Bazalt ve Atık Cam Agregalı Betonlarda Alkali-Silis Reaksiyonu Genleşmeleri ve Alkali Sızıntısı Seviyeleri

Cihat YÜKSEL¹ Ali MARDANI-AGHABAGLOU² Ahsanollah BEGLARIGALE³ Halit YAZICI⁴ Kambiz RAMYAR⁵ Özge ANDİÇ ÇAKIR⁶

ÖZ

Agregada bulunan amorf silis ve boşluk çözeltisindeki alkaliler arasında gerçekleşen alkalisilis reaksiyonu (ASR), hasarla sonuçlanan önemli durabilite sorunlarındandır. Bu çalışmada, çeşitli karışımların alkali-silis reaktiviteleri, RILEM komitesi tarafından geliştirilen AAR-3 ve AAR-4 deneyleriyle araştırılmıştır. Bu hızlandırılmış deneylerde numunelerde yer alan alkalilerin ne kadarının dışarıya sızdığını belirlemek için kapların alt kısmında yer alan sudan örnekler alınmış ve atomik absorpsiyon spektrometrisi ile sodyum ve potasyum iyonlarının konsantrasyonu belirlenmiştir. Sonuçlara göre alkalilerin önemli bir miktarının betonlardan dışarıya sızabildiği ve buna rağmen, özellikle atık cam agregası içeren karışımlarda halen çok yüksek miktarda genleşme ile karşılaşıldığı görülmüştür.

Anahtar Kelimeler: Alkali silis reaksiyonu, alkali sızıntısı, bazalt, atık cam.

ABSTRACT

Alkali-Silica Reaction Expansions and the Extent of Alkali Leaching in Concretes Containing Basalt and Waste Glass as Aggregate

Alkali-silica reaction (ASR) which takes place between amorphous silica in the aggregate and alkalis in the pore fluid is one of the durability problems causing deterioration of mortars. In this study, alkali-silica reactivity of various mixtures was evaluated according to AAR-3 and AAR-4 tests developed by RILEM. For determining the extent of alkali leaching from the specimens during these accelerated tests, samples were taken from the

Not: Bu yazı

3 Dokuz Eylül Üniversitesi, İnşaat Mühendisliği Bölümü, İzmir - ahsan.beglari@gmail.com

⁻ Yayın Kurulu'na 04.05.2015 günü ulaşmıştır.

^{- 30} Haziran 2017 gününe kadar tartışmaya açıktır.

¹ Ege Üniversitesi, İnşaat Mühendisliği Bölümü, İzmir - cihat.yuksel@ege.edu.tr

² Uludağ Üniversitesi, İnşaat Mühendisliği Bölümü, Bursa - ali.mardani16@gmail.com

⁴ Dokuz Eylül Üniversitesi, İnşaat Mühendisliği Bölümü, İzmir - halit.yazici@deu.edu.tr

⁵ Ege Üniversitesi, İnşaat Mühendisliği Bölümü, İzmir - kambiz.ramyar@ege.edu.tr

⁶ Ege Üniversitesi, İnşaat Mühendisliği Bölümü, İzmir - ozge.andic@ege.edu.tr

water accumulations at the bottom of the containers and sodium and potassium concentrations were determined using atomic absorption spectrometry. Results show that although a significant amount of alkalis can leach out, particularly waste glass aggregate leads to considerably high expansion levels.

Keywords: Alkali silica reaction, alkali leaching, basalt, waste glass.

1. GİRİŞ

Alkali-silis reaksiyonu (ASR), beton boşluk çözeltisindeki yüksek alkali konsantrasyonu ve agregada yer alan opal, kalsedoni, çört, volkanik cam, kripto- ve mikro-kristalin kuvars, deforme kuvars, tridimit, kristobalit, vb. gibi bazı silisli mineraller nedeniyle meydana gelmektedir. Higroskopik yapıdaki alkali-silis jelinin oluşumu ile çok fazla miktarda su emilmesi ve şişme olayı, betonun çekme dayanımı aşıldığında hasara yol açmaktadır [1-3].

Stanton'un reaksiyon kimyası, deney yöntemleri ve reaksiyonu önleme yollarından bahsettiği 1940 yılındaki öncü çalışmaşından [4] itibaren çok çeşitli deney yöntemleri ile kapsamlı araştırmalar gerçekleştirilmiştir [5,6]. İlk olarak Oberholster ve Davies [7] tarafından önerilen hızlandırılmış harç çubuğu deneyi (HHÇD), sadece 16 günde çok hızlı sonuc vermesine rağmen, numunelerin maruz kaldığı kosullar cok siddetli olduğundan (80°C NaOH çözeltisine daldırma), ölçülen genleşmelerin normalde ve 1N karsılasılabilecek seviyelerin cok üzerinde kaldığı görüsü baskındır. Günümüze dek elde edilen tecrübe, HHCD'nin tek başına güvenilir bir deney olmadığını ve bir agrega kaynağının bu deney uyarınca reaktif olarak nitelendirildiğinde ilave olarak beton prizma denevinin (BPD) de gerceklestirilmesi gerektiğini isaret etmektedir [6-9]. Sadece agregayı test eden vöntemlere kıvasla beton karısımın teste tabi tutulması daha güvenilir olup numunelerin 38°C'de, kapalı kapların içinde ve su üzerinde saklanmasını öngören BPD sahada olusabilecek genlesmeleri en ivi yansıtan yöntem olarak düsünülmektedir. Fakat BPD, agreganın reaktivitesini ölçmek için uygulandığında bir yıl ve mineral katkıların genleşmeyi önlemedeki etkinliğini ölçmek için uygulandığında iki yıl sürmektedir [10]. Hızlandırılmıs beton prizma denevi (HBPD) Ranc ve Debray tarafından 2002'de [11] geliştirilmiş olup sıcaklık seviyesi 38°C'den 60°C'ye çıkartılarak gerçek saha karışımlarının performansı incelenmiştir. Araştırmacılar BPD ve HBPD genleşmeleri arasında güçlü korelasyonlar elde etmiş ve 60°C'lik yöntem için 56 günde %0,02 seviyesinde genleşme limiti önermiştir [12,13]. İlerleyen yıllarda farklı araştırmacılar tarafından yürütülen çalışmalar, henüz standart bir yöntem olmayan HBPD için çok çesitli deney sürelerinin ve genleşme limitlerinin önerilmesini beraberinde getirmiştir [9,14,15].

2010'da sonuçları yayımlanan EU "PARTNER" Projesi'nde 10 farklı Avrupa ülkesinde bulunan 22 agrega kaynağı RILEM tarafından geliştirilen test yöntemlerine tabi tutulmuştur. Çoğunlukla, hem RILEM AAR-3 (beton prizma deneyi, 38°C sıcaklıkta) hem de RILEM AAR-4 (beton prizma deneyi, 60°C sıcaklıkta) yöntemleri, sahadaki performansı uzun yıllardır bilinen agregaların reaktivite düzeyini doğru olarak ortaya koyabilmiştir. Özellikle AAR-4 daha tutarlı sonuçlar üretebilmiş ve yavaş reaksiyona girme eğilimi bulunan agrega kombinasyonlarının reaktivitesini ortaya çıkarmada daha başarılı olmuştur [16]. Bazı araştırmacılara göre [11, 17-19] her iki yüksek sıcaklıklı beton prizma deneyinde de en önemli sıkıntılardan biri, beton prizmalarda başlangıçta yer alan alkalilerin önemli bölümünün testler sırasında dışarıya sızması ve böylelikle genleşme seviyesinin gerçeğin altında tahmin edilmesidir. Alkali sızıntısının hızı ve miktarı, deneylerde elde edilen genleşme-zaman ilişkisini belirleyen en önemli faktörlerden biri konumundadır.

Muhtemel ASR hasarını önceden belirleyebilmek için geçmişten günümüze sıklıkla tercih edilen mevcut standart deney metotları agreganın reaktivite potansiyelini belirlemeye yöneliktir. Bu çalışmanın ana amacı ise;

- reaktif nitelikte iki farklı agrega kullanılması neticesinde oluşan genleşme seviyelerinin RILEM tarafından henüz geliştirilen hızlandırılmış ve gerçekçi performans beton deneyleriyle ortaya koyulması ve
- deneyler esnasında karışımın alkali seviyesinde isteyerek (NaOH ilavesi veya çimento alkalinitesindeki değişimle) ya da elde olmadan (beton bünyesindeki alkalilerin dışarıya göçüyle) oluşan değişimin genleşmelere etkisini incelemektir.

Makalede bazalt ve atık camların neden olduğu potansiyel reaktiviteyi belirleyebilmek için uygulanan AAR-3 ve AAR-4 deneyleri sonunda elde edilen veriler sunulmuştur. NaOH ilavesi, çimento alkali seviyesi ve atık cam agregası içeren karışımlarda 63 µm'dan küçük cam tanelerini uzaklaştırmanın genleşme değerleri üzerindeki etkileri de araştırılmıştır. Son olarak, beton prizmalardan alkali sızıntısı miktarını belirleyebilmek için atomik absorpsiyon spektrometrisi ile betonların altında yer alan sudaki sodyum ve potasyum iyonlarının konsantrasyonları da belirlenmiştir.

2. DENEYSEL ÇALIŞMA

2.1. Kullanılan Malzeme

2.1.1. Çimento

Beton karışımların hazırlanmasında Tablo 1'de özellikleri sunulmuş olan bir tip yüksek alkalili (HA - %1.04 Na₂O eşdeğeri) ve bir tip düşük alkalili (LA - %0,63 Na₂O eşdeğeri) olmak üzere iki farklı katkısız portland çimentosu kullanılmıştır.

Bileşen veya özellik	HA çimentosu	LA çimentosu	Uygulanan deney standardı/metodu
Kızdırma kaybı (%)	2,09	1,53	TS EN 196-2
SiO ₂ (%)	19,72	19,54	XRF/ ICP OES
Al ₂ O ₃ (%)	5,31	4,80	XRF/ ICP OES
Fe ₂ O ₃ (%)	3,37	5,71	XRF/ ICP OES
CaO (%)	62,33	62,65	XRF/ ICP OES
MgO (%)	2,33	1,89	XRF/ ICP OES
SO ₃ (%)	3,33	3,12	TS EN 196-2
Na ₂ O (%)	0,53	0,37	XRF/ ICP OES

Tablo 1. Çalışmada kullanılan çimentolar üzerinde gerçekleştirilen analiz sonuçları

	(ueva	inij	
Bileşen veya özellik	HA çimentosu	LA çimentosu	Uygulanan deney standardı/metodu
Kızdırma kaybı (%)	2,09	1,53	TS EN 196-2
K ₂ O (%)	0,77	0,40	XRF/ ICP OES
Cl ⁻ (%)	0,0136	0,0087	XRF
Na ₂ O eşdeğeri (%) ^a	1,04	0,63	-
Çözünemeyen kalıntı (%)	0,48	0,20	TS EN 196-2
Yoğunluk (g/cm ³)	3,08	3,13	Dijital piknometre ile
Özgül yüzey – Blaine (cm ² /g)	3960	3570	Otomatik Blaine cihazı ile
937 G 1 H 1 37 G 6 6 6 6			

Tablo 1. Çalışmada kullanılan çimentolar üzerinde gerçekleştirilen analiz sonuçları (devam)

^a Na₂O eşdeğeri = Na₂O + $0.656 \text{ K}_2\text{O}$

HA ve LA çimentoları sırasıyla Afyon ve Bolu çimento fabrikalarından temin edilmiştir. Bazı karışımlarda bu iki çimento tek başlarına, bazılarında ise %50-50 oranlarında karıştırılarak ve böylelikle %0,84 düzeyinde bir ilave Na₂O eşdeğer içeriği elde edilerek kullanılmıştır.

2.1.2. Agrega

Kontrol karışımı niteliğindeki betonlarda agrega fazının tamamını üç farklı boy sınıfındaki (0/4 mm, 4/16 mm ve 11,2/22,4 mm) reaktif andezitik bazalt oluşturmuştur. Agreganın kaynağı İzmir'in kuzeyinde yer alan Aliağa yöresidir. Önceki tecrübelerden bazaltın camsı matrisinde yüksek SiO₂ içeriğinin (\sim 70%) reaktifliğe neden olduğu bilinmektedir [20].

Çalışmada kullanılan ikinci tip agrega ise soda-kireç camları kategorisine giren renksiz pencere camlarından elde edilen atıklardır. Toplanan atık cam kırıkları önce yıkanmış, daha sonra kurutulmuş ve darbe ve makaslama etkisi uygulayan bir çekiçli kırıcı yardımıyla ince agrega boyutuna getirilmiştir. Atık cam içeren karışımlarda cam agregası, sadece 0/3 mm veya 0,063/3 mm tane boyutlarında kullanılırken bu karışımlarda iri agrega olarak yine bazalt tercih edilmiştir. 0,063/3 mm tane sınıfı, kırıcıdan elde edilen cam agregasının 0,063 mm'lik elekten ıslak elenmesiyle temin edilmiştir. Kırıcıdan elde edilen cam agregasının ıslak eleme neticesinde %8'inin 0,063 mm'lik elekten geçebildiği görülmüştür. Önceki çalışmalarımızdan [21] bilinen önemli bir diğer husus, soda-kireç camlarının ana bileşenlerinin yüksek miktarda SiO₂ (%71,38) ve Na₂O (%14,29) olduğudur.

Deneysel çalışma kapsamında kullanılan her bir boy sınıfındaki agreganın tane boyu dağılımları Şekil 1'de, beton karışımlarda bulunan agrega bileşimlerinin granülometrisi Tablo 2'de ve agregaların kimyasal kompozisyonları Tablo 3'te gösterilmektedir. Beton karışımlardaki agrega bileşimleri oluşturulurken deneyler için hazırlanan standart metinlerde [22] yer alan ince agreganın ve iri agreganın ağırlıkça oranlarının sırasıyla %40 ve %60 olması önerisine uyulmuştur.

Şekil 1. Bazalt ve cam agregalarının gradasyon eğrileri

	Geçen (%)				
Elek Açıklığı (mm)	Karışımd	laki ince agr	ega türü		
	0/4 bazalt	0/3 cam	0,063/3 cam		
31,5	100	100	100		
16	94	94	94		
8	60	60	60		
4	36	45	45		
2	20	39	39		
1	15	30	29		
0,5	10	19	17		
0,25	8	10	8		
0,125	6	6	2		
0,063	5	4	0		

Tablo 2. Betonda yer alan ince agrega türüne göre agrega karışımları için hesaplanan gradasyon değerleri

Bileşen, %	Bazalt	Atık cam
SiO ₂	54,08	71,38
Al ₂ O ₃	14,37	1,30
Fe ₂ O ₃	6,68	0,107
CaO	8,71	8,28
MgO	2,50	4,27
Na ₂ O	2,41	14,29
K ₂ O	1,67	0,07
TiO ₂	-	0,076
Cl	-	-
SO ₃	-	0,23
Kızdırma kaybı	6,84	-
Belirlenemeyen	2,74	-

Tablo 3. Bazalt ve cam agregalarının kimyasal kompozisyonları

2.2. Deney Yöntemleri (RILEM AAR-3 ve AAR-4)

Her bir karışımdan altı adet 75x75x285 mm boyutlarında prizmalar hazırlanmış ve üçü AAR-3, diğer üçü de AAR-4 deneyine maruz bırakılmıştır. Numuneler ilk 24 saat boyunca kalıplarda $20\pm2^{\circ}$ C sıcaklık ve %90 bağıl neme sahip bir odada saklanmış ve sonrasında kalıplar sökülmüştür. Daha sonra $20\pm2^{\circ}$ C sıcaklığa sahip odada numuneler tartılmış (W₀) ve ilk komparatör okuması (l₀) gerçekleştirilmiştir. Bir karışıma ait üç numuneyi içerisinde dik olarak muhafaza edebilecek boyutlarda standart kaplar kullanılmıştır. Kapların alt kısmına 20-30 mm yüksekliğe kadar saf su yerleştirilmiş ve numunelerin birbirlerine, kapların kenarlarına ve aşağıda bulunan suya değmemesine özen gösterilmiştir. AAR-3 deneyinde numuneleri içerisinde barındıran kaplar, 38°C'lik sıcaklığı sağlayan bir odaya (Şekil 2a), AAR-4'te ise 60°C'lik sıcaklığı sağlayan bir kabine (Şekil 2b) yerleştirilmiştir.

Her iki beton prizma deneyinde de ilerleyen haftalarda herhangi bir yaştaki boy (l_i) ve ağırlık (W_i) ölçümünden 24 saat önce numunelerin kapların içerisinde kalması koşuluyla $20\pm2^{\circ}$ C'ye kadar soğumasına izin verilmiş ve tüm ölçümler $20\pm2^{\circ}$ C sıcaklığa sahip oda içerisinde alınmıştır. Yakın zamanda gerçekleştirilen bir çalışmada [23], bazı beton prizma deneylerinde başvurulan bir yöntem olan numunelerin ıslak kumaşlara sarılması işleminin, özellikle erken yaşlarda betondan dışarıya alkali sızıntısını hızlandırabildiği fark edilmiştir. Dolayısıyla deneysel çalışmada bu tip bir sargılama uygulanmamıştır.

Numunelerden dışarıya sızan alkali miktarını bulabilmek için kapların alt kısmında yer alan sudan ~10 ml'lik örnekler alınmıştır. Bu arada alınan örnek yerine kaplara aynı miktarda saf su ilave edilmiştir. Düzenli aralıklarla gerçekleştirilen genleşme ölçümlerinin hemen sonrasında atomik absorpsiyon spektrometrisi yöntemiyle suda yer alan sodyum ve potasyum iyonu konsantrasyonları mg/l cinsinden belirlenmiştir. Çalışmanın bu aşaması Ege Üniversitesi Kimya Mühendisliği Bölümü laboratuvarlarında Varian-SpectrAA 10 plus tipinde bir spektrometre kullanılarak gerçekleştirilmiştir (Şekil 3a). Bu yöntemde oyuk katot lambaları (Şekil 3b) kullanılmakta olup temel prensip, miktarı belirlenmek istenilen elementin sadece kendine özgü dalga boyuna sahip ışımayı absorplayacağıdır. Bu nedenle katot, miktarı belirlenmek istenilen elementten yapılmıştır. Işık kaynağının içinde anot uç tarafından iyonize edilen soy gazlar hapsedilmiştir [24].

Bir kapalı kap içerisinde herhangi bir karışıma ait üç adet numune yer aldığından kaptan alınan su örneğinde ölçülen alkali sızıntısı miktarı üçe bölünmüştür. Bir başka ifadeyle kaplarda yer alan bir karışıma ait üç adet numuneden de eşit miktarda sızıntı gerçekleştiği varsayımı kabul edilmiştir [19].

(a) (b) Şekil 2. a) AAR-3 deneyi için 38°C'lik sıcaklığın sağlandığı oda, b) AAR-4 deneyi için 60°C'lik sıcaklığın sağlandığı kabin

Şekil 3. Atomik absorpsiyon spektrometrisinde kullanılan a) deney cihazının ve b) içerisindeki oyuk katot lambalarının görünümü

2.3. Karışım Oranları

Deneysel çalışma kapsamında dokuz adet karışım AAR-3 ve AAR-4 yöntemleri uyarınca deneylere tabi tutulmuştur. Tablo 4'te karışım oranları sunulmuş olan ve su/çimento oranı 0,5 olan ilk üç seri, agrega olarak sadece bazalt ve bağlayıcı olarak da sadece LA çimentosu içermekte olup üçü de kontrol karışımları olarak adlandırılmıştır. Uygulanan AAR-3 ve AAR-4 deneylerinde gerektiğinde karışım suyuna NaOH ekleyerek beton karışımların alkali içeriğini bağlayıcı ağırlığının %1,25'ine yükseltme gerekliliği bulunmaktadır. Karışımlardaki çimento içeriği 440 kg/m³ olduğundan standartlara uygun hazırlanan karışımın alkali içeriğinin Na₂O eşdeğeri cinsinden 5,50 kg/m³'e eşit olması gerekmektedir. Alkali seviyesinin de genleşmeler üzerindeki etkisini anlayabilmek için 5,50 kg/m³ alkali seviyesine sahip kontrol kodlu karışımın yanı sıra 4,40 ve 6,60 kg/m³ alkali yüklerine sahip kontrol- ve kontrol+ kodlu karışımlar da hazırlanmıştır.

	Kontrol-	Kontrol	Kontrol+
Düşük alkalili (LA) çimento	440	440	440
Su	220	220	220
0/4 bazalt	698	696	696
4/16 bazalt	523	522	522
11,2/22,4 bazalt	523	522	522
Eklenen NaOH	2,12	3,57	5,02
Süperakışkanlaştırıcı	4,5	4,9	5,1
Toplam	2406	2404	2405
Alkali içeriği (kg/m ³)	4,40	5,50	6,60
Alkali içeriği (bağlayıcının %'si)	1,00	1,25	1,50

Tablo 4. Kontrol karışımlarında malzeme oranları (kg/m³)

Tablo 5. Cam agregası içeren karışımlarda malzeme oranları (kg/m³)

	0/3HA	0/3LA	0/3MA	0,063/3HA	0,063/3LA	0,063/3MA
Düşük alkalili (LA) çimento	0	440	220	0	440	220
Yüksek alkalili (HA) çimento	440	0	220	440	0	220
Su	220	220	220	220	220	220
4/16 bazalt	501	499	500	501	499	500
11.2/22.4 bazalt	501	499	500	501	499	500
0/3 cam	667	665	666	0	0	0
0/3 cam (63 µm'dan elenmiş)	0	0	0	667	665	666
Süperakışkanlaştırıcı	1,0	1,4	1,1	0,6	0,8	0,6
Toplam	2329	2323	2326	2329	2323	2326
Alkali içeriği (kg/m ³)	4,60	2,79	3,69	4,60	2,79	3,69
Alkali içeriği (bağlayıcının	1.04	0.63	0.84	1.04	0.63	0.84
70 SI)	1,04	0,03	0,84	1,04	0,03	0,84

Hazırlanan diğer altı karışımda ise ince agrega boyutundaki atık cam agregası yer almaktadır. Tablo 5'te görüldüğü üzere bu karışımlar LA ve/veya HA çimentosu içermekte olup toplam çimento içeriği her birinde yine 440 kg/m³'e ve su/çimento oranı 0,5'e eşittir. Cam agregası içeren bu karışımlarda NaOH ilavesi uygulanmamış olup karışım kodlarında yer alan LA, HA ve MA kısaltmaları sırasıyla düşük alkalili, yüksek alkalili veya orta seviyede alkalili çimento kullanıldığını ifade etmektedir. Yine kodlarda yer alan sayılar ise camın karışımda kullanıldığı tane boyutu aralığını simgelemektedir.

Tablo 4 ve Tablo 5'ten görüldüğü üzere çalışma kapsamında hazırlanan tüm karışımlarda gerektiğinde üreticinin önerdiği dozaj aralığında polikarboksilik eter esaslı yüksek oranda su azaltıcı beton katkısı kullanılarak taze betonda çökme değerinin 10±1 cm aralığında kalması sağlanmıştır.

Hazırlanan karışımların tamamında Tablo 4 ve Tablo 5'te belirtilen alkali içerikleri hesaplanırken boşluk suyu çözeltisine sadece kullanılan çimento kaynaklı alkali salındığı varsayılmıştır.

3. DENEY SONUÇLARI VE TARTIŞMA

Şekil 4 ve Tablo 6'da 38°C sıcaklığa, Şekil 5 ve Tablo 7'de ise 60°C sıcaklığa maruz bırakılan karışımların zamana bağlı genleşmeleri verilmiştir. Sonuçlara göre bazalt içeren karışımların genleşmeleri, atık camlı karışımlara kıyasla çok düşük kalmıştır. Grafiklerdeki kontrol ve kontrol+ karışımlarının genleşme-zaman ilişkisi kesikli çizgilerle işaretlenerek verilerin daha rahat anlaşılması için Şekil 4c ve 5c'de ayrı olarak da sunulmuştur.

AAR-3 ve AAR-4 deneylerinden elde edilen sonuçların değerlendirilmesinde kullanılacak olan genlesme limitleri RILEM komitesi tarafından henüz kesin olarak belirlenmemis olup bunun için öncelikle laboratuvar deneylerinden elde edilen genleşmelerle saha betonlarının uzun dönemli genleşmeleri arasında güçlü korelasyonlara ihtiyaç duyulduğu ifade edilmektedir. Yine de EU "PARTNER" Projesi'nde elde edilen ilk sonuçlar uyarınca AAR-3 ve AAR-4 deneylerinde önerilen genleşme limitleri sırasıyla 1 yıllık sürede %0,05 ve 20 haftalık sürede %0,03 şeklindedir [16]. Şekil 4'teki sonuçlara göre kontrol karışımlarının nihai genleşmeleri, belirtilen genleşme limitinin yarısına bile ulaşmamıştır. 60°C'ye maruz kalma sonucu oluşan sonuçların yer aldığı Şekil 5'e göre de kontrol+ karışımının genleşmesi limiti zorlukla aşabilmiş, ama kontrol karışımı yine "reaktif olmayan" kategorisinde ver almıştır. Avrıca kontrol- karışımının her iki sıcaklık seviyesinde de deney süreleri boyunca hiç genleşme göstermediği belirlenmiştir. Bazalt agregasının ince fraksiyonunun ön deneylerimizde 80°C sıcaklıktaki harç çubuğu deneyinde 14 günde %0,5 mertebesinde genleşme ürettiği bilinmesine rağmen (potansiyel reaktivite için harç çubuğu deneyinde limit %0,1'dir), beton prizma deneyi neticesinde oldukça düşük genleşme seviyeleri oluşmuştur. Bazalt agregasının farklı deney yöntemlerine tabi tutulduğunda bu şekilde farklı davranışlar sergilemesine dair açıklamalar literatürde mevcuttur. Reaktif camsı veya kripto-kristalin bileşenler, yoğunluğu yüksek bu tip iri agregalarda yoğun yapının içerisinde hapsolup alkalilerin saldırısından korunabilmekte ve böylelikle beton prizma deneyinde daha düşük genleşmeler oluşabilmektedir [13,25].

Şekil 4. Kontrol ve a) 0/3 mm, b) 0,063/3 mm cam agregası içeren karışımların 38°C'ye maruz kalma sonrasındaki genleşme-zaman grafiği, (c) kontrol karışımlarına ait ilişkinin daha detaylı görüntüsü

Diğer taraftan cam agregası içeren karışımlarda oldukça yüksek genleşmelerle karşılaşılmıştır. Şekil 4a'ya göre sıcaklığın 38°C olması durumunda düşük alkalili çimento içeren 0/3LA karışımının genleşme seviyeleri, diğer iki karışıma nazaran tüm yaşlarda oldukça düşük kalmıştır. Şekil 4a ve Şekil 4b kıyaslandığında cam agregasından 63 µm'dan küçük tanelerin uzaklaştırılmasının her üç camlı karışım için de daha küçük genleşme değerlerine yol açtığı söylenebilir. Şekil 4b'de genleşme-zaman eğrisinin 0,063/3HA karışımı için 26 haftadan, 0,063/3LA ve 0,063/3MA karışımları için 12 haftadan sonra yataylaşma eğiliminde olduğu görülmektedir. Fakat bu grafikte 40. ve 52. haftalar arasında ortaya çıkan genleşme davranışları, reaksiyonların henüz sonlanmamış olabileceğini işaret etmektedir. Deney süresi tamamlanmış olsa da 52. haftadan sonra alınacak ölçümler, davranışın daha iyi anlaşılmasını sağlayacaktır.

Şekil 5. Kontrol ve a) 0/3 mm, b) 0,063/3 mm cam agregası içeren karışımların 60°C'ye maruz kalma sonrasındaki genleşme-zaman grafiği, (c) kontrol karışımlarına ait ilişkinin daha detaylı görüntüsü

	Hafta							
	2	4	6	13	20	26	40	52
Kontrol	-0,0045	-	0,0031	0,0041	-	0,0112	0,0136	0,0173
Kontrol+	-0,0081	-	-0,0012	0,0067	-	0,0139	0,0159	0,0223
0/3LA	-	-0,0006	-	0,0040	0,0134	0,0390	0,0588	0,0648
0/3HA	-	0,0044	-	0,0485	0,0667	0,0876	0,1274	0,1348
0/3MA	-	0,0013	-	0,0503	0,0631	0,0900	0,1223	0,1308
0,063/3LA	-	-0,0133	-	0,0048	0,0047	0,0048	0,0049	0,0087
0,063/3HA	-	-0,0037	-	0,0497	0,0647	0,0785	0,0825	0,0896
0,063/3MA	-	-0,0120	-	0,0168	0,0167	0,0151	0,0174	0,0312

Tablo 6. AAR-3 deneyleri boyunca karışımların gösterdiği genleşmeler (%)

		Ha	ıfta	
-	5	10	15	20
Kontrol	0,0062	0,0120	-	0,0181
Kontrol+	0,0147	0,0267	-	0,0307
0/3LA	0,1168	0,1928	0,2555	0,2768
0/3HA	0,1083	0,1960	0,2662	0,3183
0/3MA	0,1067	0,1893	0,2520	0,2747
0,063/3LA	0,0573	0,1561	0,2517	0,2960
0,063/3HA	0,2173	0,3667	0,4133	0,4480
0,063/3MA	0,0680	0,1333	0,1637	0,1867

Tablo 7. AAR-4 deneyleri boyunca karışımların gösterdiği genleşmeler (%)

Sekil 5a'ya göre 60°C sıcaklıkta gerçekleştirilen deneylerde karışımdaki çimentonun alkalinitesinin değişimi, genleşme sonuçlarını önemli ölçüde etkilememiştir. Fakat Şekil 5b'ye göre yüksek alkalili cimento kullanımı, 10. haftada diğer iki karısımın genlesmesinin 2 katından fazla bir boy değişimine yol açmış, 20. haftada da diğer iki karışıma göre yine daha fazla genleşme oluşturmuştur. Literatürde yer alan bazı araştırmalar [26-28], camın veterli inceliğe öğütülmesi durumunda puzolan niteliği kazanabildiğini ve hatta alkali-silis reaksivonu nedenivle oluşan genleşmeleri azaltıcı yönde rol ovnavabildiğini açıklamaktadır. Şekil 5a'daki 0/3HA ve Şekil 5b'deki 0,063/3HA karışımlarının performansları karsılaştırıldığında, karısımda 63 µm'dan küçük cam parcalarının bulunmasının daha düşük genleşme seviyesine neden olduğu görülmektedir. Fakat yine 60°C sıcaklıkta ve 20. haftada 0/3LA-0,063/3LA ve 0/3MA-0,063/MA karışımlarında elde edilen genleşmeler tam tersi bir eğilimin varlığını göstermekte ve dolayısıyla camın puzolanik etkisinden bahsedilmesini engellemektedir. Elde edilen sonuçlardan, cam tozunun puzolanik aktivitesi üzerinde boşluk çözeltisinin alkalinitesinin etkin rol oynadığı anlaşılmaktadır.

Camın 63 µm'dan küçük tanelerinin uzaklaştırılması durumunda genleşmeleri azaltıcı veya arttırıcı etkisinin varlığıyla ilgili genel bir kanıya ulaşılmasının zorluğu aşağıda sıralanan şu faktörlerin varlığından ve bunların zaman zaman birbirleriyle yarışmasından kaynaklanmaktadır:

- Deneylerde kullanılan ve soda-kireç camları kategorisine giren renksiz camlarda alkali miktarı %14-15 mertebelerinde olmaktadır. Bu alkalilerin cam bünyesinden salınıp salınmadığının kontrolü gerekmekte olup bu deneyler ilk yazarın doktora tezi çalışmaları kapsamında başlatılmıştır. Yapılan bu deneylerde cam örnekler NaOH çözeltisinde bekletilip çözeltiye salınan K⁺ iyonu ve KOH çözeltisinde bekletilip çözeltiye salınan Na⁺ iyonu ölçümleri gerçekleştirilmiştir. Bu işlemler de AAR-3 ve AAR-4 deneyleri gibi 38°C ve 60°C'de gerçekleştirilmektedir. Ayrıca cam agregaları <0,125 mm, 0,125-1 mm ve 1-4 mm olmak üzere üç farklı boy sınıfında deneye tabi tutulmuştur. RILEM tarafından (AAR-8) bu deneylerin, salınan alkali miktarı-zaman grafikleri yataylaşana kadar sürmesi önerilmektedir. Henüz her iki sıcaklık seviyesinde de alkali salınımının sona erdiğine dair bulguya rastlanmamıştır. Ayrıca 38°C'de bekletilen örnekler için 1 yıl süre henüz dolmamıştır. 60°C'de gerçekleştirildiği deneyde ise 20 haftalık sonuçlara (AAR-4 deneyinin sonuna denk gelmekte) göre daha küçük camlardan daha çok alkali salındığı görülmüştür. 60°C'de sızan alkali miktarları, camların bünyesindeki alkalilerin %1,2-2,6'sına denk gelmiştir. Bu miktarlar ilk olarak küçük değerler olarak anlaşılsa da karışımlarda yaklaşık 665 kg/m³ cam kullanıldığı ve camın yaklaşık %15 oranında alkali içeriğine sahip olduğu düşünüldüğünde, camlardan gelen alkali katkısı ~2 kg/m³ mertebelerindedir. 38°C'deki ilk bulgularda ise salınan alkali miktarları daha düşük seviyelerdedir.

- Camın 63 μm'dan küçük tanelerinin uzaklaştırılması durumunda kuşkusuz beton örneklerin geçirimliliği de artmaktadır. Geçirimliliğin artması beton bünyesine suyun girişini kolaylaştırmakta, alkali-silis jelinin su emip şişmesiyle genleşmeleri arttırmaktadır. Ama geçirimlilikteki artış aynı zamanda beton bünyesindeki alkalilerin dışarıya sızmasını da kolaylaştırmakta ve bu durum da genleşmeleri azaltıcı yönde etki etmektedir. Özellikle 60°C gibi yüksek sıcaklık seviyelerinde gerçekleştirilen deneylerde betonun bünyesinden dışarıya alkali sızıntısının önemli rol oynadığı bilinmektedir. Yakın zamanda yapılan bir çalışmada [19] deney sonunda, başlangıçta yer alan alkalilerin sızma oranının yaklaşık %40'lara vardığı belirlenmiştir. (Tablo 8'de deneysel çalışmada ölçülen değerler sunulmuştur.)

- Atık cam, silis miktarı yüksek, amorf yapıya sahip ve reaktif bir agregadır. Betonda kullanılan geleneksel agregalarda alkali-silis reaksiyonu genelde agrega-çimento hamuru ara yüzeyinde başlamakta, bu durum da yüzey alanı daha fazla olan ince agregaların genellikle daha çok reaktivite göstermesine neden olmaktadır. Fakat cam agregası için durum farklı gerçekleşmektedir. Camların beton karışımına eklenmeden önce halihazırda bünyesinde çoğunlukla kırılma esnasında oluşan mikro-çatlaklar bulunmaktadır. Camlarda alkali-silis reaksiyonu bu çatlakların içerisinde başlamaktadır [29]. Bu durum da camla yapılan çalışmalarda camın tane boyutunun artmasıyla bünyesindeki çatlak boyutu ve miktarı arttığından reaktivitesinin de artmasına neden olmuştur. Camın tane boyutu belli bir seviyeye kadar azaldıkça genleşme yaratmamakta hatta yeterli inceliğe öğütüldüğünde var olan genleşmeleri bile azaltmaktadır. Bu faktörler düşünüldüğünde 63 µm'dan küçük tanelerin genleşmeleri azaltması beklenebilir.

Deneyler süresince numunelerde incelenen genleşme davranışlarının yanı sıra ağırlıklarındaki değişimler de kaydedilmiştir. Beton prizma deneylerinde numunlerin aslında kontrol amaçlı olarak tartılması istenmekte, genleşmeler arttıkça ağırlık değerlerinde de artışlar oluşması beklenmektedir. Bu durum, reaksiyonlar neticesinde oluşan alkali-silis jelinin bünyesine su almasıyla ilgilidir. Yürütülen çalışmalar neticesinde elde edilen ağırlık artışı-zaman ilişkileri, genleşme-zaman eğilimlerine benzer çıkmıştır. Örnek teşkil etmesi açısından cam agregası içeren altı adet karışımda her yaştaki ölçümler dikkate alınarak genleşme (%) – ağırlık artışı (%) grafikleri elde edilmiştir. Şekil 6a'da 38°C'de kürlenen örnekler için, Şekil 6b'de ise 60°C'de kürlenen örnekler için çizilen grafikler görülmektedir. Buna göre numune genleşmeleri arttıkça ağırlık artışı değerleri parabolik olarak artış göstermekte olup her iki deneyde de elde edilen korelasyonlar iyi düzeydedir ve daha yüksek genleşme seviyelerinde genleşme hızı, ağırlık artış hızına kıyasla daha yüksektir.

Genleşme ve ağırlık ölçümlerine ilave olarak, numunelerin saklanmasında kullanılan kapların alt kısımlarında yer alan sudaki alkali iyonu (Na⁺ ve K⁺) miktarları da

belirlenmiştir. Konsantrasyon değerleri spektrometre yardımıyla ppm cinsinden belirlendikten sonra atomik ağırlıkları göz önünde bulundurularak bu değerler Na₂O ve K₂O miktarlarının tespitinde kullanılmıştır. Na⁺ iyon miktarı 2,696 ile çarpılarak Na₂O içeriği elde edilirken (Na₂O: 62, Na: 23, 62/23 = 2,696) K⁺ içeriği de 2,410 katsayısı ile çarpılmış ve K₂O seviyesi elde edilmiştir (K₂O: 94, K: 39, 94/39 = 2,410). Daha sonra bu değerler eşdeğer Na₂O içeriğine çevrilmiş ve yorumlar, başlangıçta yer alan alkalilerin ne kadarının suya sızdığı üzerine yapılmıştır. Dokuz karışım için her iki deney yönteminde deney süreleri sonunda belirlenen sızma miktarları Tablo 8'de sunulmuştur. Hesaplamalar yapılırken kabul edilen iki adet varsayım; alkalilerin sadece çimento kaynaklı olduğu ve kapların altı kısmında yer alan suyun hacminin deneyler süresince sabit kaldığıdır.

Şekil 6. Cam agregası içeren a) 38°C'de b) 60°C'de kürlenen karışımlar için genleşmeağırlık artışı ilişkisi

Tablo 8'de görülen sonuçlara göre, Na₂O eşdeğeri cinsinden ifade edildiğinde karışımda başlangıçta daha yüksek miktarda alkali bulunması genel bir kural olarak daha yüksek miktarda sızıntıya da neden olmuştur. Cam içeren karışımlarda alkali sızıntısı yüzdelerinin kontrol karışımlarına kıyasla önemli ölçüde daha yüksek olması cam agregalarından olası alkali salınımını akla getirmektedir. Artan sıcaklık seviyesi difüzyonu hızlandırdığından [1,12] 60°C'de yüzde cinsinden kaydedilen değerler de 38°C'ye kıyasla 1,5-5,2 kat aralığında daha yüksek çıkmıştır.

0,063/3LA, 0,063/3HA ve 0,063/3MA karışımlarında 63 µm'dan küçük tanelerin uzaklaştırılması, cam içeren diğer karışımlara kıyasla yüksek geçirimlilikleri nedeniyle daha yüksek alkali sızıntısı seviyelerinin oluşmasına yol açmıştır. Örnek olarak, Tablo 5'te verilen karışım oranlarından da görülebileceği üzere, 0/3HA ve 0,063/3HA karışımlarında dizaynda eşit miktarlarda cam agregası kullanılmıştır. Camda yer alan çok ince tanelerin alkali-silis reaksiyonuna sebep olmadığı bilindiğinden 0,063/3HA karışımının daha fazla reaktif bileşene sahip olduğu açıktır. 63 µm'dan küçük taneler içermeyen karışımlar, yüksek geçirimliliklerine ve reaksiyona yatkın olan daha fazla bileşen içermelerine rağmen genel olarak, daha yüksek genleşme seviyeleri göstermemişlerdir (Şekil 4 ve 5). O halde bu

karışımlarda gerçekleşen yüksek alkali sızıntısı seviyelerinin genleşmeler üzerinde oldukça etkin rol oynadığı anlaşılmaktadır. Alkali sızıntısı sonuçları arasında ölçülen en yüksek değere 0,063/3HA karışımının 60°C'de bekletilmesi sonucunda rastlanmıştır. Bu karışımda belirlenen %44,92'lik alkali kaybı, başlangıçta 4,60 kg/m³ olan alkali içeriğinin 60°C'de bekletilme neticesinde teorik olarak 2,53 kg/m³ seviyesine düşmesi anlamına gelmektedir.

	Bir prizmada deneyler öncesindeki alkali miktarı (g – Na ₂ O eşd)	38°C'ye maruz kalma sonucunda 52 hafta sonundaki alkali sızıntısı (mg – Na ₂ O eşd)	38°C'ye maruz kalma sonucunda 52 hafta sonundaki alkali kaybı (%)	60°C'ye maruz kalma sonucunda 20 hafta sonundaki alkali sızıntısı (mg – Na ₂ O eşd)	60°C'ye maruz kalma sonucunda 20 hafta sonundaki alkali kaybı (%)
Kontrol-	7,04	421,38	5,99	1054,66	14,98
Kontrol	8,80	793,78	9,02	1640,33	18,64
Kontrol+	10,56	1263,86	11,97	1868,89	17,70
0/3LA	4,46	195,20	4,38	1020,91	22,89
0/3HA	7,36	758,68	10,31	2561,06	34,80
0/3MA	5,90	702,71	11,91	2181,46	36,97
0,063/3LA	4,46	598,27	13,41	1663,31	37,29
0,063/3HA	7,36	2035,57	27,66	3306,46	44,92
0,063/3MA	5,90	1067,18	18,09	2348,37	39,80

Tablo 8. Kontrol karışımları ile cam agregalı karışımlarda deney süreleri sonunda sızan alkali miktarları

4. SONUÇLAR

Bu çalışmada özellikleri açıklanan malzemeler kullanılarak üretilen karışımlar üzerinde uygulanan beton prizma deneyleri, şu bulguları ortaya çıkartmıştır:

- Bazalt agregasının hızlandırılmış harç çubuğu deneyinde yüksek, beton prizma deneylerinde ise nispeten düşük reaktiviteye yol açtığı, bir başka ifadeyle deney tekniği baz alındığında genleşme davranışları arasında uyumsuzluk görüldüğü belirlenmiştir.
- Karışımlarda atık cam agregası kullanılması, reaksiyon hızında ve nihai genleşme seviyelerinde önemli ölçüde artışa yol açmıştır. Deney süreleri sonlansa da cam agregalı karışımların çoğu genleşme göstermeye halen devam etmektedir.
- Spektrometre verilerine göre 63 µm'dan küçük cam tanelerinin uzaklaştırıldığı karışımlarda daha fazla miktarda alkali sızıntısı gerçekleşmiş ve bu durum genleşmeleri düşürmüştür. Karışımların başlangıçtaki alkalinite seviyesi ve sıcaklık da alkali sızıntısı değerleri üzerinde önemli rol oynamıştır.
- AAR-3 ve AAR-4 deneyleri sonunda ölçülen alkali sızıntısı seviyeleri sırasıyla %4,38-27,66 ve %14,98-44,92 aralıklarında değişkenlik göstermiştir.

Teşekkür

Bu yayında sunulan sonuçların tamamı, TÜBİTAK 110M569 projesinden sağlanan destekle elde edilmiştir. Yazarlar, sağladığı burs desteği ve çimentoların kimyasal analizini gerçekleştirmesi nedeniyle TÇMB'ye, sağlanan mali destek için EBILTEM'e (2012-BIL-023 kodlu projeyle) ve agregaların kimyasal analizini gerçekleştiren Çimentaş İzmir Çimento Fabrikası ve Şişe Cam bünyesindeki Bilecik Camiş Madencilik'e teşekkürü bir borç bilirler.

Kaynaklar

- Lindgård, J., Andiç-Çakır, Ö., Fernandes, I., Rønning, T.F. and Thomas, M.D.A. (2012). Alkali–silica reactions (ASR): Literature review on parameters influencing laboratory performance testing. *Cement and Concrete Research*. Vol. 42, pp. 223-243.
- [2] Bérubé, M.A., Dorion, J.F., Rivest, M. (2000). Distribution of alkalies in concrete structures affected by alkali-silica reactivity and contribution by aggregates. *Proceedings 11th International Conference on AAR*, June, pp. 139-148, Québec City, Canada.
- [3] Castro, N. and Wigum, B.J. (2012). Assessment of the potential alkali-reactivity of aggregates for concrete by image analysis petrography. *Cement and Concrete Research*. Vol. 42, pp. 1635-1644.
- [4] Stanton, T.E. (1940). Expansion of concrete through reaction between cement and aggregate. *Proceedings of the American Society of Civil Engineers*, 66, pp. 1781-1811.
- [5] Alnaggar, M., Cusatis, G. and Di Luzio, G. (2013). Lattice discrete particle modeling (LDPM) of alkali silica reaction (ASR) deterioration of concrete structures. *Cement and Concrete Composites*. Vol. 41, pp. 45-59.
- [6] Thomas, M., Fournier, B., Folliard, K., Ideker, J. and Shehata, M. (2006). Test methods for evaluating preventive measures for controlling expansion due to alkali– silica reaction in concrete. *Cement and Concrete Research*. Vol. 36, pp. 1842-1856.
- [7] Oberholster, R.E. and Davies, G. (1986). An accelerated method for testing the potential alkali reactivity of siliceous aggregates. *Cement and Concrete Research*. Vol. 16, pp. 181-189.
- [8] Fournier, B., Bérubé, M.A. and Frenette, J. (2000). Laboratory investigations for evaluating potential alkali-reactivity of aggregates and selecting preventive measures against alkali-aggregate reaction (AAR) What do they really mean? *Proceedings* 11th International Conference on AAR, June, pp. 287-296, Québec City, Canada.
- [9] De Grosbois, M. and Fontaine, E. (2000). Evaluation of the potential alkali-reactivity of concrete aggregates: Performance of testing methods and a producer's point of view. *Proceedings 11th International Conference on AAR*, June, pp. 267-276, Québec City, Canada.

- [10] Ideker, J.H., East, B.L., Folliard, K.J., Thomas, M.D.A. and Fournier, B. (2010). The current state of the accelerated concrete prism test. *Proceedings of the 13th International Conference on AAR*, June 16-20, pp. 119-129, Trondheim, Norway.
- [11] Ranc, R. and Debray, L. (1992). Reference test methods and a performance criterion for concrete structures. *Proceedings of the 9th International Conference on AAR in concrete,* pp. 824-831, London, UK.
- [12] Fournier, B., Chevrier, R., De Grosbois, M., Lisella, R., Folliard, K., Ideker, J., Shehata, M., Thomas, M. and Baxter, S. (2004). The accelerated concrete prism test (60°C): Variability of the test method and proposed expansion limits. *Proceedings of the 12th International Conference on AAR in Concrete*, pp. 314-323, Beijing, China.
- [13] Shayan, A., Xu, A. and Morris, H. (2008). Comparative study of the concrete prism test (CPT 60°C, 100% RH) and other accelerated tests. *Proceedings of the 13th International Conference on AAR*, June 16-20, pp. 391-400, Trondheim, Norway.
- [14] Murdock, K.J. and Blanchette, A. (1994). Rapid evaluation of alkali aggregate reactivity using a 60°C concrete prism test, *Proceedings of the 3rd CANMET/ACI International Conference on Durability of Concrete*, pp. 57-78, Nice, France.
- [15] Touma, W.E., Fowler, D.W., Carrasquillo, R.L., Folliard, K.J. and Nelson, N.R. (2001). *Characterizing alkali-silica reactivity of aggregates using ASTM C1293, ASTM C1260 and their modifications*. Transportation Research Record, 1757, Paper no. 01-3019, pp. 157-165.
- [16] Lindgård, J., Nixon, P.J., Borchers, I., Schouenborg, B., Wigum, B.J., Haugen, M. and Åkesson, U. (2010). The EU "PARTNER" Project European standard tests to prevent alkali reactions in aggregates: Final results and recommendations. *Cement and Concrete Research*. Vol. 40, pp. 611-635.
- [17] Rivard, P., Bérubé, M.A., Ollivier, J.P. and Ballivy, G. (2003). Alkali mass balance during the accelerated concrete prism test for alkali-aggregate reactivity. *Cement and Concrete Research*. Vol. 33, pp. 1147-1153.
- [18] Duchesne, J. and Bérubé, M.A. (2001). Long-term effectiveness of supplementary cementing materials against alkali-silica reaction. *Cement and Concrete Research*. Vol. 31, pp. 1057-1063.
- [19] Lindgård, J., Thomas, M.D.A., Sellevold, E.J., Pedersen, B., Andiç-Çakır, Ö., Justnes, H. and Rønning, T.F. (2013a). Alkali-silica reaction (ASR) – performance testing: Influence of specimen pre-treatment, exposure conditions and prism size on alkali leaching and prism expansion. *Cement and Concrete Research*. Vol. 53, pp. 68-90.
- [20] Çopuroğlu, O., Andiç-Çakir, Ö., Broekmans, M.A.T.M. and Kühnel, R. (2009). Mineralogy, geochemistry and expansion testing of an alkali-reactive basalt from western Anatolia, Turkey. *Materials Characterization*, Vol. 60, pp. 756-766.
- [21] Yüksel, C., Saleh-Ahari, R., Abbaspoursani-Ahari, B. and Ramyar, K. (2013). Evaluation of three test methods for determining the alkali–silica reactivity of glass aggregate. *Cement and Concrete Composites*. Vol. 38, pp. 57-64.

- [22] RILEM State-of-the-Art Reports, Volume 17 (2016). State-of-the-Art-Report of the RILEM Technical Committee 219-ACS, RILEM Recommendations for the Prevention of Damage by Alkali-Aggregate Reactions in New Concrete Structures. Eds. Philip J. Nixon and I. Sims.
- [23] Lindgård, J., Sellevold, E.J., Thomas, M.D.A., Pedersen, B., Justnes, H. and Rønning, T.F. (2013b). Alkali–silica reaction (ASR) – performance testing: Influence of specimen pre-treatment, exposure conditions and prism size on concrete porosity, moisture state and transport properties. *Cement and Concrete Research*. Vol. 53, pp. 145-167.
- [24] Robinson, J.W. (1982). Basic Principles. In: J.E. Cantle (ed) Atomic Absorption Spectrometry. Elsevier Scientific Publishing Company. New York, pp. 1-14.
- [25] Shayan, A. (2004). Alkali-aggregate reaction and basalt aggregates. *Proceedings of the 12th International Conference on AAR in Concrete*, pp. 1130-1135, Beijing, China.
- [26] Du, H. and Tan, K.H. (2013). Use of waste glass as sand in mortar: Part II Alkali– silica reaction and mitigation methods. *Cement and Concrete Composites*, Vol. 35, pp. 118-126.
- [27] Hudec, P.P. and Ghamari, R.C. (2000). Ground waste glass as an alkali-silica reactivity inhibitor. *Proceedings 11th International Conference on AAR*, June, pp. 663-672, Québec City, Canada.
- [28] Shao, Y., Lefort, T., Moras, S. and Rodriguez, D. (2000). Studies on concrete containing ground waste glass. *Cement and Concrete Research*, Vol. 30, pp. 91-100.
- [29] Rajabipour, F., Maraghechi, H. and Fischer, G. (2010). Investigating the alkali-silica reaction of recycled glass aggregates in concrete materials. *Journal of Materials in Civil Engineering*. 22, (12), pp. 1201–1208.