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SUMMARY 

The paper presents the use of a n urnerical solution procedure for the prediction of steady, in­

compressible and two-dimensiona l turbulent fl ow in a pipe, in sudden expansions in pipes, and over a back­

ward-facing step using upwi nd and hybrid discretisation schemes. 

The nurnerical procedure employs a two-equat ion turbulence model , whi ch entails the solution of 

two differential equations of t ransport for characte ristics of turbulence; name Iy, the kineti c energy of tur­

bulence and its rate of dissipation . The Reynolds stresses are related to the mean velocity gradients through 

a scalar turbulent viscosity, calculated from the above turbulence variables. In the near-wall regio ns, wall 

functions are employed. The predictions results from simultaneous solution of differentia l equations for 

conservation of mass and momentum, together with equations describing the transport of turbulence, by 

means of a tinite-difference solution procedure. 

The predictions obtained using upwind and hybrid d iscretisation schemes are compared with each 

other and with published experimental data . For flows in which recirculation is present, the use of hybrid 

scheme results in closer agreement with measurements. In general, the predictions made are in good qualita· 

tive agreement with experiment . 

1. INTRODUCTION 

The present investigation is concerned with the prediction of some turbulent flows using upwind 

and hybrid discretisation schemes and tlıe two-equation turbulence model ' · 2 • Three f low situations have 

been considered ; name Iy, axisymmetric developing turbulent flow through a pipe, axisymmetric turbulent 

flow through circular·sectioned sudden expansions, and f ina ll y plane turbulent flow o ver a backward-facing 

step. These flow situations a re depicted in Fig . 3. 
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Devetoping turbulent pipe flow is basically a transition from a boundary layer type flow at the 

entran~e to 'a fully developed flow downstream. Thefree stream in the inlet region is completely surrounded 

by the boundary la yer, which by diffusion of mo mentum through laminar and turbulent mechanisms grows 

in thickness as the distance from the pipe inlet increases. The growing boundary la yer accelerates the free 

stream which eventually loses its identity as the boundary layer merges with itself. Following the disap· 

pearance of the free stream, further changes occur in the velocity distribution and turbulence structure 

until the flow attains fully developed state. 
Methods of analysis, . whether analytical or numerical, for predicting turbulent pipe flow can be 

verified by comparison with experimental data reported in the literature (see, for example, Laufer3
, Lawn4

, 

Richman5 and Taylor et al. 6 ). The experimental work of Barbin and Jones 7 forms the basis for comparison 

in the present paper. 
On the other hand, the flow field of axisymmetric sudden expansion in a pipe isa complicated 

phenomenon characterised by flow _separation, flow recirculation, and flow reattachment. As illustrated in 

Fig. 3{b), such a flow field may be divided by a· dividing surface into two main region s, one being the region 

of recirculation flow, the other being the region of main flow. The point at which the dividing surface strikes 

the wall is called the reattachment point. In the recirculation zone, the high adverse pressure gradient 

results in reverse flow and promotes instability and türbulence. Eddies generated in the recirculation zone 

and in the vicinity of the reattachment po int can be considered asa highly concentrated source of turbu· 

lence . The subsequent convection, diffusion, and decay of the turbulent eddies have a dominant influence 

on the characteristics of mean flow. 

Considerable experimental and theoretical works on turbulent flow through sudden expansions 

have been published in the literature. Among the interesting ones are the works of Chaturvedi8
, Moon and 

Rudinger9
, Yang and Yu 10

, Novick et al. ı ı and Rhode et al. 1 2 ·ı 3 In the present study, the experimental 

measurements of Chaturvedi8 and Moon and Rudinger9 have been used to" validate the upwind and hybrid 

discretisation schemes and the two-eqtiation turbulence model. 

Recently se paration of turbulent flows has received a great deal of attention because of i ts practical 

importanc~; however, i't is stili far from well understood. In many real flows, separation of a bounda.ry layer 

is foıiowed d~wn.stream by reattachmc:nt of the separated la yer to a solid wall. Flow over a backward-facing 

step considered in the present paper is a typical example of separated flows. The physical situation of this 

flow is revealed in Fig. 3_(c), which consists of a single backward-facing step in a channel. The separation· 

reattachment process in this. flow is characterised by complex interaction between the separated shear· 

la yer and the adjacent flow. Downstream of reattachment, the flow returns slowly to the structure of an 

ordinary turbulent boundary la yer. 

Turbulent flow over a downstream-facing step has been studied both experimentally and theoreti­

cally by a numb~r of researchers, ~mong them are: Denham et a l. 1 4 , Atkins et al. ı 5 , Thomas et al. ı 6 , 

Taylor et a l. ı 7 and Kim et al. 1 8 In the present context, the experimental data of Denham et al. ı 4 have 

been employed for comparison with the cafculations. . 

The flows just deseribed above have been predicted through the use of a mathematical moc:Jel, 

which gives the lo cal values of components of velocity, pressure and so me useful properties ofturbulence. 

The model comprises a set of non-linear partial differential equations, the simultaneous solution of which 

by means of a finite-difference solution procedure yields the lo cal values of flow properties at all points in 

the flow domain. The Reynolds stresses arising from turbulence have been represented by a two-equation 

turbulence model, which entails the solution of two differential equations of transport for kinetic energy 
of turbulence and its rate of dissipation. 

The re mainder of the paper is now outlined. The next seetion provides the equations ina general 

form that govern turbulent flow. These equations are then discretised and the approximations made to 

model the convective terms are provided for the upwind and hybrid schemes. The two schemes are then 

applied to three turbul~nt flows in Seetion 4. Finally conclusions drawn from the present work are pre­
sented in Seetion 5. 
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2. THE MA THEMATICAL FORMULA TION -

2.1. The Equations 

The time-averaged equations governing steady, incom.pressible two-dimensional flow in the cylin­

drical coordinate system can be conveniently cast into the following form: 

a [ ı a a a,ı., ı a a,ı., - pu<t>]+--- -[ p rv<t>]--[r ~]-- -[rr ~1 
ax r ar ax <t>ax r a r <t>a r ( ı ) 

in which p is the fluid density, u and v are the velocities in the axial (x) and radial (r) d irections respectively; 

the general variable ıp can stand for either of the two velocity conıponents; and for ıp= 1, the above equation 

reduces to the continuity equation. Moreover, the general variable ıp can represent a turbulence quantity, 

such as turbulence kinetic energy, k, and turbulence kinetic energy dissipation rate, €. The r•s and S's are 

respectively the exchange coefficient and sourcejsink terms associated with each ep-variable; the expressions 

for these quantities are given in Table l..The equations (1) deseribe also motions in ~rtesian coordinate 

system whenrandar are set equivalent to one and ay, respectively. 

Table 1 - Expressions for the Exchange Coe{ficients, r ıp and Source Terms, Sıp for Any 
Conserved General Property, ıp. 

Conservation of <1> r <l> s <l> 

Mass o o 

Axial momenturo u .. 
ı.ıeff - ~+ 

ax 
a a u ı a [ av] 

ax [ı.ıeff a;zl + r ar rı.ıeff ax 

Radial momenturo V ı.ı~ff -
ap a au] ı a [ . av]-ar + . ax [ı.ıeff ar+ r ar rı.ıeff ar Zı.ıeff 

Kinetic energy k 
ı.ıeff 

G - pE 
ok k 

ı.ıeff 
~[CıGk-C2pE] Dissipation rate E 

O E: 

V 

2 
r 

The use of time-mean equations and the isotropic effective-viscosity concept implied by Tab le 1, 

is complemented by equations of transport that determine the distribution of the properties of turbulence. 

lt is to the model of turbulence that attention is now turned. 

2.2. The Turbulence Model 

The turbulenc~ model employed in the present calculations is the k-€ model 1 -
2

; it necessitates the 

solution of two equations of transport for two turbulence quantities; namely turbulence kinetic energy, k, 

and its rate of dissipation, €. 

Knowledge of the local values of k and € allows the evaluation of a local effective viscosity from 

which the turbulent shear stresses are calculated. 
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With reterence to Table 1, the effective viscosity ~ff is calculated by 

(2) 

where p and P.z are respectively the density and molecular viscosity. P.t and p.eff are respectively the tur· 

bulent and effective viscosities. The quantity Cp. and the quantities C 1 , C2, ak and a € appearing in Tab le 1, 

are the turbulence model constants. The values of which are given in Table 2, and are the same as those 
. l 

recommended by Launder and Spalding . 

Table 2- The Valuea of the Con.tant• Uıed in the k -e 
Turbulence Model 

0.09 

The generation rate of turbulence kinetic energy, Gk, is: 

2.3. The Wall Functioiis· 

cr 
e: 

1.3 

(3) 

In the near-wall region, there is a steep variation in the fluid properties. To avoid the need for 

detailed calculations in these regions, algebraic relations are employed to relate the values of the dependent 

variabtes ata point on the wall to those ata point adjacent to the wall; a logarithmic layer is presumed to 
exist between these two points. 

The wall functions employed in the present study are those recommended by Launder and Spal· 
ding2

, they are: 
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velocity parallel to wall 

turbulence energy dissipation rate 

3/4 3/2 
Cıı kp 

K Yp 

(4) 

(5) 



in which UP' kp, and ep and Yp are the values of the velocity paraHel to the wall , turbulence kinetic energy 

and dissipation rate of turbulence kinetic energy at a near wall point P, a distance y from the wall point 
. p 

w. At the wall poınt w, the shear stress, r w• is known or calculable; the constants E and K are ascribed the 
values of 9.0 and 0.4 respectively. 

2.4 . The Finite Difference Discretisation 

Equations ( ı ) are solved, w ith their appropriate boundary conditions, by integrating them over 

fınite-difference control volumes that form the physi cal integration domain considered ; an example of the 

grid arrangement is depicted in Fig. ı where it is seen that the grid is staggered so that velocity components 

are situated mid-way between the grid points. The pressure, viscosity and any general scalar variable such as 

t t t t t t 1 

- ~ - - - - - -
--·---4ı ' f i ;-t t ;-t t ı t 3 ı ---, 1 

-+- ı ı 
1 
~ ---, t- - - ---+- --.::.:. 

1 ı 2 1 

~-t -----~' t L_1 _·_J t r-----n ·GRID 
J DINT 

---, .._ - - - - _, s 

y or 

ltt, 
r- -., 5 1 /~RI O 

r . t t 
ı 

t 
ı 

t t~----f ı t. ı 
ı ı Ll NE - .-!._ ---.!.._ - - -

-t .LJ ı -· . .=J-. -_l --ı r ı r r 

s 

Number 1 2 ı 3 4 5 
Contro l u <l> ·.ı V V u 
Volume Boun d ary and . Bo und ary 
Ty p e Continuit y·ı 

Figure 1 - Control volume specification. 

kinetic energy of turbulence, dissipation rate of tu.rbulence kinetic energy are located at the grid points. 

The main advantage of this arrangement is that the pressure difference between two adjacent grid points 

becomes the natural driving force for the velocity component located between these grid points. Now, 

consider a single control volum e for qı , as depicted in Fig. 2; integration of equation (ı) over this control 

volume gives 

[rpu$-rf$ ~ !]/e$ - [rpu$-rf$ ;!LAw$ +pv$-rf$ ; ~LAn$ 

-[rpv$-rf$ ; ~]. A
5
$ ( 6) 

in which the A's denote cell-face areas at four points (e, w, n, s} l.ocated mid-way between the grid points. 
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Figure 2 - Control volume for a scalar variable 

The next step in the formulation of a fınite-difference equation is the assumption of the variation 

of rp between any two grid points. The diffusion terms are formulated using the central difference scheme; 

and, since this is common practice, further attention will not be given to them. Attention is given to the 

convection ter m s ( e.g., the rpurp terms) . Furthermore, the schemes that are u sed to approximate the convec­

tion ter m s are only applied to the convected variable ( i.e., rp in Eq. ( 6)}; the convecting velocity is discretised 

using the central - difference scheme. 

i) The Central - Difference Scheme ( CDS) 

In the central-difference scheme, the value of ı/> at an interface of the control volume is taken as 

the average value of the rp' s at the grid points that lie on either side of the interface of th~ control volume. 

For velocities that are low enough , central-difference scheme is recommended ; however, it has been found 

that when the grid Peclet number ( ul:ıx{r) is greater than 2 , the coefficient matrix becomes non-diagonally 

dominant 1 9
• Asa consequence, a semi-implicit-type nurnerical scheme, as normally used, becomes unstable. 

ii) The Upwind - Difference S che me ( UDS) 

This scheme recognizes that the weak point in the CDS formulation is the assumption that the 

convected property rp at an interface is the average of the ıj> 's at the grid points that lie on either side of the 

interface, and it proposes a better resolution . That is, a piecewise-linear variation of rp between grid points 

is assumed for the diffusive flux, while for the convective flux the value of rp convected across an interface 

is taken to be the value of ı/> at the grid point on the upwind side of the face; for example, when the convec· 

tive flux is calculated across the east face, e , of the control volume, the value of rp e is expressed as20
: 

if 

if 

u >o e 

u < .0 e 

(7) 

This approximation overcomes the stability problem associated with the use of the CDS. In the 

present study, the upwind-difference scheme is also employed for velocities that are Jow enough (i.e., 

Pe < 2), even though CDS would be preferable. 

iii) The Hybrid - Difference Scheme (HDS) 

The hybrid-difference scheme, which was developed by Spalding2 1 , is a combination of both 

CDS and UDS; it per m i ts the value of rp at an interface of the control vol u me to be calculated by allowing 

the CDS to prevail when Pe < 2 and UDS for Pe > 2; and for the latter situation the effect of the diffusion 

term in the general equation is assumed to be negligible (i.e., zero} . 
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2.5. The Finite Difference Equations 

By introducing the foregoing formulations for the ct>-distributions at the interfaces of the control 

volume, the fınite-difference representation of the general differential equation ( 1) can be for med. For 

two-dimensional flow, the fınite-difference equations are of the following form: 

<P p. = (8) 

in which C' s are the coefficients which consist of contributions from convection and d iffusion, the fo rmer 

being obtained with the help of the fınite-difference scheme selected (i.e., CDS, UDS, HDS). The S's are 

components of the source term. Clearly, the C's and S's are uniquely formulated for each finite-difference 

scheme. lt is to these formulations that attention is now turned. 

i) The Upwind - Difference Scheme 

The detailed derivation of the C's and S's for UDS and HDS schemes are given in Patankar2 0
; 

here the results of manipulating the equations are presented. With reterence to Fig. 2, the C's take the 

forms given below: 

c <P = 
N 

[[ D n<P , D <P -C <P n 
n n 

c<P= s [D <P s , D <P +C <P n 
s s 

(9) 
c <P = 

E 
[D <P e , D <P -C <P n 

e e 
c <P = [[D <P w w , D <P +C <P ]] 

w w 

in which 

D<P = 
r r <P A<P 

c <P =pvr<PA <P <j> ,n n n 
n ô rn n n n n n 

D<P = 
r r <P A<P 

c <P = p u r <P A<P <j> ,e e e ete. 
e ôx e e e e e 

e 

The brackets [[ ]] signify that the C' s are assigned the maximum of the values con~ined within them. 

The source term S ep in equation (1 ) is integrated over the control volume shown in Fig. 2 and 

linearised to allow dependence on ıfıp· The result is : 

S ( r !!,x]). r) = S <P +S <P <P 
<P p u p p 

( 1 o) 

and Tab le 3 shows the appropriate Su ep and SP ep for each of the f/>-values; SP ep mu st be negative to guarantee 

nurnerical stability. If there is no real dependence on ı/Jp, then SP ep is simply set to zero. 
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u 

V 

k 

Table 3 - The Form of the Components of the Linearised Source Term. 

<P >'< S /V 
u 

dp d dU J d ( dV] 
- - + -[ı.ıeff -;:;-] + - ~ n.ıeff ~ d X d X o X r o r o X 

ER a au 1 a [ av1 dr + d X (ı.ıeff ar]+ r ar q.ıeff ar 

1 .5Gk+(C2-1)pe: 

~[C 1 Gk+(C2 -1) pe:] 

S <fı /V p 

o 
2ı.ıeff 

--ı­

r 

(C2pe:+0.5Gk) 

k 

- p ~(2C - t) 
k 2 

* In t his table, V stands for the cell control volume and Gk is defined in Eq. ( 3 ). 

ii) The Hybrid - Difference Scheme 

The source terms and the canveetion and diffusion coefficients for UDS given in the preceding 

sub-section are the same for HDS; however, the C' s have different definitions as follows 

C <P = rro o4> -o.sc4> -c <P n 
N ' n n ' n 

c
5
<P = IT o, o: +O. sc

5
<P , c:]] 

c<P= rro · o<P-o.sc<P -c<Pn 
E ' e e ' e 

(ll) 

3. THE NUMERICAL SOLUTION PROCEDURE 

The nurnerical solution procedure employed to solve the finite-difference equations was the 

well-known SIMPLE algorithm2 2 
• 

2 3
; this algorithm was embodied in the general two-dimensional com· 

puter code, na~ed 21EIFIX, of Pun and Spalding2 4
. In this computer code the flow variables are calculated 

in a semi-implicit line-by-line fashion over a staggered fınite-difference grid system (see Fig. 1). Owing to 

the semi-implicit nature of the code, under-relaxation factors are used, Since the present study is primarily 

concerned with the outcome of the calculations employing this code and not the code itself, readers who 

are interested in the details of the 21EIFIX code may refer toPun and Spalding2 4 , and Karasu2 5 . 

4. THE RESULTS OF THE PREDICTIONS 

4.1. The Physical Situations Considered 

In this section, the results of the predictions are presented. Consideration is given to three turbu· 
lent flow situations: 
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-i) axisymmetric developing turbulent fl9w through a pipe; 

ii) axisymmetric turbulent flow through circular-sectioned sudden expansions; and 
iii) plane turbulent flow over a backward-facing step. 

The three physical flow situations considered are revealed in.Fig. 3 with their appropriate physical 

quantities that characterise each flow situation. In. the following, each flow situation is studied. separately 

and in detail; and for flow situation (i) the uo·s, for (ii) the UDS and HDS and for (iii) the HDS are eva­

luated in terms of accuracy and computational expense; this latter term implying the number of iteration 

cycles required by the computer code to attain a pre-specifıed level of convergence (i.e., summing all the 

terms in each equation over all control volumes in the computational domain and non-dimensionalising 

with respect to the influx ofthe quantity.being conş!d.ered ) . 

(o) 

(1(( {/((( / ( ( ((( / ( /( ( /(( {( ( ( / 

~2h 

J3~ ~ h/~777777777711117~ 
(c) 

Figure 3 - Physical situations considered. 

4.2. Turbulent Flow Throqgh :ıJ .Pipe 

4.2.1. The physical situation considered 

In this case the physical situation considered corresponds to the experimental situation of Barbin 

and J ones7
• The physical situation and coordinate system employed for the predictions is sketched in 

Fig. 3('a). 

Air enters the pipe with a uniform velocity profıle, and the flow of air develops along the pipe. 

In the inlet region; the free stream is completely surrounded by_ the growing boundary layer and accelerates 

as the thickness of the boundary la yer increases; it loses its identity downstream when the boundary layer 

thickness attains a value equal to the pipe radius. Following the disappear~nce of the free stream, further 

changes in the velocity distribution and structure ofturbulence occur before a fully developed state is reached. 

4.2.2. Boundıiry conditions 

With ·reference to Fig. 3(a), the boundary conditions for the physical situation here considered 

are given below. 

At the entrance to the pipe (i.e., x/d = 0), a uniform bulk velocity (Ub) corresponding to the 

experimental condition is prescribed, while the radial velocity vis specifıed as zero. The distribution of the 

turbulence quantities is preseribed by reterence to the pipe radius and the- bulk inlet velocity (i.e., k = 

0.03Ub 2, e = CJ..Ik3/2/0.03R). At the exit of the pipe, a condition of zero axial gradient is specified for all 

dependent variables (i.e., 3rp/3x =O) except radial velocity v, which is set equal to zero. At the pipe wall u 
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and v are set equal to zero. At the symmetry axis, v is set equal to zero~ anda conditioiı of zero radial 

gradient is specifıed for all dependent variables, i.e., acp/'ôr =O. 

For the components of velocity in t he near-wall region, the specifıed boundary conditions are the 

components of the wall-shear stress in the direct ion of the velocity. This component is identically zero for 

the ·velocity component normal to the wall , and is calculated from the waU functions deseribed in Seetion 

(2. 3) for the other velocity component. 

The value of k for the near-wall grid point is calculated from the regular k-balance equation using 

the wall functions deseribed in Seetion (2. 3), while the value of e is fıxed according to Eq. (S) . . 

4.2.3. Some computational details 

Si nce the flow in the pipe is axisymmetric, computations were performed only for half of the pipe 

diameter. The computational grid used possessed 34x12 grid points in the x-and r-directions, respectively. 

lt was d istributed non-uniformly in both x- and r-directions, with particularly more grid points placed in 

the near wall region where steep gradients of dependent variables were expected. The length of the calcula­

tion domain extended 48 diameters downstream f rom the pipe inlet. For this grid a well-converged solution 

was attained after 25 iteration cycles of the computational flow domain. 

The convergence eriterian was obtained by specifying that the resirluals to each equation, defined by 

~ (convection + diffusion + source) · 

all ce ll s 
R<P = 

inlet flux of <P 

to be less than 10- 3 for all equations; to obtain this level of convergence required (for the grid size quoted 

above) 43 secs. central processing u nit time on Pokey computer of TOPS-20 timesharing operating system 

of the University of Southern California. 

For this case the under-ralaxation factors used in the predictions for u, v, k, e, p and p.eff were 
0.6 , 0.6, 0 .8 , 0.8, 0.5 and 0.3, respectively. 

· 4.2.4. Presentation and discussion of results 

The results of predictions for this case were obtained using the UDS scheme, and are presented In 

Figs. 4 to 6 for a Reynolds number of 3.88x105
. The predictions are compared with experimentaldata of 

Barbin and Jones 7 • 

Figure 4 shows the development of radial profil es of axial velocity along the pipe in dimensionless 

form ufub, and radial d!stance r/R. From the fıgure it is seen that the predicted profiles compare favourably 

with the corresponding experimental ones, although some discrepancies are observed in the core region at 

dimensionless axial locations x/d = 28.5 and 40.5. The d iscrepancies in this region are probably generated 

by the UDS scheme, which, for velocities that a~ large enough, neglects the diffusion (see, for example, 
S.V. Patankar20 , and M.A. Leschziner26 ). 

The development of the axial·velocities in the downstream direction at various axiallocations is 
. ' 

revealed in Fig. 5. lt is noted that close to the wall, the predicted axial velocities develop far more rapidly 

than in the core region of the pipe. This behaviour is in accord with the experimental fındings of Barbin 

and Jones 
7

. The pre~licted axial velocities, like the experimental ones of Barbin and Jo~s7 , did not attain 

the fully developed state at the last axial location in the pipe; a longer length is needed to reach the fully 
developed state. 

In Fig. 6, the wall-shear stress distributions in dimensionless form ~ {T d . and axial distance x/d, 
w w' 

are displayed . Here, the wall-shear ,stress .is non-dimensionalised with respect to the wall-shear stress, Twd• 

at axial location x /d = 15, where it attained its fully developed value. Agreement between the predicted 
and experimental distributionsis reasonable. · 
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1.3r------------~ 

1. 
x/d = 40.5 
o 

x/d = 4 .5 

x/ d = 1.5 

Predic tions 

o () ~ • 0 Exper imen t 

Re= 3.88 x 105 

0.4 'iR 0.6 1.0 

Figure 4 - Comparison of pıedicted axial 
velocity profiles with experimen­
tal data of Barbin and Jones 7 • 

1.3,...-------------------------~ 

--- Predictions 

5 

O Exper iment 
Re= 3.88 x 10 5 

o 

10 15 

o 

o 

o 

20 25 
Vd 

o 

o 

30 

o o o o o 
r; R = O 

o o o 
r; R = 0. 499 

r; R =O. 74 9 

35 40 45 

Figure 5 - Compap.son of pıedicted variation of axial velocity along pipe with experimental data of Barbin 
and Jones7

• 
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1.30 
Predicıions 

• Experiment 

Re= 3.88 x 10 5 

• 

• 

Figure 6 - Comparison of predicted dimensionless wall-shear 
stress w ith experimental data of Barbin and Jones; . 

For this case the 34x12 grid employed proved adequate and local refınements of the grid d id not 

result in an appreciable increase in the accuracy of the predictions. 

Computations were also performed, with the same 34x12 grid size, using the HDS scheme; however, 

the results obtained were exactly the same as thosefor UDS scheme. For this reason they were not presented. 

To test further the performance of UDS and HDS schemes, more severe flow situations are required. 

That is, flow situations that possess recirculation zones in which flow reversals are present. lt is for this 

reason that attention is turned to the turbulent flow through sudden expansions in pipes. 

4 .3 . Axisymmetnc Turbulent Flow Through Sudden Expansions in Pipes 

4.3.1. The physiCal situation considered 

The physical and flow confıguration of the sudden expansion pipe flow is revealed in Fig. 3(b). 

Two types of flow confıgurations were studied: one with an expansion ration of D/d = 2, and the other of 

1.428. The former corresponds to the experimental situa~ion of Chaturvedi11 , while the latter corresponds 

to the experimental sltuation of Moon and Rudinger9 . As seen from the figure, the flow is assumed sym· 

metric about the centreline axis. lmmediately after the step, and bounded by the larg~r diameter pipe, there 

is a recirculation zone in which flow reversal is present. The main flow in the core region, which is initially 

surrounded by the inner surface of the recirculation zone, gradually adjusts itself until it attains the fully 

developed condition further downstream. 

4.3.2. Boundary conditions 
' The boundary conditions for the two types of flow confıgurations studied are given in the following. 

At the inlet to the sudden expansion pipe, a uniform mean axial velocity (U ) corresponding to 
o . 

the experimental condition is specified, while the radial velocity vis set equal to zero. The turbulence k inetıc 
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energy ka~ its dissipatio~ rate e ~re assign~d uniform values (i.e. , k = 0 .005U
0 

2, e = c
11

k3/2;0 .03(0 /2), 

where U0 ıs the mean axıal velocıty at the ınlet). At the side-wall, velocity components u and v are put 

equal to zero. At the exit of the sudden expansion pipe, where the flow is parabolic, a condition of zero 

axial gradient is preseribed for all dependent variables (i.e., aıp;ax = O} except radial velocity v, which is 

set equal to zero. At the top wall u and v are put equal to zero. At the axis of symmetry , a condition of 

zero radial gradient is specified for all dependent variables (i.e., aıp;ar = 0}, while radial velocity vis set to 

zero. 

As deseribed in sub-section (4.2.2}, the values of k and e at the nearwall grid points are calculated 

using the wall functions deseribed in Seetion (2.3). 

4.3.3 . Some computational details 

The computational finite-difference grid distribution for experimental flow configuration of 

Chaturvedi8 is depicted in Fig. 7. lt possesses 26x20 grid points in the x- and r-directions, respectively. 

lts distribution is non-uniform in both x- and r-directions, with more grid points spaced in the near-wall 

regions and recirculation zone of the sudden expansion where steep gradients of dependent variables are 

expected. The length of the computational domain in the streamwise direction was taken to be 12.50 

··-'--·-'-· 

o 0.22 o.ı.ı. 0.66 0.88 1.1 1.32 1.54 
x(m) 

1.76 1.98 2.2 2.1 .. 2 2.6 4 

Figure 7 - Finite-difference grid distribution for axisymmetric sudden expansion of Chatun·edi8
• 

Expansion ratio: D/d= 2. 

(D is the diameter of the sudden expansion pipe), so that the exit boundary conditions had no effect upon 

the details of the flow. On the other ha nd, thefinite difference grid u sed for experimental flow configuration 

of Moon and Rudinger9 had 33x18 grid points in the x-and r-directions, respectively; and was distributed 

non-uniformly in the respective directions. The length of the cakulation domaiı:ı for this grid extended 180 

downstream from the inlet seetion of the sudden expansion pipe. 
For 26x20 grid using the HDS scheme, a well-converged solution was achieved after 475 iteration 

cycles, and the computational time required was 14.45 min. on Pokey computer of TOPS-20 timesharing 

operating system of the University of Southern California. For the same grid size employing the UDS 

scheme, a well-converged solution was obtained after 456 iteration cycles, and the computational time 

required was 11.25 min. on the same computer. On the other hand, for 33x18 grid size employing the 

HDS scheme, a well-converged solution was reached after 398 iteration cydes, and the required compu­

tational time was 8.033 min. For the same grid size using the UDS scheme, the number of iteration cycles 

performed to obtain a well-converged solution was 447, and the computational time needed was 8.5 min. 

Convergence criteria w ere again chosen as 1 o-3 for each equation. 
For the grid sizes quoted above, the under-relaxation factors employed in the calculations for 

u, v, k, e, p and JJ.eff were 0.3, 0.3, 0 .5, 0.5, 0.5 and 0.3, respectively. 

4.3.4. Presentation and discussion of results 
In this case the results are presented for two sudden expansion configurations of different expan-

sion ratios. 
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The first flow configuration, which represents the exper i mental situation of Chatu rvedi3
, has an 

expansion ration D/d = 2. The computations were performed for a Reynolds number {Rt: = u0 d f v, where 

u is the mean axial velocity in the smaller pipe) equal to 2.2x105 using a 26x20 grid. This grid, shown o . 
in Fig. 7, was considered adequate to predict the flow. For this reason, grid refinement tests were not 

carried out. 
Figs. 8{a) and {b) display the predicted radial profiles of axial velocity obtainı d u~i ng the HDS 

and UDS schemes, and their comp~risons with the experimental measurements of Chaturvedi~ , in terms of 

dimensionless form uju
0

, and radial distance r/D, at various axial locations in the sudden expansion pipe. 

From the figures it is seen that the predicted profiles exhibit good qualitative agreement with the corres­

ponding measured ones, and that the agreement between the predicted and measured profiles at downs­

tream axial locations becomes better. Furthermore, it is noticed that the predicted profiles obtained using 

the HDS scheme are in closer agreement with the corresponding experimental ones than those obtained 

using the UDS scheme. Also the discrepancies between the predictions made using the HDS ~nd UDS 

schemes diminish as the flow develops along the sudden expansion pipe; and, at axiallocations x/D = 4 and 

11 both prediction.s coincide. However, as observed in Fig. 8{a), the length of the recirculation zone is 

underpredicted, and the predicted rate of spread of the round jet is too high, i.e., the predicted thickness 

of the recirculation zone is too smail. The source of this problem isa limitation of the present k·€ turbulence 

model. The model does not account for the time lapse between extra turbulent energy being supplied and 

the effect being felt in the dissipating motions. 

x/0: 0.5 x/0:1 ' x/0:1.5 
0.5r---------~-.------------~------------~------------~------------

O.t. 

cı 0.3 HO S 

" ... 0.2 -----uDs 

0.1 

o 

o Experiment 

' i ı i i i i i i 1 • 1 i i i i i i i i i i i ı 

-0.2 o 0.2 0.1. 0.6 0.8 1.0 -02 o 02 0.1. 0.6 0.8 1.0 
U/ U0 

Figure 8 (a) - Comparison of predicted radial profiles of axial velocity with experiment al data of Chatur­
vedi3 for an axisymmetric sudden expansion. Expansion ratio : D /d = 2. . 
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Figu~ 8 (b)- Comparison of predicted radial profBes of axial velocity with experimental 
data of Chaturvedi3 for an axisymmetric sudden expansion. Expanı;ion ratio: 
D/d = 2. · 



The second flow confıguration, which corresponds to the experimental situation of Moon and 

Rudinger
9

, possesses an expansion ratio D/d = 1.428. The calculations were made for a Reynolds number 

(Re = u0 d / v, where u0 is the centre-line velocity of fully developed turbulent velocity profıle in the 

smaller pipe at the entrance of the larger one) of about 2.8x105 employing a 33x18 grid. This grid was 
considered adequate for the calculations. 

The predicted radial profiles of axial velocity obtained by the use of the HDS scheme are displayeô 

in Fig. 9 asa function of the d imensionless distance from the wall, y/D, at various axial locations in the 

70 

1.00 
1.50 
3.00 

16.00 

HDS 
-----uos 

-20 
o Ol 02 

yi D 0.3 0.1. 0.5 

Figure 9 - Predicted radial profHes of axial velocity for axisymmetric sudden expansion 
of Moon and Rudinger9

• Expansion ratio: D/d= 1.428. 

sudden expansion pipe. Also shown in this fıgure is the predicted radial profıle of axial velocity at x/D = 

0 .75 (dashed curve) obtained through the use of the UDS scheme. This fıgure is intended to show the deve­

lopment of the flow field as a function of the non-dimensional distance from the step, x/D. lt can be seen 

that there is no flow reversal for x/D greater than about O. 75. lt also may be noticed that the centre-line 

velocity decreases gradually with increasing distance from the step; thus, the flow from the smaller diameter 

pipe into the larger diameter one acts at fırst as if it were a free jet. At x/D = 3, the predicted centre-line 

velocity drops to 46.57 m/see, while the experimental value reported by Moon and Rudinger9 ise 38 m/see. 

This indicates a difference of 8.51 m/see between the predicted and measured values. However, it is reported 

that the estimated uncertainty in individual data points of Moon and Rudinger9 could be as high as 4 m/see. 

The velocity profıle at x/D = 16 reveals that the velocity distribution approaches the shape of a fully deve­

loped turbulent flow. 
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Figure 10, which gives a comparison between the predicted and experimental radial profıle of 

axial velocity at x/ D = 0 .75, shows that the predicted profile obtained with the HDS scheme is in better 

agreement with the experimental one than that obtained with the UDS scheme, moreover, the HDS scheme 

predicts a smail recirculation near the wall, while the UDS scheme doe.s not (see also Fig. 9) . Furthermore, 

70 

60 
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40 
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(m/s)3 0 

20 

1 o 
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o .ı 

x l O= O. 75 

• 

--- HOS 
----- u os 
o e E x per iment 

0.2 0.3 
y / 0 

0. 4 0.5 

Figure 10 - Comparison of predicted radial profiles 
of axial velocity with experimental data 
of Moon and Rudinger9 for an axisym­
metric sudden expansion. Expansion ra­
tio: D/d = 1.428. 

this fıgure indicates that the predicted rate of spread of the round jet is too high, i.e., the recirculation zone 

thickness is too smail. As stated in the fırst flow confıguration above, the source of this problemisa limi· 

tation of the current k-e turbulence model which does not account for the time lapse between extra turbu· 

lent energy being supplied and the effect being fe lt in the dissipating motions. 

Figure ll is a comparison of the predicted and experimental centreline velocity decay. As seen 

from the fıgure, the predicted decay in the initial region is faster and slightly slower downstream of the 

redrculation zone. lt should also be noted that the HDS scheme gives better agreement with the experiment 

in the initial region than the UDS scheme; however, downstream of the recirculation zone both predictions 

coincide. In general, the agreement between the predicted and experimental decay ofthe centre-line velocity 

is qualitative. 
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Figure ll - Comparison of predicted centre-line velocity with experimen­
tal data of Moon and Rudinger9 for an axisymmetric sudden 
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4.4. Turbulent Flow Over a Backward-Facing Step 

4 .4. I. The physical situation considered 

The physical situation considered is depicted in Fig. 3( c) . lt isa plane channel which has a step of 

height h and a total height of 3h; the expansion ratio being 3/2. A characteristic parameter governing the 

flow is_the Reynolds number based on the step height h, and the mean axial velocity u
0 

upstream of the 

step, i.e., Reh = u0 h/v·. The flow over the backward-facing step was calculated for a Reynolds number of 
3025. 

4.4.2. Boundary conditions 

With reterence to Fig. 3( c). the boundary conditions for flow over a downstream-facing step here 
considered are as follows: 

At the step inlet plane (i.e., x/h = O) axial velocity distribution from measurements of Denham et 

al. 
1 4 

is prescribed, while the component of velocity in the y-direction is set to zero. The turbulence quan­

tities k and E are given uniform values (i.e., k = 0.005 u
0 

2, E= CJ.lk3/2/0.03(3h) ). At the step wall , velocity 

components u and v are set equal to zero. At the channel exit plane (i.e., x/h = 29), where the flow is 

parabolic, a condition of zero axial gradient is specified for all dependent variables (i.e., 3ıpf3x = O), while 

velocity component vis set to zero. At the top and bottom walls, u and v are set equal to zero. 

As deseribed in sub-section ( 4.2.2.) , the turbulence quantities k and E at the near-wall grid points 

are calculated employing the wall functions given in Seetion (2.3.). 

4.4.3 . Some computational details 

For this flow situation, the fınite-difference grid distribution is shown in Fig. 12. lt consists of 

32x21 grid points in the x- and y-directions, respectively; ;ınd its distribution in the respective directions 

in non-uniform, with more grid points located in the initial region and, in particular, in the region just 

behind the step where recirculation is present. lts length is 29h from the step. 

For this grid employing the HDS scheme, a well-converged solution was obtained after 425 iteration 

cycles, and the computational time required was 9.53 min. on Pokey computer. As in the previous flow 

situations, the convergence criteria used were 1 o·-J for each equation. The under-relaxation factors emp­

loyed in the computation for this problem were the same as those used in the computations for the previous 

problems given in sub-section ( 4.3 .3.). 

0.03 
y {m ) 

0.02 

0.0 1 

o 
o O.OL. 0.08 0.12 0.16 0.28 0.32 0.36 

Figure 12- Finite-difference grid distribution for flow over a backward-facing step. 

4.4.4. Presentation and discussion of results 

O.L.O O.L. 35 

The predicted axial velocity profıles obtained using the HDS scheme and their comparison with 

the measurements of Denham et al. 1 4 for a Reynolds number of 3025 are displayed in Fig. 13, in non­

dimensional form, ufu
0

, at various axial locations, x/h. lt can be see.1 from the fıgure, and as in the flow 

situations of sudden expansions in pipes of the previous case, that the predicted recirculation zone for flow 

over a backward-facing step is shorter in length and thinner in width than the experimental one. As deseribed 
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in the previous case, the source of this proble; is a limitation of the present k-e turbulence model which 

does not account for the time !apse between extra turbulent energy being supplied and the effect being felt 

in the dissipating motions. However, the predicted profiles are seen to be in generally good agreement with 

the corresponding measured ones. 
Computations were also made, with the same 32x21 grid size, employing the UDS scheme; however, 

the difference between the results of the t~o schemes was too smalrfor a useful graphical comparison. For 

this reason the results obtained with the UDS scheme were not presented. 
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12 

Figure 13 - Comparison of predicted axial velocity profiles with measurements of Denham et al1 4
• 

S. CONCLUSIONS 

The UDS and HDS discretisation schemes have been applied and evaluated successfully in the 

prediction of so me turbulent flows in a variety of flow geometri es. 

1 n the case of developing turbulent flow through a pipe only the predictions made using the UDS 

scheme were compared with the experimental measurements of Barbin and Jones 1 , since the predictions 

obtained employing the HDS scheme were exactly the same as those for the UDS scheme. The predicted 

developing axial velocity profiles and wall-shear stress distribution were found to be in good accord with 

the experimental measurements. 

The calculations of ~he turbulent flow through sudden expansions in pipes were performed using 

both UDS and HDS schemes; it w as fo und that the calculations obtained through the use of the HDS scheme 

were in closer agreement with experimental measurements procured by Chaturvedi8 , and Moon and Rudin· 

ger9
. that those obta ined by the use of the UDS scheme. However, at downstream axial locations where 

there isa single predominant direction of motion, the results of calculations of both UDS and HDS schemes 

were seen to coincide. On the other hand, in the initial region where recirculation is present and where 

there is no single predominant direction of motion both UDS and HDS schemes predicted a reci rculation 

zone which was shorte r in length and thinner in width than the experimental one. The source of this prob­

lem is a limitation of the current k-e turbulence model which does not account for the time lapse between 

extra turbulent energy being supplied and the effect being felt in the dissipating motions. In general , 

however, the predictions made for turbulent flow through axisymmetric sudden expansions in pipes using 

both UDS and HDS schemes were in good qualitative agreement with the experimental measurements. 

In the case of turbulent flow over a backward-facing step, measurements for axial velocity profıles 

of Denham et aL 1 4 were compared with the axial velocity profiles obtained employing the HDS scheme 

only, since the axial velocity profiles obtained using the UDS scheme were essentially the same as those for 

the HDS scheme. The predicted axial velocity profiles were in generally good agreement with the correspon­

ding measured ones. However, as in the case of turbulent flow through sudden expansions in pipes, the 

predicted recircula tion zone behind the step was shorter in length and thinner in width than the experi-
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mental one. The source of this problem, as in the flow through sudden expansions in pipes, isa timitation 

of the k·€ turbulence model. The model does not account for the t ime lapse between extra turbulent energy 
being supplied and the effect being felt in the dissipating motions. 
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