.
Expansion ratio: D/d = 2.

(D is the diameter of the sudden expansion pipe), so that the exit boundary conditions had no effect upon
the details of the flow. On the other hand, the finite difference grid used for experimental flow configuration
of Moon and Rudinger’ had 33x18 grid points in the x- and r-directions, respectively; and was distributed
non-uniformly in the respective directions. The length of the calculation domain for this grid extended 18D
downstream from the inlet section of the sudden expansion pipe.

For 26x20 grid using the HDS scheme, a well-converged solution was achieved after 475 iteration
cycles, and the computational time required was 14.45 min. on Pokey computer of TOPS-20 timesharing
operating system of the University of Southern California. For the same grid size employing the UDS
scheme, a well-converged solution was obtained after 456 iteration cycles, and the computational time
required was 11.25 min. on the same computer. On the other hand, for 33x18 grid size employing the
HDS scheme, a wellconverged solution was reached after 398 iteration cycles, and the required compu-
tational time was 8.033 min. For the same grid size using the UDS scheme, the number of iteration cycles
performed to obtain a well-converged solution was 447, and the computational time needed was 8.5 min.
Convergence criteria were again chosen as 107 3 for each equation.

For the grid sizes quoted above, the under-relaxation factors employed in the calculations for
u, v, k, €, pand pege were 0.3,0.3,0.5,0.5, 0.5 and 0.3, respectively.

4.3.4. Presentation and discussion of results
In this case the results are presented for two sudden expansion configurations of different expan-

sion ratios.

B |



The first flow configuration, which represents the exper imental situation of Chaturvedi®, has an
expansion ration D/d = 2. The computations were performed for a Reynolds number (Re =ud / v, where
U is the mean axial velocity in the smaller pipe) equal to 2.2x10° using a 26x20 grid. This grid, shown
in Fig. 7, was considered adequate to predict the flow. For this reason, grid refinement tests were not
carried out.

Figs. 8(a) and (b) display the predicted radial profiles of axial velocity obtaincd using the HDS
and UDS schemes, and their comparisons with the experimental measurements of Chaturvedi®, in terms of
dimensionless form u/u,, and radial distance r/D, at various axial locations in the sudden expansion pipe.
From the figures it is seen that the predicted profiles exhibit good qualitative agreement with the corres-
ponding measured ones, and that the agreement between the predicted and measured profiles at downs-
tream axial locations becomes better. Furthermore, it is noticed that the predicted profiles obtained using
the HDS scheme are in closer agreement with the corresponding experimental ones than those obtained
using the UDS scheme. Also the discrepancies between the predictions made using the HDS and UDS
schemes diminish as the flow develops along the sudden expansion pipe; and, at axial locations x,’i) =4 and
11 both predictions coincide. However, as observed in Fig. 8(a), the length of the recirculation zone is
underpredicted, and the predicted rate of spread of the round jet is too high, i.e., the predicted thickness
of the recirculation zone is too small. The source of this problem is a limitation of the present k-e turbulence
model. The model does not account for the time lapse between extra turbulent energy being supplied and
the effect being felt in the dissipating motions.
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Figure 8 (a) — Comparison of predicted radial profiles of axial velocity with experimental data of Chatur-
vedi® for an axisymmetric sudden expansion. Expansion ratio: D/d = 2.
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Figure 8 (b) — Comparison of predicted radial profiles of axial velocity with experimental

data of Chaturvedi® for an axisymmetric sudden expansion. Expansion ratio:
D/d=2.
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The second flow configuration, which corresponds to the experimental situation of Moon and
Rudinger’, possesses an expansion ratio D/d = 1.428. The calculations were made for a Reynolds number
(Re = uod | v, where u is the centre-line velocity of fully developed turbulent velocity profile in the
smaller pipe at the entrance of the larger one) of about 2.8x10° employing a 33x18 grid. This grid was
considered adequate for the calculations.

The predicted radial profiles of axial velocity obtained by the use of the HDS scheme are displayed
in Fig. 9 as a function of the dimensionless distance from the wall, y/D, at various axial locations in the
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Figure 9 — Predicted radial profiles of axial velocity for axisymmetric sudden expansion
of Moon and Rudinger® . Expansion ratio: D/d = 1.428.

sudden expansion pipe. Also shown in this figure is the predicted radial profile of axial velocity at x/D =
0.75 (dashed curve) obtained through the use of the UDS scheme. This figure is intended to show the deve-
lopment of the flow field as a function of the non-dimensional distance from the step, x/D. It can be seen
that there is no flow reversal for x/D greater than about 0.75. It also may be noticed that the centre-line
velocity decreases gradually with increasing distance from the step; thus, the flow from the smaller diameter
pipe into the larger diameter one acts at first as if it were a free jet. At x/D =3, the predicted centre-line
velocity drops to 46.57 m/sec, while the experimental value reported by Moon and Rudinger® ise 38 m/sec.
This indicates a difference of 8.57 m/sec between the predicted and measured values. However, it is reported
that the estimated uncertainty in individual data points of Moon and Rudinger® could be as high as 4 m/sec.
The velocity profile at x/D = 16 reveals that the velocity distribution approaches the shape of a fully deve-
loped turbulent flow.



Figure 10, which gives a comparison between the predicted and experimental radial profile of
axial velocity at x/D = 0.75, shows that the predicted profile obtained with the HDS scheme is in better
agreement with the experimental one than that obtained with the UDS scheme, moreover, the HDS scheme
predicts a small recirculation near the wall, while the UDS scheme does not (see also Fig. 9). Furthermore,
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Figure 10 — Comparison of predicted radial profiles
of axial velocity with experimental data
of Moon and Rudinger® for an axisym-

metric sudden expansion. Expansion ra-
tio: D/d = 1.428.

this figure indicates that the predicted rate of spread of the round jet is too high, i.e., the recirculation zone
thickness is too small. As stated in the first flow configuration above, the source of this problem is a limi-
tation of the current k-¢ turbulence model which does not account for the time lapse between extra turbu-
lent energy being supplied and the effect being felt in the dissipating motions.

Figure 11 is a comparison of the predicted and experimental centreline velocity decay. As seen
from the figure, the predicted decay in the initial region is faster and slightly slower downstream of the
recirculation zone. 1t should also be noted that the HDS scheme gives better agreement with the experiment
in the initial region than the UDS scheme; however, downstream of the recirculation zone both predictions

coincide. In general, the agreement between the predicted and experimental decay of the centre-line velecity
is qualitative.
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Figure 11 — Comparison of predicted centre-ine velocity with experimen-
tal data of Moon and Rudinger® for an axisymmetric sudden
expansion. Expansion ratio: D/d = 1.428.
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4.4. Turbulent Flow Over a Backward-Facing Step

4.4.1. The physical situation considered

The physical situation considered is depicted in Fig. 3(c). It is a plane channel which has a step of
height h and a total height of 3h; the expansion ratio being 3/2. A characteristic parameter governing the
flow is the Reynolds number based on the step height h, and the mean axial velocity u, upstream of the
step, i.e., Rey, = uoh/u—. The flow over the backward-facing step was calculated for a Reynolds number of
3025.

4.4.2. Boundary conditions

With reference to Fig. 3(c), the boundary conditions for flow over a downstream-facing step here
considered are as follows:

At the step inlet plane (i.e., x/h = 0) axial velocity distribution from measurements of Denham et
al."* is prescribed, while the component of velocity in the y-direction is set to zero. The turbulence quan-
tities k and € are given uniform values (i.e., k = 0.005 u02, €= Cuk3"’2/0.03(3h)). At the step wall, velocity
components u and v are set equal to zero. At the channel exit plane (i.e., x/h = 29), where the flow is
parabolic, a condition of zero axial gradient is specified for all dependent variables (i.e., 9¢/3x = 0), while
velocity component v is set to zero. At the top and bottom walls, u and v are set equal to zero.

As described in sub-section (4.2.2.), the turbulence quantities k and ¢ at the near-wall grid points
are calculated employing the wall functions given in Section (2.3.).

4.4.3. Some computational details

For this flow situation, the finite-difference grid distribution is shown in Fig. 12. It consists of
32x21 grid points in the x- and y-directions, respectively; and its distribution in the respective directions
in non-uniform, with more grid points located in the initial region and, in particular, in the region just
behind the step where recirculation is present. Its length is 29h from the step.

For this grid employing the HDS scheme, a well-converged solution was obtained after 425 iteration
cycles, and the computational time required was 9.53 min. on Pokey computer. As in the previous flow
situations, the convergence criteria used were 102 for each equation. The under-relaxation factors emp-
loyed in the computation for this problem were the same as those used in the computations for the previous

problems given in sub-section (4.3.3.).
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Figure 12 — Finite-difference grid distribution for flow over a backward-facing step.

4.4.4. Presentation and discussion of results
The predicted axial velocity profiles obtained using the HDS scheme and their comparison with

the measurements of Denham et al.'* for a Reynolds number of 3025 are displayed in Fig. 13, in non-
dimensional form, u/uo, at various axial locations, x/h. It can be seen from the figure, and as in the flow
situations of sudden expansions in pipes of the previous case, that the predicted recirculation zone for flow
over a backward-facing step is shorter in length and thinner in width than the experimental one. As described
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in the previous case, the source of this problem is a limitation of the present k-¢ turbulence model which
does not account for the time lapse between extra turbulent energy being supplied and the effect being felt
in the dissipating motions. However, the predicted profiles are seen to be in generally good agreement with
the corresponding measured ones.

Computations were also made, with the same 32x21 grid size, employing the UDS scheme; however,
the difference between the results of the two schemes was too small for a useful graphical comparison. For
this reason the results obtained with the UDS scheme were not presented.
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Figure 13 — Comparison of predicted axial velocity profiles with measurements of Denham et al' *.

5. CONCLUSIONS

The UDS and HDS discretisation schemes have been applied and evaluated successfully in the
prediction of some turbulent flows in a variety of flow geometries.

In the case of developing turbulent flow through a pipe only the predictions made using the UDS
scheme were compared with the experimental measurements of Barbin and Jones’, since the predictions
obtained employing the HDS scheme were exactly the same as those for the UDS scheme. The predicted
developing axial velocity profiles and wall-shear stress distribution were found to be in good accord with
the experimental measurements.

The calculations of the turbulent flow through sudden expansions in pipes were performed using
both UDS and HDS schemes; it was found that the calculations obtained through the use of the HDS scheme
were in closer agreement with experimental measurements procured by Chaturvedi®, and Moon and Rudin-
ger’ that those obtained by the use of the UDS scheme. However, at downstream axial locations where
there is a single predominant direction of motion, the results of calculations of both UDS and HDS schemes
were seen to coincide. On the other hand, in the initial region where recirculation is present and where
there is no single predominant direction of motion both UDS and HDS schemes predicted a recirculation
zone which was shorter in length and thinner in width than the experimental one. The source of this prob-
lem is a limitation of the current k-¢ turbulence model which does not account for the time lapse between
extra turbulent energy being supplied and the effect being felt in the dissipating motions. In general,
however, the predictions made for turbulent flow through axisymmetric sudden expansions in pipes using
both UDS and HDS schemes were in good qualitative agreement with the experimental measurements.

In the case of turbulent flow over a backward-facing step, measurements for axial velocity profiles
of Denham et al."* were compared with the axial velocity profiles obtained employing the HDS scheme
only, since the axial velocity profiles obtained using the UDS scheme were essentially the same as those for
the HDS scheme. The predicted axial velocity profiles were in generally good agreement with the correspon-
ding measured ones. However, as in the case of turbulent flow through sudden expansions in pipes, the
predicted recirculation zone behind the step was shorter in length and thinner in width than the experi-
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mental one. The source of this problem, as in the flow through sudden expansions in pipes, is a limitation
of the k-¢ turbulence model. The model does not account for the time lapse between extra turbulent energy
being supplied and the effect being felt in the dissipating motions.
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