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Let Σg denote a closed orientable surface of genus g ≥ 2. We consider a certain 
infinite family of Σg-bundles over circle whose monodromies are taken from some 
collection of pseudo-Anosov diffeomorphisms. We show the existence of tight contact 
structure on every closed 3-manifold obtained via rational r-surgery along a section 
of any member of the family whenever r �= 2g − 1. Combining with Thurston’s 
hyperbolic Dehn surgery theorem, we obtain infinitely many hyperbolic closed 
3-manifolds admitting tight contact structures.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A contact three-manifold is a pair (M, ξ) where M is a smooth 3-manifold and ξ ⊂ TM is a totally 
non-integrable 2-plane field distribution on M . Here we always assume that ξ is a co-oriented positive
contact structure, that is, ξ = Ker(α) for a contact 1-form α satisfying α ∧ dα > 0 with respect to a 
pre-given orientation on M . A disk D in a contact 3-manifold (M, ξ) is called overtwisted if the boundary 
circle ∂D is tangent to ξ everywhere. A contact structure ξ is called overtwisted if there is an overtwisted
disk in (M, ξ), otherwise it is called tight. It is known that every closed oriented 3-manifold admits an 
overtwisted contact structure ([7], [18]). On the other hand, there are 3-manifolds which do not admit a 
tight contact structure [9].

There are some classification results on tight contact structures with respect to the geometric speciality 
of 3-manifolds. Lisca and Stipsicz in [17] proved that a closed oriented Seifert fibered 3-manifold admits a 
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Fig. 1. Simple closed curves on the surface Σg.

tight contact structure if and only if it is not gotten (2q − 1)-surgery along the (2, 2q + 1) torus knot in 
S3 for q ≥ 1. In two independent work ([2], [15]), they showed the existence of tight contact structures on 
toroidal 3-manifolds. It is known that every irreducible 3-manifold that is neither toroidal nor Seifert fibered 
is hyperbolic. Kaloti and Tosun in [16] find infinitely many hyperbolic rational homology spheres admitting 
tight contact structures. Etgü in [8] also explored that infinitely many hyperbolic 3-manifolds that carry 
tight contact structures. His construction uses Dehn surgeries along sections of hyperbolic torus bundles 
over S1. Here we’ll consider Dehn surgeries along sections of surface bundles over S1 with fiber genus at 
least two.

Let Σg be a closed connected orientable surface with genus g. In this paper assume that g is always greater 
than 1. We will denote MCG(Σg) by the mapping class group of Σg, i.e., the group of isotopy classes of 
orientation preserving homeomorphisms of Σg. Denote by ta the positive Dehn twist along a simple closed 
curve a. Let φ ∈ MCG(Σg) be the mapping class representing the homeomorphism

tma1
ta2 · · · ta2g t

n
a2g+1

(1)

where ai’s are simple closed curves on Σg as indicated in Fig. 1.
Denote by Mφ the mapping torus with fibers Σg and monodromy φ. Let Mφ(r) be the surgered manifold 

obtained by performing rational r-surgery along a section of Mφ. Clearly, φ has a fixed point, so such a 
section exists. The following theorems give examples required:

Theorem 1.1. Suppose g ≥ 2, m, n ∈ Z, r ∈ Q and φ as indicated in (1). Then Mφ(r) is hyperbolic for all 
but finitely many m and r.

Theorem 1.2. Suppose g ≥ 1, r ∈ Q and φ as indicated in (1). Then Mφ(r) admits a tight contact structure 
ξ for any m, n ∈ Z+ and for all r �= 2g − 1.

Corollary 1.3. Suppose g ≥ 2, m, n ∈ Z+, r ∈ Q and φ as indicated in (1). Then Mφ(r) is a hyperbolic 
manifold admitting a tight contact structure for all but finitely many m ∈ Z+ and for all but finitely many 
r �= 2g − 1. �

The proof of Theorem 1.1 and Theorem 1.2 will be given in Section 2 and Section 3.

2. Proof of Theorem 1.1

In order to prove the theorem, we’ll focus on pseudo-Anosov homeomorphisms and construct infinitely 
many hyperbolic 3-manifolds via pseudo-Anosov monodromies. A hyperbolic 3-manifold is a 3-manifold 
which admits a complete finite-volume hyperbolic structure. Thurston [21] demonstrated that an orientable 
surface bundle over circle whose fiber is a compact surface of negative Euler characteristic is hyperbolic if and 
only if the monodromy of the surface bundle is a pseudo-Anosov homeomorphism. Another deep result of 
Thurston is hyperbolic Dehn surgery theorem which states that a hyperbolic 3-manifold remains hyperbolic 
after Dehn filling along a link for all slopes except finitely many of them (for details see [22]). In order to 
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apply these results, we need a lemma where we construct infinitely many pseudo-Anosov diffeomorphisms 
as products of certain Dehn twists:

Lemma 2.1. Let φ be the class in MCG(Σg) as described in (1) above. Then φ is pseudo-Anosov for any 
integer n and for all but at most 7 consecutive values of m.

Denote by ι(α, β) geometric intersection number of the curves α and β. We say a set of simple closed 
curves {γ1, γ2, . . . , γk} fills Σg if Σg \ {γ1, γ2, . . . , γk} is a disjoint union of topological disks. In order to 
prove Lemma 2.1, we use the following theorem of Fathi:

Theorem 2.2 ([11]). Let f be the class in MCG(Σg) and let γ be a simple closed curve in Σg. If the orbit 
of γ under f fills Σg, then tmγ f is a pseudo-Anosov class except for at most 7 consecutive values of m.

Proof of Lemma 2.1. Let γ represents the curve a1 and let f be the product of Dehn twists ta1ta2 · · · ta2g t
n
a2g+1

where ai’s are simple closed curves in Fig. 1. Since i(ai, ai+1) = 1 for all i ∈ {1, 2, . . . , 2g} and i(ai, ai+2) = 0
for all i ∈ {1, 2, . . . , 2g − 1}, conclude that

f(γ) = ta1ta2(a1) = a2, f2(γ) = ta1ta2ta3(a2) = ta1(a3) = a3,

(see Proposition 3.12, [10]) and inductively,

f i(γ) = f(ai) = ta1 · · · tai
tai+1(ai) = ta1 · · · tai−1(ai+1) = ai+1 for all i ∈ {1, 2, . . . , 2g − 1}.

Clearly the complement of the orbit of γ under f , i.e. Σg \ {f i(γ)}i∈N, is a subset of

Σg \ {γ, f(γ), · · · , f2g−1(γ)} = Σg \ {a1, . . . , a2g}

which is a topological disk. Hence the orbit set fills the surface. As a result of Theorem 2.2, φ is pseudo-
Anosov except for at most 7 consecutive m values. �

Now we have a family of pseudo-Anosov monodromies. It is known that a surface bundle over circle with 
two or greater fiber genus is hyperbolic if and only if the monodromy of the surface bundle is pseudo-Anosov 
by Thurston’s work [21]. So the surface bundles Mφ are all hyperbolic but at most 7 consecutive values 
of m. By hyperbolic Dehn surgery theorem the surgered manifolds Mφ(r) are hyperbolic for all m, n ∈ Z

and r ∈ Q except 7 values of m and finitely many “bad” slopes r. This finishes the proof of Theorem 1.1. �
3. Proof of Theorem 1.2

We will analyze the proof with respect to the parity of the genus g of the fiber Σg. First assume g ≥ 3
odd. Note that conjugation of the monodromy by any class of MCG(Σg) does not change the mapping 
torus up to diffeomorphism. Since

ta2 · · · ta2g t
n
a2g+1

tma1
= t−m

a1
φ tma1

we may replace φ in (1) with the mapping class ta2 · · · ta2g t
n
a2g+1

tma1
. Also observe that Mφ(r) can be also ob-

tained from a Dehn surgery on the binding of an open book decomposition whose page is Σ1
g (punctured Σg) 

and monodromy can be still assumed to be φ ∈ MCG(Σ1
g). We will construct the required contact structure 

ξ on Mφ(r) via Dehn surgery on the open book decomposition (Σ1
g, φ) along its binding.

It is known (see [1], [12], [13], [19]) that the contact structure supported by an open book decomposition 
is Stein fillable if and only if the monodromy is the product of positive Dehn twists. Hence the contact 
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Fig. 2. (a) The handlebody diagram of Xφ, (b) another handle description of Xφ.

Fig. 3. Other handle descriptions of Xφ.
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Fig. 4. A Stein structure on Xφ.

Fig. 5. Passing around a foot of a handle.

structure, say ξ0, (before the surgery along binding) supported by (Σ1
g, φ) is Stein fillable. More precisely, 

consider the handlebody diagram of the smooth 4-manifold Xφ given in Fig. 2-(a) (in the case of genus 3) 
with “2g” 1-handles and “m + n + 2g − 1” 2-handles. Note that Fig. 2-(a) describes a Lefschetz fibration 
structure on Xφ with a regular fiber Σ1

g and the vanishing cycles a1, a2, ..., a2g+1. There are n copies for 
a2g+1 and m copies for a1 (not drawn for simplicity). All coefficients (except on B) are −1 with respect to 
the framing given by the page Σ1

g.
We remark that no handle is attached along the binding of the induced open book (Σ1

g, φ) on the boundary 
∂Xφ which is realized as B in the figure.

Next starting from the topological description in Fig. 2-(a) of Xφ, we’ll get a diagram describing a Stein 
structure on Xφ inducing ξ0 as follows: First we flip the twisted bands over the 1-handles as pointed out in 
Fig. 2-(a) and get Fig. 2-(b). Fig. 3-(a) gives another handle description of Xφ obtained by moving the feet 
of 1-handles as indicated by the dotted arrows in Fig. 2-(b). Then flip the bands as shown in Fig. 3-(a) to get 
rid of one more left half twist for each band (see Fig. 3-(b)), and obtain Fig. 3-(c) by flipping the connecting 
bands over the feet of 1-handles suggested by the dotted arrows in Fig. 3-(b). Fig. 4 defines a Stein structure 
on Xφ obtained by putting the attaching circles in Fig. 3-(c) into Legendrian positions, where a Legendrian 
realization L0 of B in the tight contact boundary ∂Xφ is also provided. All coefficients (except on L0) are 
−1 with respect to Thurston–Bennequin (contact) framing, “tb”, in ∂Xφ and no handle is attached along L0. 
Note that tb(L0) = 2 (the case g = 3 is shown in Fig. 4). In the general case, tb(L0) = g − 1.

Finally, we pass g strands of L0 around the left feet of the corresponding 1-handles as in Fig. 5 to get 
a Legendrian representation L of B depicted in Fig. 6 with tb(L) = 2g − 1 (see [14] for details). Note that 
Fig. 6 describes the same Stein structure on Xφ as in Fig. 4.

Now if g ≥ 2 is even, we replace the monodromy φ with tna ta2 · · · ta2g t
m
a since
2g+1 1
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Fig. 6. The same Stein structure on Xφ as in Fig. 4-(b), and another Legendrian realization L of the binding B in the tight contact 
boundary ∂Xφ. L is obtained from L0 by applying the move in Fig. 5 (smooth but non-Legendrian isotopy of L0) g times using the 
left feet of the corresponding 1-handles (when g = 3, handles are B1, A4, B3). All coefficients (except on L) are −1 with respect 
to Thurston–Bennequin (contact) framing in ∂Xφ. No handle attached along L. Note that tb(L) = 5 (the case g = 3 is shown). In 
the general case, tb(L) = 2g − 1.

tna2g+1
t−m
a1

φ t−n
a2g+1

tma1
= tna2g+1

ta2 · · · ta2g t
m
a1
.

Then starting from the handlebody diagram given in Fig. 7-(a) (where the case g = 4 is shown) and 
following the moves as in the case of odd genus, one can get Fig. 7-(b) describing a Stein structure realizing 
a Legendrian representation L with tb(L) = 2g − 1 as in Fig. 6.

One should note that we need to consider different monodromies (but still giving the same mapping 
torus) depending on the parity of g to make the contact and the page framing on any attaching circle 
coincide.

Now (in any case of g) in the final Stein diagram (Fig. 6/Fig. 7-(b)), we first (Legendrian) slide (Stein) 
2-handle corresponding a3 over the ones represented by the curves a1, a5, a7, ..., a2g+1, and then cancel the 
2-handles represented by a5, a7, ..., a2g−1 with the corresponding 1-handles. Second, we (Legendrian) slide 
2-handles represented by the curves a1 and a2g+1 over a fixed one chosen from each family, and then cancel 
1-handles B1 and Bg with the chosen 2-handles corresponding a1 and a2g+1 respectively. Also we cancel 
each 1-handle Ai with the 2-handle corresponding ai for each i even (see [4]). As a result, we obtain another 
picture for the same Stein structure on Xφ which can be also seen as a surgery diagram for ξ0 on ∂Xφ. 
Finally, we set r′ = r−2g+1 and perform r′-contact surgery along L ⊂ (∂Xφ, ξ0) to get a contact structure 
ξ on Mφ(r) given in Fig. 8 where we use continued fractions for a1, a2g+1 families, and “Move 4” in Figure 9 
of [14] for the slid a3.

First suppose r′ = r − 2g + 1 < 0. We know any contact surgery with negative contact framing can be 
converted to a sequence of contact (−1)-surgeries and (−1)-surgeries preserve Stein fillability ([5], [6]). Thus 
(Mφ(r), ξ) is Stein fillable (hence tight).
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Fig. 7. Xφ and its Stein structure (when g is even).

Now let r′ = r − 2g + 1 > 0. By Thurston–Winkelnkemper construction ([23]), it is known that the 
binding B is transverse to the contact structure supported by the open book decomposition. Also since ∂Xφ

is Stein fillable, ξ0 has nonzero contact invariant [20]. In Theorem 1.6 of [3], Conway states that if K is a 
(integrally) fibered transverse knot in a contact 3-manifold (M, η) where η is tight (resp. has nonvanishing 
contact class), then the surgered manifold obtained via inadmissible transverse r-surgery along K is also 
tight (resp. has nonvanishing contact class) for r > 2g − 1 where g is the genus of K. Since r′ > 0, contact 
r′-surgery can be converted to sequences of contact (±1)-surgeries [5]. Note that contact (+1)-surgery along 
L is equivalent to inadmissible (tb(L) + 1)-surgery (see [3] for details). Hence we conclude that (Mφ(r), ξ)
has nonzero contact invariant (hence tight) through Conway’s result because of the fact tb(L) + 1 > 2g− 1. 
This finishes the proof of Theorem 1.2. �
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Fig. 8. The contact 3-manifold (Mφ(r), ξ). (The case g = 3 is shown.)
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