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Abstract: The main interest of the present paper is to classify the almost cosymplectic 3-manifolds that satisfy

∥gradλ∥ = const.( ̸= 0 ) and ▽ξh = 2ahϕ.
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1. Preliminaries

Let M be an almost contact metric manifold and let (ϕ, ξ, η, g) be its almost contact metric structure. Thus

M is a (2n+ 1)-dimensional differentiable manifold and ϕ is a (1, 1) tensor field, ξ is a vector field, and η is

a 1-form on M , such that

ϕ2X = −X + η(X)ξ, η(X) = g(X, ξ) (1)

ϕ(ξ) = 0, η ◦ ϕ = 0, (2)

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ), (3)

for any vector fields X,Y on M.

The fundamental 2-form Φ of an almost contact metric manifold (M,ϕ, ξ, η, g) is defined by

Φ(X,Y ) = g(X,ϕY ), (4)

for any vector fields X,Y on M , and this form satisfies η ∧ Φn ̸= 0. M is said to be almost cosymplectic if

the forms η and Φ are closed, that is, dη = 0 and dΦ = 0.

The theory of an almost cosymplectic manifold was introduced by Goldberg and Yano in [9]. The products

of almost Kaehler manifolds and the real R line or the circle S1 are the simplest examples of almost cosymplectic

manifolds. Topological and geometrical properties of almost cosymplectic manifolds have been studied by many

mathematicians (see [4], [11], [5], [9], [15], and [18]).

For M , define (1, 1)-tensor fields Ã and h by ([7],[8],[15],[16])

Ã X = −▽X ξ, (5)
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h =
1

2
Lξϕ, (6)

where L indicates the Lie differentiation operator and ▽ is the Levi–Civita connection determined by g . The

tensors Ã and h are related by

h = Ã ϕ, Ã = ϕh. (7)

The main algebraic properties of Ã and h are the following:

g(Ã X, Y ) = g(Ã Y,X), Ã ϕ+ ϕÃ = 0, Ã ξ = 0, η ◦ Ã = 0,

g(hX, Y ) = g(hY,X), hϕ+ ϕh = 0, hÃ + Ã h = 0, hξ = 0, η ◦ h = 0 .

The curvature tensor R of M is given by R(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z and the Ricci tensor Ric

of M are defined by Ric(X,Y ) = TrX → R(X,Y )Z for any vector field X,Y and Z.

In [6], Dacko and Olszak proved the existence of a new class of almost cosymplectic manifolds, which is

called (κ, µ, υ)-spaces. This means that the curvature tensor R satisfies the condition

R(X,Y )ξ = κ(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY ) (8)

+υ(η(Y )ϕhX − η(X)ϕhY ),

where κ, µ, υ are smooth functions. Contact metric manifolds fulfilling Eq. (8) were investigated in [2], [1], [3],

and [12].

This work was inspired by [14] and [13]. We carry on those studies to the 3-dimensional almost

cosymplectic manifolds in this paper. The purpose of the present paper is to give a new local classification of

3-dimensional almost cosymplectic manifolds under some conditions. The paper is organized in the following

way. Section 2 is devoted to some lemmas related to 3-dimensional almost cosymplectic manifolds for later

use. In Section 3, we give our main theorem.

All manifolds considered in this paper are assumed to be connected and of class C∞ .

2. Three-dimensional almost cosymplectic manifolds

Now we shall give some essential Lemmas and notations.

Lemma 2.1 [10] Let M be a smooth manifold f : M → R be a smooth real function. Let V1 and V2 be open

sets of M defined by

V1 = {m ∈ M | f(m) ̸= 0 in a neighborhood of m},

V2 = {m ∈ M | f(m) = 0 in a neighborhood of m}.

Then V1∪ V2 is open and dense in M.

Let (M,ϕ, ξ, η, g) be an almost cosymplectic 3-manifold. Let

U = {p ∈ M | h(p) ̸= 0 in a neighborhood of p} ⊂ M,

U0 = {p ∈ M | h(p) = 0 in a neighborhood of p} ⊂ M
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be open sets of M . Using Lemma 2.1, we can say that U ∪ U0 is an open and dense subset of M , and so any

property satisfied in U0 ∪ U is also satisfied in M . For any point p ∈ U ∪ U0 , there exists a local orthonormal

basis {e, ϕe, ξ} of smooth eigenvectors of h in a neighborhood of p (this we call a ϕ-basis).

On U , we put he = λe, hϕe = −λϕe , where λ is a nonvanishing smooth function assumed to be positive.

Lemma 2.2 [17] On the open set U we have

∇ξe = −aϕe, ∇ee = bϕe, ∇ϕee = −cϕe+ λξ, (9)

∇ξϕe = ae, ∇eϕe = −be+ λξ, ∇ϕeϕe = ce, (10)

∇ξξ = 0, ∇eξ = −λϕe, ∇ϕeξ = −λe, (11)

∇ξh = 2ahϕ+ ξ(λ)s, (12)

where a is a smooth function,

b =
1

2λ
((ϕe)(λ) +A) with A = σ(e) = Ric(e, ξ), (13)

c =
1

2λ
(e(λ) +B) with B = σ(ϕe) = Ric(ϕe, ξ), (14)

and s is the type (1, 1) tensor field defined by sξ = 0 , se = e , and sϕe = −ϕe , and Ric is Ricci tensor field.

By Lemma 2.2, we can prove that

[e, ϕe] = ∇eϕe− ∇ϕee = −be+ cϕe, (15)

[e, ξ] = ∇eξ −∇ξe = (a− λ)ϕe, (16)

[ϕe, ξ] = ∇ϕeξ −∇ξϕe = −(a+ λ)e. (17)

If we adapt Theorem 7 of [17] to a 3-dimensional almost cosymplectic manifolds, we get the following:

Lemma 2.3 [17] Let (M,ϕ, ξ, η, g) be a 3-dimensional almost cosymplectic manifold. If σ ≡ 0 , then the

(κ, µ, ν)-structure always exists on every open and dense subset of M . This means that the Riemannian

curvature tensor R of M satisfies

R(X,Y )ξ = −λ2(η(Y )X − η(X)Y )

+2a(η(Y )hX − η(X)hY )

+
ξ(λ)

λ
(η(Y )ϕhX − η(X)ϕhY ),

for all vector fields X and Y on M .

3. Main theorem and proof

In this section, we will give our main theorem and prove it.

Theorem 3.1 (Main theorem) Let M(ϕ, ξ, η, g) be a 3-dimensional almost cosymplectic manifold with ∥grad λ∥ =

1 and ∇ξh = 2ahϕ. Then at any point p ∈ M there exists a chart (U, (x, y, z)) such that λ = f(z) ̸= 0 and
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A = 0, B = F (y, z) or A = F (y, z), B = 0. In the first case (A = Ric(e, ξ) = 0, B = Ric(ϕe, ξ) = F (y, z)) ,

the following are valid:

ξ =
∂

∂x
, ϕe =

∂

∂y
and e = k1

∂

∂x
+ k2

∂

∂y
+ k3

∂

∂z
, k3 ̸= 0.

In the second case (A = Ric(e, ξ) = F (y, z), B = Ric(ϕe, ξ) = 0) , the following are valid:

ξ =
∂

∂x
, e =

∂

∂y
and ϕe = k′1

∂

∂x
+ k′2

∂

∂y
+ k′3

∂

∂z
, k′3 ̸= 0,

where

k1(x, y, z) = r(z) = k′1(x, y, z),

k2(x, y, z) = k′2(x, y, z) = 2xf(z)− (H(y, z) + y)

2f(z)
+ β(z),

k3(x, y, z) = k′3(x, y, z) = t(z) + δ,
∂H(y, z)

∂y
= F (y, z),

and r, β are smooth functions of z and δ is constant. Furthermore, f(z) =
∫

1
k3(z)

dz .

Proof. By virtue of Lemma 2.2, it can be easily proven that the assumption ∇ξh = 2ahϕ is equivalent to

ξ(λ) = 0. From the definition of a gradient of a differentiable function, we get

gradλ = e(λ)e+ (ϕe)(λ)ϕe+ ξ(λ)ξ

= e(λ)e+ (ϕe)(λ)ϕe. (18)

Using Eq. (18) and ∥grad λ∥ = 1 we have

(e(λ))2 + ((ϕe)(λ))2 = 1. (19)

Differentiating (19) with respect to ξ and using Eqs. (16) and (17) and ξ(λ) = 0, we obtain

ξ(e(λ))e(λ) + ξ((ϕe)(λ))(ϕe)(λ) = 0

([ξ, e] (λ)) e(λ) + ([ξ, ϕe] (λ)) (ϕe)λ = 0

λe(λ)(ϕe)(λ) = 0

and since λ ̸= 0,

e(λ)(ϕe)(λ) = 0. (20)

To study this system, we consider the open subsets of U :

U ′ = {p ∈ U | e(λ)(p) ̸= 0, in a neighborhood of p} ,

U ′′ = {p ∈ U | (ϕe)(λ)p ̸= 0, in a neighborhood of p} .

From Lemma 2.1 we have that U ′ ∪ U ′′ is open and dense in the closure of U. We distinguish 2 cases.
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Case 1: We suppose that p ∈ U ′. By virtue of Eqs. (19) and (20), we have (ϕe)(λ) = 0, and e(λ) = ∓1.

Changing to the basis (ξ,−e,−ϕe) if necessary, we can assume that e(λ) = 1. The Eqs. (15), (16), (17), and

(13), Eq. (14) reduces to

[e, ϕe] = −be+ cϕe (21)

[e, ξ] = −2λϕe (22)

[ϕe, ξ] = 0, λ = −a (23)

b =
A

2λ
, c =

B + 1

2λ
, a = −λ, (24)

respectively.

Since [ϕe, ξ] = 0, the distribution that is spanned by ϕe and ξ is integrable, and so for any p ∈ U ′ there

exists a chart {V , (x, y, z)} at p , such that

ξ =
∂

∂x
, ϕe =

∂

∂y
, e = k1

∂

∂x
+ k2

∂

∂y
+ k3

∂

∂z
(25)

where k1, k2 , k3 are smooth functions on V . Since ξ , e , ϕe are linearly independent we have k3 ̸= 0 at any

point of V.

Using Eqs. (21), (22) and (25), we get the following partial differential equations:

∂k1
∂y

=
A

2λ
k1,

∂k2
∂y

=
1

2λ
[Ak2 −B − 1] ,

∂k3
∂y

=
A

2λ
k3, (26)

∂k1
∂x

= 0,
∂k2
∂x

= 2λ,
∂k3
∂x

= 0. (27)

Moreover, we know that

∂λ

∂x
= 0,

∂λ

∂y
= 0. (28)

Differentiating the equation ∂k3

∂x = 0 with respect to ∂
∂y , and using ∂k3

∂y = A
2λk3 , we find

0 =
∂2k3
∂y∂x

=
∂2k3
∂x∂y

=
1

2λ

∂A

∂x
k3 +

1

2λ
A
∂k3
∂x

=
1

2λ

∂A

∂x
k3.

So,

∂A

∂x
= 0. (29)

Differentiating ∂k2

∂x = 2λ with respect to ∂
∂y , and using ∂k2

∂y = 1
2λ [Ak2 −B − 1] and Eq. (29), we prove that

∂2k2
∂y∂x

= 0 =
∂2k2
∂x∂y

=
1

2λ

[
∂A

∂x
k2 +A

∂k2
∂x

− ∂B

∂x

]
.

So,

∂B

∂x
= 2λA. (30)
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From Eq. (28) we have the following solution:

λ(z) = f(z) + d, (31)

where d is constant. For the sake of shortness, we will use f̃(z) instead of f(z) + d . Using e(λ) =

k1
∂λ
∂x + k2

∂λ
∂y + k3

∂λ
∂z = 1 and Eq. (28), we get

∂λ

∂z
=

1

k3
, k3 ̸= 0. (32)

If we differentiate Eq. (32) with respect to ∂
∂y because of the equation ∂λ

∂y = 0, we obtain

0 =
∂2λ

∂z∂y
=

∂2λ

∂y∂z
= − 1

k23

∂k3
∂y

. (33)

Since k3 ̸= 0, Eq. (33) reduces and then we obtain

∂k3
∂y

= 0. (34)

Combining Eqs. (26) and (34), we deduced that

A = 0. (35)

Using Eqs. (30) and (35), we have

∂B

∂x
= 0. (36)

It follows from Eq. (36) that

B = F (y, z). (37)

By virtue of Eqs. (35) , (26), and (27), we easily see that

k1 = r(z), (38)

where r(z) is an integration function.

Combining Eqs. (27) and (34), we get

k3 = t(z) + δ, (39)

where δ is constant.

If we use Eqs. (27), (31), (35), and (37) in Eq. (26),

∂k2
∂x

= 2f̃(z),
∂k2
∂y

=
−(B + 1)

2λ
=

−(F (y, z) + 1)

2f̌(z)
. (40)

It follows from this last partial differential equation that

k2 = 2xf̃(z)− (H(y, z) + y)

2f̌(z)
+ β(z), (41)
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where

∂H(y, z)

∂y
= F (y, z). (42)

Because of Eq. (32), there is a relation between λ(z) = f̃(z) and k3(z) such that f̃(z) =
∫

1
k3(z)

dz. We

will calculate the tensor fields η , ϕ , g with respect to the basis ∂
∂x ,

∂
∂y ,

∂
∂z . For the components gij of the

Riemannian metric g , using Eq. (25) we have

g11 = 1, g22 = 1, g12 = g21 = 0, g13 = g31 =
−k1
k3

,

g23 = g32 =
−k2
k3

, g33 =
1 + k21 + k22

k23
.

The components of the tensor field ϕ are immediate consequences of

ϕ(ξ) = ϕ(
∂

∂x
) = 0, ϕ(

∂

∂y
) = −k1

∂

∂x
− k2

∂

∂y
− k3

∂

∂z
,

ϕ(
∂

∂z
) =

k1k2
k3

∂

∂x
+

1 + k22
k3

∂

∂y
+ k2

∂

∂z
.

The expression of the 1-form η immediately follows from η(ξ) = 1, η(e) = η(ϕe) = 0.

η = dx− k1
k3

dz.

Now we calculate the components of tensor field h with respect to the basis ∂
∂x ,

∂
∂y ,

∂
∂z .

h(ξ) = h(
∂

∂x
) = 0, h(

∂

∂y
) = −λ

∂

∂y
,

h(
∂

∂z
) = λ

k1
k3

∂

∂x
+ 2λ

k2
k3

∂

∂y
+ λ

∂

∂z
.

Case 2: Now we suppose that p ∈ U
′′
. As in Case 1, we can assume that (ϕe)(λ) = 1. The Eqs. (15),

(16) ,(17), and (13), Eq. (14) reduces to

[e, ϕe] = −be+ cϕe, (43)

[e, ξ] = 0, (44)

[ϕe, ξ] = −2λe, (45)

b =
A+ 1

2λ
, c =

B

2λ
, a = λ, (46)

respectively. Because of Eq. (44), we find that there exists a chart {V ′ ,(x, y, z)} at p ∈ U
′′
such that

ξ =
∂

∂x
, ϕe = k′1

∂

∂x
+ k′2

∂

∂y
+ k′3

∂

∂z
, e =

∂

∂y
, (47)
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where k′1 , k
′
2 , and k′3 (k′3 ̸= 0), are smooth functions on V ′.

Using Eqs.(43), (45), and (47), we get the following partial differential equations:

∂k′1
∂y

=
B

2λ
k′1,

∂k′2
∂y

=
1

2λ
[Bk′2 −A− 1] ,

∂k′3
∂y

=
B

2λ
k′3, (48)

∂k′1
∂x

= 0,
∂k′2
∂x

= 2λ,
∂k′3
∂x

= 0.

Moreover, we know that

∂λ

∂x
= 0,

∂λ

∂y
= 0. (49)

As in Case 1, if we solve the partial differential equations Eq. (48) and Eq. (49), then we find

B = 0, A = F ′(y, z) (50)

λ(z) = f ′(z) + d′ = f̃ ′(z), k′1 = r′(z), k′3 = t′(z) + δ′ (51)

k′2 = 2xf̃ ′(z)− (H ′(y, z) + y)

2f(z)
+ β′(z) (52)

∂H ′(y, z)

∂y
= F ′(y, z) (53)

where d′ and δ′ are constants.

By the help of Eq. (51), the equation (ϕe)(λ) = 1 implies

λ(z) = f̃ ′(z) =

∫
1

k′3(z)
dz.

As in Case1, we can directly calculate the tensor fields g, ϕ , η , and h with respect to the basis ∂
∂x ,

∂
∂y ,

∂
∂z .

g =


1 0 −k′

1

k′
3

0 1 −k′
2

k′
3

−k′
1

k′
3

−k′
2

k′
3

1+k′2
1 +k′2

2

k′2
3

 , ϕ =

 0 k′1 −k′
1k

′
2

k′
3

0 k′2 −1+k′2
2

k′
3

0 k′3 −k′2

 ,

η = dx− k′1
k′3

dz and h =

 0 0 −λ
k′
1

k′
3

0 λ −2λ
k′
2

k′
3

0 0 −λ


□

Example 3.2

M = {(x, y, z) ∈ R3, z ̸= 0}

and the vector fields

ξ =
∂

∂x
, e =

∂

∂y
, ϕe = z

∂

∂x
+ (2xz − 1)

∂

∂y
+

∂

∂z
.
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The 1-form η = dx − zdz is closed and the characteristic vector field is ξ = ∂
∂x . Let g , ϕ be the

Riemannian metric and the (1, 1)-tensor field given by

g =

 1 0 −a1
0 1 a2

−a1 a2 1 + a21 + (a2)
2

 , ϕ =

 0 a1 a1a2
0 −a2 −(1 + a22)
0 1 a2

 ,

h =

 0 0 −λa1
0 λ 2λa2
0 0 −λ

 , λ = z,

with respect to the basis ∂
∂x ,

∂
∂y ,

∂
∂z , where a1 = z and a2 = 1− 2xz ˙

η = dx− zdz , dη = 0,

Φ = −dy ∧ dz , dΦ = 0.

By a straightforward calculation, we obtain

∇ξh = 2zhϕ, F (y, z) = −1, ∥grad λ∥ = 1.

Remark 3.3 Let M(ϕ, ξ, η, g) be an almost cosymplectic manifold . A Dα -homothetic transformation [19] is

the transformation

η̄ = αη, ξ̄ =
1

α
ξ, ϕ̄ = ϕ, ḡ = αg + α(α− 1)η ⊗ η (54)

of the structure tensors, where α is a positive constant. It is well known [19] that M(ϕ̄, ξ̄, η̄, ḡ) is also an almost

cosymplectic manifold. When 2 contact structures (ϕ, ξ, η, g) and (ϕ̄, ξ̄, η̄, ḡ) are related by Eq. (54) , we will

say that they are Dα -homothetic.We can easily show that h̄ = 1
αh so λ̄ = 1

αλ.

(a) As a result, an almost cosymplectic manifold with ∥grad λ∥g = d ̸= 0 (const.) is Dα -deformed in

another almost cosymplectic manifold with
∥∥gradλ̄∥∥

ḡ
= dα− 3

2 and choosing α = d
2
3 , it is enough to study those

almost cosymplectic manifolds with ∥grad λ∥ = 1.

(b) If d = 0, then λ is constant. As a result, if λ = 0, then M is a cosymplectic manifold.

Remark 3.4 There are no compact 3-dimensional almost cosymplectic manifolds with ∥grad λ∥ = const ̸= 0.

In fact, if such a manifold is compact, then the smooth function λ will attain a maximum value at some point

p of M. Then grad λ vanishes at p , contrary to the requirement that grad λ is a nonzero constant.

Remark 3.5 Using Theorem 3.1, we can produce infinitely many possible examples about 3-dimensional almost

cosymplectic manifolds. If we add the condition F (y, z) = 0 to Theorem 3.1, we have A = 0 and B = 0. Thus,

by Lemma 2.3, we can state that a 3-dimensional almost cosymplectic manifold under the same conditions of

Theorem 3.1 is a 3-dimensional almost cosymplectic (κ, µ) manifold.

Now we will give an example satisfying Remark 3.5.
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Example 3.6 We consider the 3-dimensional manifold

M = {(x, y, z) ∈ R3 | z > 0}

and the vector fields

ξ =
∂

∂x
, ϕe =

∂

∂y
, e = z2

∂

∂x
+ (2xz − z + y

2z
)
∂

∂y
+

∂

∂z
.

The 1-form η = dx− z2dz is closed and the characteristic vector field is ξ = ∂
∂x . Let g , ϕ be the Riemannian

metric and the (1, 1)-tensor field given by

g =

 1 0 −a1

a3

0 1 −a2

a3

−a1

a3
−a2

a3

1+a2
1+a2

2

a2
3

 , ϕ =

 0 −a1
a1a2

a3

0 −a2
1+a2

2

a3

0 −a3 a2

 ,

η = dx− a1
a3

dz, and h =

 0 0 λa1

a3

0 −λ 2λa2

a3

0 0 λ


with respect to the basis ∂

∂x ,
∂
∂y ,

∂
∂z , where a1 = z2, a2 = 2xz − z+y

2z , a3 = 1 , λ = z .

η = dx− z2dz, dη = 0,

Φ = dy ∧ dz, dΦ = 0.

By direct computations, we get

∥grad λ∥ = 1,∇ξh = −2zhϕ , F (y, z) = 0

and

R(X,Y )ξ = (−z2)(η(Y )X − η(X)Y )− 2z(η(Y )hX − η(X)hY )

for any vector field X , Y on M .
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