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1. Introduction

Let x and k be positive integers. Write

Sk(x) = 1k + 2k + ... + xk
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for the sum of the k-th powers of the first x positive integers. The Diophantine equation

Sk(x) = yn , (1.1)

in unknown positive integers k, n, x, y with n ≥ 2 has a rich history. In 1875, the classical 
question of Lucas [12] was whether equation (1.1) has only the solutions x = y = 1 and 
x = 24, y = 70 for (k, n) = (2, 2). In 1918, Watson [21] solved equation (1.1) with 
(k, n) = (2, 2). In 1956, Schäffer [17] considered equation (1.1). He showed, for fixed 
k ≥ 1 and n ≥ 2, that (1.1) possesses at most finitely many solutions in positive integers 
x and y, unless

(k, n) ∈ {(1, 2), (3, 2), (3, 4), (5, 2)} (1.2)

where, in each case, there are infinitely many such solutions. There are several effective 
and ineffective results concerning equation (1.2), see the survey paper [8]. Schäffer’s 
conjectured that (1.2) has the unique non-trivial (i.e. (x, y) �= (1, 1)) solution, namely 
(k, n, x, y) = (2, 2, 24, 70). In 2004, Jacobson, Pintér, Walsh [10] and Bennett, Győry, 
Pintér [3], proved that the Schäffer’s conjecture is true if 2 ≤ k ≤ 58, k is even n = 2 and 
2 ≤ k ≤ 11, n is arbitrary, respectively. In 2007, Pintér [15], proved that the equation

Sk(x) = y2n, in positive integers x, y, n with n > 2 (1.3)

has only the trivial solution (x, y) = (1, 1) for odd values of k, with 1 ≤ k < 170.
In 2015, Hajdu [9], proved that Schäffer’s conjecture holds under certain assumptions 

on x, letting all the other parameters free. He also proved that the conjecture is true if 
x ≡ 0, 3 (mod 4) and x < 25. The main tools in the proof of this result were the 2-adic 
valuation of Sk(x) and local methods for polynomial-exponential congruences. Recently 
Bérczes, Hajdu, Miyazaki and Pink [6], provided all solutions of equation (1.1) with 
1 ≤ x < 25 and n ≥ 3.

Now we consider the Diophantine equation

(x + 1)k + (x + 2)k + ... + (x + d)k = yn (1.4)

for fixed positive integers k and d.
In 2013, Zhang and Bai [2], considered the Diophantine equation (1.4) with k = 2. 

They first proved that all integer solutions of equation (1.4) such that n > 1 and d = x

are (x, y) = (0, 0), (x, y, n) = (1, ±2, 2), (2, ±5, 2), (24, ±182, 2) or (x, y) = (−1, −1) with 
2 � n. Secondly, they showed that if p ≡ ±5 (mod 12) is prime, p | d and vp(d) �≡ 0
(mod n), then equation (1.4) has no integer solution (x, y) with k = 2. In 2014, the 
equation

(x− 1)k + xk + (x + 1)k = yn x, y, n ∈ Z, n ≥ 2, (1.5)



328 A. Bérczes et al. / Journal of Number Theory 183 (2018) 326–351
was solved completely by Zhang [22], for k = 2, 3, 4 and the next year, Bennett, Patel and 
Siksek [4], extend Zhang’s result, completely solving equation (1.5) in the cases k = 5
and k = 6. In 2016, Bennett, Patel and Siksek [5], considered the equation (1.4). They 
gave the integral solutions to the equation (1.4) using linear forms in logarithms, sieving 
and Frey curves where k = 3, 2 ≤ d ≤ 50, x ≥ 1 and n is prime.

Let k ≥ 2 be even, and let r be a non-zero integer. Recently, Patel and Siksek [14], 
showed that for almost all d ≥ 2 (in the sense of natural density), the equation

xk + (x + r)k + ... + (x + (d− 1)r)k = yn, x, y, n ∈ Z, n ≥ 2

has no solutions. Let k, l ≥ 2 be fixed integers. More recently, Soydan [20], considered 
the equation

(x + 1)k + (x + 2)k + ... + (lx)k = yn, x, y ≥ 1, n ∈ Z, n ≥ 2 (1.6)

in integers. He proved that the equation (1.6) has only finitely many solutions in positive 
integers, x, y, k, n, where l is even, n ≥ 2 and k �= 1, 3. He also showed that the equation 
(1.6) has infinitely many solutions where n ≥ 2, l is even and k = 1, 3.

In this paper, we are interested in the integer solutions of the equation

Tk(x) = yn (1.7)

where

Tk(x) = (x + 1)k + (x + 2)k + ... + (2x)k (1.8)

for positive integer k. We provide upper bounds for n and give some results about 
equation (1.7).

2. The main results

Our main results provide upper bounds for the exponent n in equation (1.7) in terms 
of 2 and 3-valuations v2 and v3 of some functions of x and x, k. Further, on combining 
Theorem 2.1 with Baker’s method and with a version of the local method (see e.g. [6]), 
we show that for 2 ≤ x ≤ 13, k ≥ 1, y ≥ 2 and n ≥ 3 equation (1.7) has no solutions.

For a prime p and an integer m, let vp(m) denote the highest exponent v such that 
pv|m.

Theorem 2.1. (i) Assume first that x ≡ 0 (mod 4). Then for any solution (k, n, x, y) of 
equation (1.7), we get

n ≤
{

v2(x) − 1, if k = 1 or k is even,
2v2(x) − 2, if k ≥ 3 is odd.
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(ii) Assume that x ≡ 1 (mod 4) and k = 1, then for any solution (k, n, x, y) of 
equation (1.7), we get n ≤ v2(3x + 1) − 1.

Suppose next that x ≡ 1, 5 (mod 8) and x �≡ 1 (mod 32) with k �= 1. Then for any 
solution (k, n, x, y) of equation (1.7), we get

n ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v2(7x + 1) − 1, if x ≡ 1 (mod 8) and k=2,
v2((5x + 3)(3x + 1)) − 2, if x ≡ 1 (mod 8) and k = 3,

v2(3x + 1), if x ≡ 5 (mod 8) and k ≥ 3 is odd,
1, if x ≡ 5 (mod 8) and k ≥ 2 is even,
2, if x ≡ 9 (mod 16) and k ≥ 4 is even,
3, if x ≡ 9 (mod 16) and k ≥ 5 is odd

or
if x ≡ 17 (mod 32) and k ≥ 4 is even,

4, if x ≡ 17 (mod 32) and k ≥ 5 is odd.

(iii) Suppose now that x ≡ 0 (mod 3) and k is odd or x ≡ 0, 4 (mod 9) and k ≥ 2 is 
even. Then for any solution (k, n, x, y) of equation (1.7),

n ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

v3(x), if x ≡ 0 (mod 3) and k = 1,
v3(x) − 1, if x ≡ 0 (mod 9) and k ≥ 2 is even,
v3(kx2), if x ≡ 0 (mod 3) and k > 3 is odd,

v3(x2(5x + 3)), if x ≡ 0 (mod 3) and k = 3,
v3(2x + 1) − 1, if x ≡ 4 (mod 9) and k ≥ 2 is even.

Theorem 2.2. Assume that x ≡ 1, 4 (mod 8) or x ≡ 4, 5 (mod 8). Then Eq. (1.7) has no 
solution with k = 1 or k ≥ 2 is even, respectively.

Theorem 2.3. Consider equation (1.7) in positive integer unknowns (x, k, y, n) with 2 ≤
x ≤ 13, k ≥ 1, y ≥ 2 and n ≥ 3. Then equation (1.7) has no solutions.

3. Auxiliary results

3.1. Bernoulli polynomials

The Bernoulli polynomials Bq(x) are defined by

zezx

ez − 1 =
∞∑
q=0

Bq(x)zq

q! , |z| < 2π.
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Their expansion around the origin is given by

Bq(x) =
q∑

i=0

(
q

i

)
Bix

q−i, (3.1)

where Bn = Bn(0) for (n = 0, 1, 2, ...) are the Bernoulli numbers. For the following prop-
erties of Bernoulli Polynomials, we refer to Haynsworth and Goldberg, [1], pp. 804–805 
(see also Rademacher, [16]):

Bk = Bk(0), k = 0, 1, 2, ... (3.2)

B2k+1(0) = B2k+1(1) = B2k+1 = 0, k = 1, 2, ... (3.3)

Bk(1 − x) = (−1)kBk(x) (3.4)

Bk(x) + Bk(x + 1
2) = 21−kBk(2x) (3.5)

(−1)k+1B2k+1(x) > 0, k = 1, 2, ... 0 < x <
1
2 (3.6)

The polynomials Sk(x) are strongly connected to the Bernoulli polynomials since 
Sk(x) may be expressed as

Sk(x) = 1
k + 1(Bk+1(x + 1) −Bk+1(0)). (3.7)

3.2. Decomposition of the polynomials Sk(x) and Tk(x)

We start by stating some well-known properties of the polynomial Sk(x) which we 
will need later; see e.g. [16] for details.

If k = 1, then S1(x) = x(x+1)
2 while, if k > 1, we can write

Sk(x) =
{

1
Ck

x2(x + 1)2Rk(x), if k > 1 is odd,
1
Ck

x(x + 1)(2x + 1)Rk(x), if k > 1 is even,

where Ck is a positive integer and Rk(x) is a polynomial with integer coefficients.
By Tk(x) = Sk(2x) − Sk(x) the polynomial Tk(x) is also in a strong connection with 

the Bernoulli polynomials. This connection is shown in the below Lemma.

Lemma 3.1.

Tk(x) = Bk+1(2x + 1) −Bk+1(x + 1)
k + 1 (3.8)

where Bq(x) is the q-th Bernoulli polynomial defined by (3.1).
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Proof. It is an application of the equality

N−1∑
n=M

nk = 1
k + 1{Bk+1(N) −Bk+1(M)}

which is given by Rademacher in [16], pp. 3–4. �
Secondly, applying Lemma 3.1 to equation (1.7), we have the following:

Lemma 3.2. If k = 1, then T1(x) = x(3x+1)
2 , while for k > 1 we can write

(i) Tk(x) = 1
Dk

x(2x + 1)Mk, if k ≥ 2 is even,
(ii) Tk(x) = 1

Dk
x2(3x + 1)Mk, if k > 1 is odd

where Dk is a positive integer and Mk(x) is a polynomial with integer coefficients.

Proof. (i) Firstly we prove that x = 0 and x = −1
2 are roots of the polynomial Tk(x)

where k ≥ 2 is even. By (3.8), we have

Tk(x) = Bk+1(2x + 1) −Bk+1(x + 1)
k + 1 . (3.9)

It is clear that x = 0 and x = −1
2 satisfy (3.9) by using (3.3) and (3.4).

Secondly we show that x = 0 and x = −1
2 are simple roots of Tk(x) for k ≥ 2 even. 

Since for the Bernoulli polynomials Bn(x) we have

dBn(x)
dx

= nBn−1(x)

We may write

T ′
k(x) = (k + 1)(2Bk(2x + 1) −Bk(x + 1)) (3.10)

and

T ′′
k (x) = k(k + 1)(4Bk−1(2x + 1) −Bk−1(x + 1)). (3.11)

If k ≥ 2 is even, then T ′
k(0) = (k + 1)(2Bk(1) − Bk(1)) = (k + 1)Bk(1) �= 0. So x = 0 is 

a simple root of Tk(x). Similarly, since T ′
k(−1

2 ) = (k + 1)(2Bk(0) −Bk(1
2 )) �= 0 it follows 

that x = −1
2 is the simple root of Tk(x) where k is even.

(ii) Now by (3.4) and (3.9) we see that x = −1
3 is a root of Tk(x) whenever k > 1 is 

odd. Using (3.4), (3.6), (3.8) and (3.9), we have Tk(−1
3 ) = 0 �= T ′

k(−1
3). So x = −1

3 is a 
simple root of Tk(x) where k is odd. Similarly we can show that x = 0 is a double root 
of Tk(x) if k is odd. So, the proof is completed. �
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3.3. Congruence properties of Sk(x)

In this subsection we give some useful lemmas which will be used to prove some of 
our main results.

Lemma 3.3. ([19], Lemma 1) If p is a prime, d, q ∈ N, k ∈ Z+, m1 ∈ pdN ∪ {0} and 
m2 ∈ pdN ∪ {0}, then

Sk(qm1 + m2) ≡ qSk(m1) + Sk(m2) (mod pd). (3.12)

Proof. The proof is similar to Lemma 1 in [19]. �
Lemma 3.4. ([9], Lemma 3.2) Let x be a positive integer. Then we have

v3(Sk(x)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v3(x(x + 1)), if k = 1,
v3(x(x + 1)(2x + 1)) − 1, if k is even,

0, if x ≡ 1 (mod 3) and k ≥ 3 is odd,
v3(kx2(x + 1)2) − 1, if x ≡ 0, 2 (mod 3) and k ≥ 3 is odd.

Lemma 3.5. ([19], Theorem 3) Let p be an odd prime and let m and k be positive integers.

(i) For some integer d ≥ 1, we can write

m = qpd + r
pd − 1
p− 1 = qpd + rpd−1 + rpd−2 + · · · + rp0,

where r ∈ {0, 1, ..., p − 1} and 0 ≤ q �≡ r ≡ m (mod p).
(ii) In the case of m ≡ 0 (mod p), we have

Sk(m) ≡
{
−pd−1 (mod pd), if p− 1 | k,

0 (mod pd), if p− 1 � k.

(iii) In the case of m ≡ −1 (mod p), we have

Sk(m) ≡
{
−pd−1(q + 1) (mod pd), if p− 1 | k,

0 (mod pd), if p− 1 � k.

(iv) In the case of m ≡ p−1
2 (mod p), we have

Sk(m) ≡
{
−pd−1(q + 1

2 ) (mod pd), if p− 1 | k,
0 (mod pd), if p− 1 � k.
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3.4. Linear forms in logarithms

For an algebraic number α of degree d over Q, we define the absolute logarithmic 
height of α by the following formula:

h(α) = 1
d

(
log |a0| +

d∑
i=1

log max
{
1, |α(i)|

})
,

where a0 is the leading coefficient of the minimal polynomial of α over Z, and 
α(1), α(2), ... , α(d) are the conjugates of α in the field of complex numbers.

Let α1 and α2 be multiplicatively independent algebraic numbers with |α1| ≥ 1 and 
|α2| ≥ 1. Consider the linear form in two logarithms:

Λ = b2 logα2 − b1 logα1,

where logα1, logα2 are any determinations of the logarithms of α1, α2 respectively, and 
b1, b2 are positive integers.

We shall use the following result due to Laurent [11].

Lemma 3.6 ([11], Theorem 2). Let ρ and μ be real numbers with ρ > 1 and 1/3 ≤ μ ≤ 1. 
Set

σ = 1 + 2μ− μ2

2 , λ = σ log ρ.

Let a1, a2 be real numbers such that

ai ≥ max {1, ρ| logαi| − log |αi| + 2Dh(αi)} (i = 1, 2),

where

D = [Q(α1, α2) : Q] / [R(α1, α2) : R] .

Let h be a real number such that

h ≥ max
{
D

(
log

(
b1
a2

+ b2
a1

)
+ log λ + 1.75

)
+ 0.06, λ, D log 2

2

}
.

We assume that

a1a2 ≥ λ2.

Put

H = h + 1
, ω = 2 + 2

√
1 + 1

2 , θ =
√

1 + 1
2 + 1

.

λ σ 4H 4H 2H
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Table 1
Bounding n and k under the indicated conditions.

x n0 (y > 4x2) n1 (y > 106) k1 (y ≤ 4x2)

2 7, 500 3, 200 45, 000
3 21, 000 10, 000 120, 000
6 94, 000 53, 000 540, 000
7 128, 000 74, 200 740, 000
10 253, 000 157, 000 1, 450, 000
11 301, 000 190, 000 1, 750, 000

Then we have

log |Λ| ≥ −Ch′ 2a1a2 −
√
ωθh′ − log

(
C ′h′ 2a1a2

)
with

h′ = h + λ

σ
, C = C0

μ

λ3σ
, C ′ =

√
Cσωθ

λ3μ
,

where

C0 =
(
ω

6 + 1
2

√
ω2

9 + 8λω5/4θ1/4

3√a1a2H1/2 + 4
3

(
1
a1

+ 1
a2

)
λω

H

)2

.

3.5. A Baker type estimate

Let A = {2, 3, 6, 7, 10, 11} and consider equation (1.7) with x ∈ A. The following 
lemma provides sharp upper bounds for the solutions n, k of the equation (1.7) and will 
be used in the proof of Theorem 2.3.

Lemma 3.7. Let A = {2, 3, 6, 7, 10, 11} and consider equation (1.7) with x ∈ A in integer 
unknowns (k, y, n) with k ≥ 83, y ≥ 2 and n ≥ 3 a prime. Then for y > 4x2 we have 
n ≤ n0, for y > 106 even n ≤ n1 holds, and for y ≤ 4x2 we have k ≤ k1, where 
n0 = n0(x), n1 = n1(x) and k1 = k1(x) are given in Table 1.

Proof. In the course of the proof we will always assume that x ∈ A and we distinguish 
three cases according to y > 4x2, y > 106 or y ≤ 4x2.

Case I. y > 4x2

We may suppose, without loss of generality, that n is large enough, that is

n > n0. (3.13)

Further, by k ≥ 83 we easily deduce that for every x ∈ A we have
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(x + 1)k + (x + 2)k + · · · + (2x)k < 2 · (2x)k, (3.14)

and

(x + 1)k + (x + 2)k + · · · + (2x− 1)k < 2 · (2x− 1)k. (3.15)

Since y > 4x2 by (1.7), (3.14) and x ≥ 2 we get that

k ≥ 2n. (3.16)

Using (3.16) and the fact that n is odd we may write k in the form

k = Bn + r with B ≥ 1, 0 ≤ |r| ≤ n− 1
2 . (3.17)

We show that in (3.17) we have r �= 0. On the contrary, suppose r = 0. Then, using (1.7)
and (3.15) we infer by (3.17) that

2(2x− 1)k > (x + 1)k + (x + 2)k + · · · + (2x− 1)k = yn − (2x)k = yn − (2x)Bn

= (y − (2x)B)(yn−1 + · · · + (2x)B(n−1)) ≥ (2x)B(n−1).

Hence

n <
log(2x)

log
(

2x
2x−1

) + log 2
B log

(
2x

2x−1

) .
This together with x ≤ 11 and B ≥ 1 implies n < 82, which contradicts (3.13). Thus, 
r �= 0.

On dividing equation (1.7), by yn we obviously get

1 − (2x)k

yn
= s

yn
, (3.18)

where s = (x + 1)k + . . . + (2x − 1)k. Using (3.17) and (3.18) we infer that
∣∣∣∣(2x)r ·

(
(2x)B

y

)n

− 1
∣∣∣∣ = s

yn
. (3.19)

Put

Λr =

⎧⎨
⎩

r log(2x) − n log y
(2x)B if r > 0,

|r| log(2x) − n log (2x)B
y if r < 0.

(3.20)

In what follows we find upper and lower bounds for log |Λr|. We distinguish two subcases 
according to
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1 − (2x)k

yn
≥ 0.795 or 1 − (2x)k

yn
< 0.795,

respectively. If 1 − (2x)k
yn ≥ 0.795 then by (1.7) and (3.14) we immediately obtain a 

contradiction, so we may assume that the latter case holds.
It is well known (see Lemma B.2 of [18]) that for every z ∈ R with |z− 1| < 0.795 one 

has

| log z| < 2|z − 1|. (3.21)

On applying inequality (3.21) with z = (2x)k/yn we get by (3.18), (3.19), (3.20) and 
(2x)k �= yn that

|Λr| <
2s
yn

. (3.22)

Observe that (1.7) implies

k <
n log y
log 2x . (3.23)

Thus by (3.22), (3.15) and (3.23) we infer that

log |Λr| < −
log

( 2x
2x−1

)
log(2x) (log y)n + log 4. (3.24)

Next, for a lower bound for log |Λr|, we shall use Lemma 3.6 with

(α1, α2, b1, b2) =

⎧⎪⎨
⎪⎩

(
y

(2x)B , 2x, n, r
)

if r > 0,(
(2x)B

y , 2x, n, |r|
)

if r < 0.

Using (1.7) and (3.14) one can easily check that α1 > 1 and α2 > 1. We show that α1, α2
are multiplicatively independent. Assume the contrary. Then the set of prime factors 
of y coincides with that of 2x. This implies that y must be even. But for x ∈ A we easily 
see that y is odd, which is a contradiction, proving that α1 and α2 are multiplicatively 
independent.

Now, we apply Lemma 3.6 for every x ∈ A with

(ρ, μ) = (7.7, 0.57). (3.25)

In what follows we shall derive upper bounds for the quantities

ρ| logαi| − log |αi| + 2Dh(αi), (i = 1, 2)

occurring in Lemma 3.6. Since D = 1 and α2 > 1, for i = 2 we get
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ρ| logα2| − log |α2| + 2Dh(α2) = (ρ + 1) log 2x. (3.26)

For i = 1 we obtain

ρ| logα1| − log |α1| + 2Dh(α1) <
ρ + 1

2 log 2x + 2 log y. (3.27)

To verify that (3.27) is valid we shall estimate logα1 and h(α1) from above, by using 
equation (1.7), i.e. s + (2x)Bn+r = yn. Observe

h(α1) = h
(

(2x)B

y

)
≤ log max{(2x)B, y} =

{
log y if r > 0,
log(2x)B if r < 0.

If r > 0, then

αn
1 =

(
y

(2x)B

)n

= (2x)r + s

(2x)Bn
= (2x)r

(
1 + s

(2x)k

)
< 2(2x)r (as s < (2x)k),

so

logα1 <
log 2
n

+ r

n
log(2x) ≤ log 2

n
+ n− 1

2n log(2x),

whence

ρ| logα1| − log |α1| + 2Dh(α1) <

<

(
log 2

n log(2x) + n− 1
2n

)
(ρ− 1) log(2x) + 2 log y

which by (3.25) and x ≥ 2 clearly implies (3.27).
If r < 0, then

αn
1 =

(
(2x)B

y

)n

= (2x)−r

(
1 − s

yn

)
< (2x)−r = (2x)|r|,

so

logα1 <
|r|
n

log(2x) ≤ n− 1
2n log(2x),

and

log(2x)B = logα1 + log y <
n− 1
2n log(2x) + log y,

and we get

ρ| logα1| − log |α1| + 2Dh(α1) <
(
n− 1
2n (ρ− 1) + n− 1

n

)
log(2x) + 2 log y,

which by (3.13) again implies (3.27).
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Table 2
Choosing the parameter h = logn + ε occurring in Lemma 3.6 if the case y > 4x2.

x 2 3 6 7 10 11
ε 0.3560 0.0995 −0.2275 −0.2877 −0.4144 −0.4458

Table 3
Lower bounds for H and upper bounds for ω, θ, C0, C, C′, h′ occurring in Lemma 3.6
if y > 4x2.

x H ω θ C0 C C′ h′

2 6.11 4.0067 1.0852 2.3688 0.2341 0.51 log n + 2.3974
3 6.52 4.0059 1.0797 2.2241 0.2198 0.50 log n + 2.1409
6 7.16 4.0049 1.0723 2.0867 0.2062 0.50 log n + 1.8139
7 7.29 4.0047 1.0710 2.0662 0.2042 0.50 log n + 1.7537
10 7.59 4.0044 1.0681 2.0271 0.2003 0.50 log n + 1.6270
11 7.67 4.0043 1.0674 2.0182 0.1994 0.50 log n + 1.5956

In view of (3.26) we can obviously take for every x ∈ A

a2 = (ρ + 1) log(2x), (3.28)

while for the values a1 we use the upper bound occurring in (3.27). Namely, we can take 
a1 as

a1 = ρ + 1
2 log(2x) + 2 log y if x ∈ A (3.29)

Since μ = 0.57 we get

σ = 0.90755 and λ = 0.90755 log ρ, (3.30)

whence by (3.25), (3.28), (3.29), (3.30) and y > 4x2 we easily check that for every x ∈ A

a1a2 > λ2

holds. Now, we are going to derive an upper bound h for the quantity

max
{
D

(
log

(
b1
a2

+ b2
a1

)
+ log λ + 1.75

)
+ 0.06, λ, D log 2

2

}
.

Using D = 1, (3.25), (3.28), (3.29), (3.30) and y > 4x2, for the values of h occurring in 
Lemma 3.6 we obtain h = logn + ε, with ε = ε(x) given in Table 2.

Further, by (3.13) we easily check that for the above values of h assumptions of 
Lemma 3.6 concerning the parameter h are satisfied. Using (3.13) again we obtain a 
lower bound for H and hence upper bounds for ω and θ. Moreover, using these values of 
ω and θ by (3.25), (3.28), (3.29), (3.30) and y > 4x2 for x ∈ A we obtain Table 3.

By Lemma 3.6 we obtain

log |Λr| > −Ch′ 2a1a2 −
√
ωθh′ − log(C ′h′ 2a1a2), (3.31)
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Table 4
Choosing the parameter h = logn + ε occurring in Lemma 3.6 if y > 106.

x 2 3 6 7 10 11
ε 0.0324 −0.1870 −0.4620 −0.5122 −0.6079 −0.6339

Table 5
Lower bounds for H and upper bounds for ω, θ, C0, C, C′, h′ occurring in Lemma 3.6
if y > 106.

x H ω θ C0 C C′ h′

2 5.04 4.0099 1.1042 2.1846 0.1587 0.36 log n + 2.2943
3 5.49 4.0083 1.0953 2.1067 0.1531 0.36 log n + 2.0749
6 6.17 4.0066 1.0844 2.0259 0.1472 0.36 log n + 1.7999
7 6.31 4.0063 1.0824 2.0130 0.1463 0.36 log n + 1.7497
10 6.71 4.0056 1.0773 1.9871 0.1506 0.36 log n + 1.6222
11 6.79 4.0055 1.0764 1.9813 0.1502 0.36 log n + 1.5962

whence on comparing (3.24) with (3.31) we get

n <

(
Ch′ 2a1a2

log y +
√
ωθ

log y h
′ + log(C ′h′ 2a1a2)

log y + log 4
log y

)
log 2x

log 2x
2x−1

. (3.32)

Finally, using (3.28), (3.29) and y > 4x2 for x ∈ A, by Table 3 we easily see that 
inequality (3.32) contradicts (3.13), proving the desired bounds for n in this case.

Case II. y > 106

We work as in the previous case. Namely, we apply Lemma 3.6 again, the only differ-
ence is that in this case for y we may write y > 106. We may suppose, without loss of 
generality, that n is large enough, that is

n > n1. (3.33)

Further, we choose μ = 0.57 uniformly, and set

ρ =
{

9.6 if x = 2, 3, 6, 7
9.3 if x = 10, 11.

(3.34)

As before, we may take a1 and a2 as in (3.29) and (3.28).
Thus by (3.34), (3.29), (3.28) and y > 106 for the values of h occurring in Lemma 3.6

we obtain h = log n + ε, with ε = ε(x) given in Table 4.
On combining (3.28), (3.29), (3.33), (3.34) with y > 106 and with Table 4 we obtain 

Table 5.
By Lemma 3.6 we obtain

log |Λr| > −Ch′ 2a1a2 −
√
ωθh′ − log(C ′h′ 2a1a2), (3.35)
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whence on comparing (3.24) with (3.35) we obtain

n <

(
Ch′ 2a1a2

log y +
√
ωθ

log yh
′ + log(C ′h′ 2a1a2)

log y + log 4
log y

)
log 2x

log 2x
2x−1

. (3.36)

Finally, using (3.28), (3.29) and y > 106, by Table 5 we see that (3.36) contradicts (3.33), 
proving the validity of the desired bounds for n in this case.

Case III. y ≤ 4x2

In order to obtain the desired upper bounds for k we may clearly assume that k is 
large, namely

k > k1. (3.37)

Since y ≤ 4x2 we have by (1.7) that

n > 	k/2
. (3.38)

Hence by (3.38), we can write

n = Bk + r with B ≥ 1, 0 ≤ |r| ≤
⌊
k

2

⌋
. (3.39)

Further, using the same argument as in Case I, by x ∈ A and k ≥ 83 we may suppose 
that in (3.39) we have r �= 0.

We divide our equation (1.7) by (2x)k. Then, by (3.39) we infer

yr
(
yB

2x

)k

− 1 = s

xk
, (3.40)

where s = (x + 1)k + 2k + · · · + (2x − 1)k. Thus, yr
(

yB

2x

)k

> 1. Put

Λr = b2 logα2 − b1 logα1, (3.41)

where

(α1, α2, b1, b2) =

⎧⎨
⎩
(

2x
yB , y, k, r

)
if r > 0,(

yB

2x , y, k, |r|
)

if r < 0.
(3.42)

It is easy to see α1 > 1 and α2 > 1, moreover similarly to Case I we obtain that α1 and 
α2 are multiplicatively independent. We find upper and lower bounds for log |Λr|. Since 
for every z ∈ R with z > 1 we have | log z| < |z − 1| it follows by (3.40), (3.41), (3.42)
and (3.15) that
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Table 6
Choosing the parameter h = logn + ε occurring in Lemma 3.6 if the case y ≤ 4x2.

x 2 3 6 7 10 11
ε −0.1099 −0.3665 −0.6935 −0.7537 −0.8805 −0.9118

Table 7
Lower bounds for H and upper bounds for ω, θ, C0, C, C′, h′ occurring in Lemma 3.6
if y ≤ 4x2.

x H ω θ C0 C C′ h′

2 7.50 4.0045 1.0689 2.1294 0.2947 0.67 log k + 1.7145
3 7.94 4.0040 1.0650 2.0435 0.2828 0.67 log k + 1.4580
6 8.65 4.0034 1.0595 1.9620 0.2715 0.67 log k + 1.1309
7 8.80 4.0033 1.0585 1.9498 0.2698 0.67 log k + 1.0708
10 9.13 4.0030 1.0563 1.9265 0.2666 0.67 log k + 0.9440
11 9.23 4.0030 1.0557 1.9212 0.2659 0.67 log k + 0.9127

log |Λr| < −k log
(

2x
2x− 1

)
+ log 2. (3.43)

For a lower bound, we again use Lemma 3.6. We choose μ = 0.57 uniformly, and we set 
for every x ∈ A

ρ = 6.2. (3.44)

Moreover, using the same argument as in Case I by y ≤ 4x2 we may take

a1 = 1.02 · (ρ + 3) log(2x), (3.45)

and

a2 = 2 · (ρ + 1) log 2x. (3.46)

Since μ = 0.57 we get

σ = 0.90755 and λ = 0.90755 log ρ, (3.47)

whence by (3.44), (3.45), (3.46), (3.47) we easily check that for every x ∈ A

a1a2 > λ2

holds. Now, we are going to derive an upper bound h for the quantity

max
{
D

(
log

(
b1
a2

+ b2
a1

)
+ log λ + 1.75

)
+ 0.06, λ, D log 2

2

}
.

Using (3.44), (3.45), (3.46), (3.47) for h occurring in Lemma 3.6 we obtain h = logn + ε, 
with ε = ε(x) given in Table 6.

On combining (3.37), (3.44), (3.45), (3.46), (3.47) with Table 6 we obtain Table 7.
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Further, on using Table 7 and Lemma 3.6 we obtain

log |Λr| > −Ch′ 2a1a2 −
√
ωθh′ − log(C ′h′ 2a1a2), (3.48)

whence, on comparing (3.43) with (3.48) we get

k <
Ch′ 2a1a2 +

√
ωθh′ + log(2C ′h′ 2a1a2)

log
(

2x
2x−1

) .

Finally, using (3.44), (3.45), (3.46), by Table 7 we obtain the desired bounds for k in this 
case. Thus our lemma is proved. �
4. Formulas for v2(Tk(x)), v3(Tk(x))

For the proofs of our main results, we will need formulas for v2(Tk(x)) and v3(Tk(x)). 
The heart of the proof of Lemma 4.2 is the following lemma

Lemma 4.1. For q, k, t ≥ 1 and q ≡ 1 (mod 2), we have

v2(Tk(2tq)) =
{

t− 1, if k = 1 or k is even,
2t− 2, if k ≥ 3 is odd.

Proof. We shall follow the proof of Lemma 1 of Macmillian–Sondow [13]. We induct on t. 
Now we introduce the following equality

Tk(x) = Sk(2x) − Sk(x), (4.1)

which we will use frequently on this work. Since Sk(22q) is even and Sk(2q) is odd, by 
using (4.1), we get v2(Tk(2q)) = 0 and so Lemma 4.1 holds for t = 1. By Lemma 3.2
with x = 2tq, it also holds for all t ≥ 1 when k = 1. Now we assume inductively that 
(4.1) is true for fixed t ≥ 1.

Let m be a positive integer, we can write the power sum Sk(2m) as

Sk(2m) = mk +
m∑
j=1

((m− j)k + (m + j)k) =mk + 2
m∑
j=1

[ k2 ]∑
i=0

(
k

2i

)
mk−2ij2i

=mk + 2
[ k2 ]∑
i=0

(
k

2i

)
mk−2iS2i(m).

(4.2)

By (4.1), putting x = m, we have

Tk(m) = Sk(2m) − Sk(m) (4.3)
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Now we consider (4.3) with m = 2tq. If k ≥ 2 is even, we extract the last terms of the 
summations of Sk(2m) and Sk(m), then we can write as

Sk(2t+1q) = 2ktqk + 2tSk(2tq)
2t−1 + 22t+1

k−2
2∑

i=0

(
k

2i

)
2t(k−2i−2)qk−2iS2i(2tq)

and

Sk(2tq) = 2k(t−1)qk + 2t−1Sk(2t−1q)
2t−2

+ 22t−1

k−2
2∑

i=0

(
k

2i

)
2(t−1)(k−2i−2)qk−2iS2i(2t−1q).

Hence we have

Tk(2tq) = 2k(t−1)qk(2k − 1) + 2t−1[2Sk(2tq)
2t−1 − Sk(2t−1q)

2t−2 ]

+ 22t+1

k−2
2∑

i=0

(
k

2i

)
2t(k−2i−2)qk−2iS2i(2tq)

− 22t−1

k−2
2∑

i=0

(
k

2i

)
2(t−1)(k−2i−2)qk−2iS2i(2t−1q).

By the induction hypothesis, the fraction is actually an odd integer. Since k(t −1) > t −1, 
we get that v2(Tk(2tq)) = t − 1, as desired.

Now we consider the case k ≥ 3 is odd. Similarly to the former case, we have

Sk(2t+1q) = 2tkqk + 22tkq
Sk−1(2tq)

2t−1 + 23t+1

k−3
2∑

i=0

(
k

2i

)
2t(k−2i−3)qk−2iS2i(2tq)

and

Sk(2tq) = 2k(t−1)qk + 22t−2kq
Sk−1(2t−1q)

2t−2

+ 23t−2

k−3
2∑

i=0

(
k

2i

)
2(t−1)(k−2i−3)qk−2iS2i(2t−1q).

From here, we get

Tk(2tq) = 2k(t−1)qk(2k − 1) + 22t−2kq[ 2
2Sk−1(2tq) − Sk−1(2t−1q) ]
2t−1 2t−2



344 A. Bérczes et al. / Journal of Number Theory 183 (2018) 326–351
+ 23t+1

k−3
2∑

i=0

(
k

2i

)
2t(k−2i−3)qk−2iS2i(2tq)

− 23t−2

k−3
2∑

i=0

(
k

2i

)
2(t−1)(k−2i−3)qk−2iS2i(2t−1q).

Again by induction, the fraction is an odd integer.
Since k(k − 1) > 2(t − 2) and k and q are odd, wee see that v2(Tk(2tq)) = 2t − 2, as 

required. This completes the proof of Lemma. �
Lemma 4.2. (i) Let x be a positive even integer. Then we have,

v2(Tk(x)) =
{

v2(x) − 1, if k = 1 or k is even,
2v2(x) − 2, if k ≥ 3 is odd.

(ii) Let x be a positive odd integer. If x is odd and k = 1, then for any solution 
(k, n, x, y) of (1.7) we get v2(Tk(x)) = v2(3x + 1) − 1.

If x ≡ 1, 5 (mod 8) and x �≡ 1 (mod 32) with k �= 1, then we have

v2(Tk(x)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v2(7x + 1) − 1, if x ≡ 1 (mod 8) and k=2,
v2((5x + 3)(3x + 1)) − 2, if x ≡ 1 (mod 8) and k = 3,

v2(3x + 1), if x ≡ 5 (mod 8) and k ≥ 3 is odd,
1, if x ≡ 5 (mod 8) and k ≥ 2 is even,
2, if x ≡ 9 (mod 16) and k ≥ 4 is even,
3, if x ≡ 9 (mod 16) and k ≥ 5 is odd

or
if x ≡ 17 (mod 32) and k ≥ 4 is even,

4, if x ≡ 17 (mod 32) and k ≥ 5 is odd.

If x ≡ 3, 7 (mod 8), then for any solution (k, n, x, y) of (1.7), we obtain v2(Tk(x)) = 0.

Proof. (i) Firstly, if k ≥ 2 is even, since 2x + 1 is always odd, then we have

v2(
x(2x + 1)

2 ) = v2(x) − 1.

Putting x = 2tq where q is odd and t ≥ 1, we get

v2(
2tq(2t+1q + 1)

2 ) = v2(2t−1q) = t− 1.

Secondly if we consider the case k ≥ 3 is odd, then
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v2(
x2(3x + 1)

4 ) = v2(x2) − 2.

Putting x = 2tq, we have

v2((2tq)2) − 2 = v2(22t) − 2 = 2t− 2.

Finally, in the case of k = 1, we have

v2(
x(3x + 1)

2 ) = v2(x) − 1.

Set x = 2tq, we have

v2(2tq) − 1 = t− 1.

So, the proof is completed.
(ii) Since S1(x) = x(x+1)

2 , S2(x) = x(x+1)(2x+1)
6 and S3(x) = (x(x+1)

2 )2 for any positive 
integer x, by (4.1) if x is odd or x ≡ 1 (mod 8), then the statement is automatic for 
k = 1 or k = 2, 3, respectively.

Next we consider the case x ≡ 5 (mod 8) and k ≥ 3 is odd. Since 3x +1 ≡ 0 (mod 8), 
we have 3x + 1 = 2dr with d ≥ 3, 2 � r. So we obtain

v2(3x + 1) = d (4.4)

Since x is odd, Tk(x) has exactly odd terms. Putting x = 2dr−1
3 in (1.8), we have

Tk(
2dr − 1

3 ) = (1
3)k[(2dr+2)k+(2dr+5)k+ · · ·+(32d−1r)k+ · · ·+(2d+1r−2)k] (4.5)

which has (32d−1r)k as the middle term of expansion. Considering (4.5) in modulo 2d
with k(d − 1) > d, we obtain Tk(2dr−1

3 ) ≡ 0 (mod 2d). Then we have v2(Tk(2dr−1
3 )) =

v2(2dt) = d with 2 � t. By (4.4), the statement follows in this case, as well.
Now we consider the case x ≡ 5 (mod 8) and k ≥ 2 is even. We distinguish two cases. 

Assume first k ≥ 4 is even. Using the polynomial

Qk(x) = xk + (x + 1)k + (x + 2)k + ... + 2k(x− 1)k (4.6)

and the equality

Tk(x) = Qk(x) − xk + (2x− 1)k + (2x)k (4.7)

we obtain

Tk(x) ≡ Qk(x) (mod 8).
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Then we have

v2(Tk(x)) = v2(Qk(x)) (4.8)

Applying Lemma 4.2 (i) on the polynomial Qk(x) we obtain v2(Qk(x)) = v2(x − 1) − 1
and hence the statement follows also in this case. For the case k = 2, by (4.1) we get 
also v2(Tk(x)) = v2(7x + 1) − 1 = 1.

Next we consider the case x ≡ 9 (mod 16) and k ≥ 5 is odd. By (4.7) we have

Tk(x) ≡ Qk(x) + 8 (mod 16) (4.9)

Using Lemma 4.2 (ii), we have v2(Qk(x)) = 2v2(x − 1) − 2. So, we get v2(Qk(x)) = 4
and

Qk(x) = 24t, 2 � t (4.10)

By (4.9) and (4.10), the statement follows in this case.
Now we consider the case x ≡ 9 (mod 16) and k ≥ 4 is even. By (4.7) we have

Tk(x) ≡ Qk(x) (mod 16) (4.11)

Using Lemma 4.2 (i), we get v2(Qk(x)) = v2(x − 1) − 1. So we get v2(Tk(x)) =
v2(Qk(x)) = 2 with (4.11).

Next we consider the case x ≡ 17 (mod 32) and k ≥ 4 is even. We distinguish two 
cases. If k = 4 then,

T4(x) ≡ Q4(x) + 16 (mod 32) (4.12)

Using Lemma 4.2 (i) we obtain v2(Q4(x)) = 3 and

Q4(x) = 23r, 2 � r (4.13)

By (4.12) and (4.13), we get v2(T4(x)) = 3. For the case k ≥ 6 is even, by (4.7) we have

Tk(x) ≡ Qk(x) (mod 32)

Similar to the former cases, we obtain v2(Tk(x)) = 3.
Now we consider x ≡ 17 (mod 32) and k ≥ 5 is odd, by (4.7) we have

Tk(x) ≡ Qk(x) + 16 (mod 32) (4.14)

By Lemma 4.2 (ii), we have v2(Qk(x)) = 6. With (4.14) similar to the former cases, we 
get v2(Tk(x)) = 4.
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Next we consider the case x ≡ 3 (mod 8). By (4.7) we obtain

Tk(x) ≡ Qk(x) + 2 (mod 8)

or

Tk(x) ≡ Qk(x) (mod 8)

where k is odd or even, respectively. In both cases we obtain v2(Qk(x)) = 0 using 
Lemma 4.2. Then the statement follows in this case.

Now we consider the case x ≡ 7 (mod 8). By (4.7) we get

Tk(x) ≡ Qk(x) + 6 (mod 8)

or

Tk(x) ≡ Qk(x) + 2 (mod 8)

where k is odd or even, respectively. In both cases, we get v2(Qk(x)) = 0 using 
Lemma 4.2. Then the statement follows in this case, as well. So, the proof of Lemma is 
completed. �
Lemma 4.3. Assume that k is not even if x ≡ 5 (mod 9). Then we have

v3(Tk(x)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v3(x), if k=1,
v3(x) − 1, if x ≡ 0 (mod 3) and k ≥ 2 is even,
v3(kx2), if x ≡ 0 (mod 3) and k > 3 is odd,

v3(x2(5x + 3)), if x ≡ 0 (mod 3) and k = 3,
0, if x ≡ ±1 (mod 3) and k ≥ 3 is odd,
0, if x ≡ 2, 8 (mod 9) and k ≥ 2 is even,

v3(2x + 1) − 1, if x ≡ 1 (mod 3) and k ≥ 2 is even.

Proof. When k = 1, T1(x) = x(3x+1)
2 . Then statement is shown automatically.

When x ≡ 0 (mod 3) and k ≥ 2 is even, by (3.12) we have

Sk(2x) ≡ 2Sk(x) (mod 3d), with p=3. (4.15)

Considering (4.1) in modulo 3d, with (4.15) we have

Tk(x) ≡ Sk(x) (mod 3d). (4.16)

Using Lemma 3.5 (ii) and (4.16), we get Tk(x) ≡ −3d−1q (mod 3d). And hence 
v3(Tk(x)) = d − 1. This is desired case.
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When x ≡ 0 (mod 3) and k > 3 is odd, writing x = q3d with k = 3γk′ and q � 3, by 
Lemma 3.4 we have

v3(Sk(2x)) = v3(Sk(x)) = γ + 2d− 1 (4.17)

Using (4.1) and (4.17), we get

Tk(x) ≡ 0 (mod 3γ+2d).

And hence v3(Tk(x)) = v3(kx2) = γ + 2d.
When x ≡ 0 (mod 3) and k = 3, we have T3(x) = x2(5x+3)(3x+1)

4 . Since 3x + 1 ≡ 1
(mod 3), the statement follows in this case.

When x ≡ 1 (mod 3) and k ≥ 3 is odd, using Lemma 3.4, v3(Sk(2x)) =
v3(kx2(x + 1)2) − 1 and v3(Sk(x)) = 0. By (4.1) the statement follows in this case.

When x ≡ 2 (mod 3) and k ≥ 3 is odd, using Lemma 3.4, similar to the former case 
we obtain v3(Tk(x)) = 0 with (4.2).

When x ≡ 8 (mod 9) or x ≡ 2 (mod 9) and k ≥ 2 is even, by (4.1) and Lemma 3.4
we get v3(Sk(2x)) = v3(2x(2x +1)(4x +1)) −1 or v3(Sk(2x)) = v3(x(x +1)(2x +1)) −1, 
respectively. If x ≡ 8 (mod 9), then v3(Sk(2x)) = 0 and hence v3(Tk(x)) = v3(Sk(2x)). 
If x ≡ 2 (mod 9), then v3(Sk(x)) = 0 and hence v3(Tk(x)) = v3(Sk(x)).

Assume now that x ≡ 1 (mod 3) and k ≥ 2 is even. Applying Lemma 3.5 (iv), with 
(4.2) we obtain

Tk(x) ≡ 3d−1(−1
2) (mod 3d).

And hence v3(Tk(x)) = d − 1. By Lemma 3.5, we write x = q3d + r 3d−1
2 where r ≡ 1

(mod 3), 0 ≤ q �≡ r ≡ x (mod 3). So we get 2x +1 = 3d(2q+1). Since v3(2x +1) −1 = d −1, 
the statement follows in this case. So the proof is completed. �
5. Proofs of the main results

Now we are ready to prove our main results. We start with Theorem 2.1, since it will 
be used in the proofs of the other statements.

Proof of Theorem 2.1. (i) Since x ≡ 0 (mod 4), by Lemma 4.2 we have v2(Tk(x)) > 0, 
i.e. Tk(x) is even. Thus if (1.7) satisfies, then v2(y) > 0 and we have

nv2(y) = v2(yn) = v2(Tk(x)) =
{

v2(x) − 1, if k is even,
2v2(x) − 2, if k is odd,

implying the statement in this case.
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(ii) As now x ≡ 1, 5 (mod 8) and x �≡ 1 (mod 32) with k �= 1, Lemma 4.2 (ii) implies 
that v2(Tk(x)) > 0. Hence (1.7) gives v2(y) > 0 and we have

nv2(y) = v2(Tk(x))

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v2(7x + 1) − 1, if x ≡ 1 (mod 8) and k=2,
v2((5x + 3)(3x + 1)) − 2, if x ≡ 1 (mod 8) and k = 3,

v2(3x + 1), if x ≡ 5 (mod 8) and k ≥ 3 is odd,
1, if x ≡ 5 (mod 8) and k ≥ 2 is even,
2, if x ≡ 9 (mod 16) and k ≥ 4 is even,
3, if x ≡ 9 (mod 16) and k ≥ 5 is odd

or
if x ≡ 17 (mod 32) and k ≥ 4 is even,

4, if x ≡ 17 (mod 32) and k ≥ 5 is odd.

And if x ≡ 1 (mod 4) and k = 1, then Lemma 4.2 (ii) also implies that v2(Tk(x)) > 0. 
Hence (1.7) gives v2(y) > 0 and we obtain nv2(y) = v2(yn) = v2(Tk(x)) = v2(3x +1) −1. 
Implying the statement in this case, as well. So, the proof of the case (ii) is completed.

(iii) Suppose now that x ≡ 0 (mod 3) and k is odd or x ≡ 0, 1 (mod 3) and k ≥ 2 is 
even, by Lemma 4.3 implies that v3(y) > 0 and we have

nv3(y) = v3(Tk(x))

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

v3(x), if x ≡ 0 (mod 3) and k=1,
v3(x) − 1, if x ≡ 0 (mod 3) and k ≥ 2 is even,
v3(kx2), if x ≡ 0 (mod 3) and k > 3 is odd,

v3(x2(5x + 3)), if x ≡ 0 (mod 3) and k = 3,
v3(2x + 1) − 1, if x ≡ 1 (mod 3) and k ≥ 2 is even.

So, the proof of Theorem 2.1 is completed. �
Proof of Theorem 2.2. Observe that since x ≡ 4 (mod 8), we have v2(Tk(x)) = v2(x) −
1 = 1. Hence if k = 1 or k is even then by part (i) of Theorem 2.1 we obtain n ≤ 1, which 
is impossible. Since x ≡ 5 (mod 8), we have v2(Tk(x)) = 1. Hence if k ≥ 2 is even then 
by part (ii) of Theorem 2.1 we obtain n ≤ 1, which is impossible. Since x ≡ 1 (mod 8), 
we have v2(Tk(x)) = v2(3x +1) − 1 = 1. Hence if k = 1 then by part (ii) of Theorem 2.1
we obtain n ≤ 1, which is impossible. Thus, the proof is completed. �
Proof of Theorem 2.3. Let 2 ≤ x ≤ 13 and consider equation (1.7) in unknown integers 
(k, y, n) with k ≥ 1, y ≥ 2 and n ≥ 3. We distinguish two cases according to x ∈
{2, 3, 6, 7, 10, 11} or x ∈ {4, 5, 8, 9, 12, 13}, respectively.
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Assume first that x ∈ {2, 3, 6, 7, 10, 11} is fixed. In this case for k ≤ 83 a direct 
computation shows that Tk(x) is not a perfect nth power, so equation (1.7) has no 
solution. Now we assume that k ≥ 83. Now we split the treatment into 3 subcases 
according to the size of y. If y ≤ 4x2 then Lemma 3.7 shows that k ≤ k1. Further, if 4x2 <

y ≤ 106 then we get n ≤ n0 by Lemma 3.7 and thus Tk(x) ≤ 106n0 , which in turn gives

k <
6n0 log 10
log(2x) .

So for each x under the assumption y ≤ 106 we get a bound for k and we check for each k
below this bound and each x ∈ {2, 3, 6, 7, 10, 11} if Tk(x) has a prime factor p with p ≤ y. 
If not, then we are done, however, if such a p exists, then we also show, that for at least 
one such p we have νp(Tk(x)) ≤ 12, which shows that n ≤ 12. For y < 106, 3 ≤ n ≤ 12
we get again very good bound for k and a direct check will show that equation (1.7) has 
no solutions.

Now it is only left the case y > 106, in which case we get n < n1 by Lemma 3.7, and 
for each fixed 3 ≤ n ≤ n1 we proceeded as follows. Recall that x ∈ {2, 3, 6, 7, 10, 11} is 
fixed, and we also fixed 3 ≤ n ≤ n1. We took primes of the form p := 2in + 1 with i ∈ Z

and we considered equation (1.7) locally modulo these primes. More precisely, we took 
the smallest such prime p1 and put o1 := p1 − 1. Then for all values of k = 1, . . . , o1 we 
checked whether Tk(x) (mod p1) is a perfect power or not, and we built the set K(o1)
of all those values of k (mod o1) for which Tk(x) (mod p) was a perfect power. In prin-
ciple this provided a list of all possible values of k (mod o1) for which we might have 
a solution. Then we considered the next prime p2 of the form p2 := 2in + 1 with i ∈ Z

and we defined o2 := LCM(o1, p2 − 1). We expanded the set K(o1) to the set K0(o2) of 
all those numbers 1, . . . , o2 which are congruent to elements of K(o1) modulo o1. Then 
we considered equation (1.7) modulo p2 and we excluded from the set K0(o2) all those 
elements k for which Tk(x) (mod p2) is not a perfect power. This way we got the set 
K(o2) of all possible values of k (mod o2) for which we might have a solution. Contin-
uing this procedure by taking new primes p3, p4, . . . of the form 2in + 1 with i ∈ Z, we 
finished this procedure when the set K(oi) became empty, proving that equation (1.7)
has no solution for the given x and n.

Suppose now that in equation (1.7) we have x ∈ {4, 5, 8, 9, 12, 13}. A direct applica-
tion of Theorem 2.1 to equation (1.7) shows that for each x ∈ {4, 5, 8, 9, 12, 13} we may 
write n ≤ 5. Finally, for every x ∈ {4, 5, 8, 9, 12, 13} and n ∈ {3, 4, 5} we apply the same 
procedure as above in the case y > 106 to conclude that equation (1.7) has no solution 
for the given x and n. This finishes the proof of our theorem. �
Remark. The algorithms described in the above proof have been implemented in the 
computer algebra package MAGMA [7]. We mention that the running time of the pro-
gramme proving that we have no solution for x = 11 and 3 ≤ n ≤ n1 was more than 
2 days on an Intel Xeon X5680 (Westmere EP) processor. For x = 11 to perform the 
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computation up to the bound n < n0 would have been too long. This is the reason we 
had to use our bound n1 proved in Lemma 3.7 under the assumption y > 106.
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