Received: 18 November 2019

Revised: 27 December 2019

(wileyonlinelibrary.com) DOI 10.1002/jsfa.10244

Check for updates

# Botanical and geographical origin of Turkish honeys by selected-ion flow-tube mass spectrometry and chemometrics

# Gulsah Ozcan-Sinir,<sup>a</sup> Omer U Copur<sup>a</sup> and Sheryl A Barringer<sup>b\*</sup>

#### Abstract

BACKGROUND: Honey has a very important commercial value for producers as a natural product. Honey aroma is formed from the contributions of several volatile compounds, which are influenced by nectar composition, botanical origins, and location. Selected-ion flow-tube mass spectrometry (SIFT-MS) is a technique that quantifies volatile organic compounds simply and rapidly, even in low concentrations. In this study, the headspace concentration of eight monofloral (chestnut, rhododendron, lavender, sage, carob, heather, citrus, and pine) and three multiflower Turkish honeys were analyzed using SIFT-MS. Soft independent modeling of class analogy (SIMCA) was used to differentiate honey samples based on their volatiles.

RESULTS: This study focused on 78 volatile compounds, which were selected from previous studies of selected honeys. Very clear distinctions were observed between all honeys. Interclass distances greater than 8 indicate that honeys were significantly different. Methanol and ethanol were abundant in the honeys. Chestnut honey collected from the Yalova region had the highest total concentration of volatiles followed by heather honey and chestnut honey collected from the Düzce region.

CONCLUSION: Honeys with different botanical and geographical origins showed differences in their volatile profile based on chemometric analysis. Of the honey samples, methanol, ethanol, acetoin, ethyl acetate, and isobutanoic acid had the highest discriminating power. Methanol and ethanol, and then acetic acid, were the volatiles with the highest concentrations in most honeys.

© 2020 The Authors. *Journal of The Science of Food and Agriculture* published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Keywords: SIFT-MS; honey aroma; chestnut; heather; wildflower

#### INTRODUCTION

Honey is one of the oldest foods in existence, and is consumed not only for its effects on health but also for its taste, nutritional value, and unique flavor. Honey contains mainly water and sugar.<sup>1</sup> Vitamins, minerals, enzymes, free amino acids, and plentiful volatile compounds are present as secondary constituents.<sup>1</sup> Different honeys have different minor compound compositions due to their botanical and geographical origin, harvesting season, and processing conditions. The variation in this composition can be used to identify botanical and geographical origins as well as their quality.<sup>2</sup>

Honey has a very important commercial value for producers as a natural product.<sup>3</sup> World honey production was 1.786.996 t in 2016 and Turkey ranks second after China with 105.532 t.<sup>4</sup> The most widely found honey types in Turkey are wildflower, pine, chestnut, thyme, linden, citrus, cotton, and sunflower honey.<sup>5</sup>

Volatile compounds present in honey are characteristic markers of botanical origin.<sup>6,7</sup> Various volatile compounds and representative chemical groups are present at high levels in different honeys.<sup>7</sup> Some of the main marker compounds are 3-hydroxy-5-methyl-2-hexanone, methyl anthranilate, and sinensal isomers in citrus honey,

nerolidol oxide, coumarin, hotrienol, hexanal, and hexanol in lavender honey, and 2-cyclopenten-1,4-dione, 2-aminoacetophenone, 2-hydroxyacetophenone, guaiacol, propyl anisol, *p*-anisaldehyde, and *p*-cresol in heather honey.<sup>8</sup> Chestnut honeys are noticeable for their high concentrations of acetophenone, 1-phenylethanol, and 2-aminoacetophenone,<sup>7</sup> while lilac aldehyde and 2-aminoacetophenone are indicators for rhododendron.<sup>9</sup> According to Tananaki *et al.*,<sup>10</sup> octanal, 3-carene, camphene, octane, nonanal, decanal,  $\alpha$ -pinene,  $\beta$ -pinene, toluene and 1.2.3-trimethylindene are marker compounds for pine honey. Characteristic volatiles of sage honey were tetrahydro-

b Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA

© 2020 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Correspondence to: SA Barringer, Department of Food Science and Technology, The Ohio State University, Columbus, Ohio 43210, USA, E-mail: gulsahozcan@uludag. edu.tr, ucopur@uludag.edu.tr, barringer.11@osu.edu

a Faculty of Agriculture, Department of Food Engineering, Bursa Uludag University, Bursa, Turkey

www.soci.org

| Table 1 | Table 1. Botanical and geographical origin of honey samples |                          |                              |              |  |  |  |  |  |  |  |
|---------|-------------------------------------------------------------|--------------------------|------------------------------|--------------|--|--|--|--|--|--|--|
|         | Botanical origin                                            | Botanical name           | Geographical origin (Turkey) | Abbreviation |  |  |  |  |  |  |  |
| 1       | Chestnut/monofloral                                         | Castanea sativa Mill.    | Yalova                       | CY           |  |  |  |  |  |  |  |
| 2       | Chestnut/monofloral                                         | Castanea sativa Mill.    | Düzce                        | CD           |  |  |  |  |  |  |  |
| 3       | Rhododendron/monofloral                                     | Rhododendron ponticum L. | Düzce                        | RD           |  |  |  |  |  |  |  |
| 4       | Lavender/monofloral                                         | Lavandula stoechas L.    | Burdur                       | LB           |  |  |  |  |  |  |  |
| 5       | Sage/monofloral                                             | Salvia officinalis L.    | Burdur                       | SB           |  |  |  |  |  |  |  |
| 6       | Carob/monofloral                                            | Ceratonia silique L.     | Antalya                      | CaA          |  |  |  |  |  |  |  |
| 7       | Heather/monofloral                                          | Calluna vulgaris L.      | Antalya, Alanya              | HA           |  |  |  |  |  |  |  |
| 8       | Citrus/monofloral                                           | Citrus Spp.              | Antalya, Kumluca             | CiA          |  |  |  |  |  |  |  |
| 9       | Pine/monofloral                                             | Pinus brutia L.          | Muğla, Köyceğiz              | PM           |  |  |  |  |  |  |  |
| 10      | Wildflower/multifloral                                      | *                        | Ardahan                      | WA           |  |  |  |  |  |  |  |
| 11      | Wildflower/multifloral                                      | **                       | Sivas                        | WS           |  |  |  |  |  |  |  |
| 12      | Wildflower/multifloral                                      | ***                      | Kırşehir                     | WK           |  |  |  |  |  |  |  |

\*Mixture of Fraxinus excelsior L., Acer platanoides L., Cirsium arvense L., Cotoneaster sp., Fraxinus excelsior L., Hedysarum varium, Lonicera caucasica, Marrubium astracanicum, Medicago sativa L., Phlomis pungens, Prunus spinosa L. subsp. dasyphylla, Rosa canina L., Rubus idaeus L., Satureja hortensis L., Tilia rubra DC subsp. caucasica, Vicia sativa L.

\*\*Mixture of Anthemis tinctoria L., Astragalus L., Carduus nutans L., Centaurea solstitialis L., Centaurea triumfettii, Cirsium arvense L., Cotoneaster sp., Crataegus tanacetifolia, Crataegus orientalis, Eleagnus angustifolia L., Lonicera caucasica, Marrubium astracanicum, Morus alba L., Onobrychis tournefortii, Origanum vulgare L., Quercus robur L., Rosa canina L., Rubus canescens DC, Satureja hortensis L.

\*\*\*<sup>M</sup>ixture of Acer campestre L., Anthemis tinctoria L., Carduus nutans L., Cistus sp<sup>\*</sup>, Cotoneaster sp., Euphorbia macroclada, Genista sessilifolia, Lamium amplexicaule L., Lonicera etrusca, Phlomis armeniaca, Rosa canina L., Rubus canescens DC, Satureja hortensis L., Xeranthemum annuum L.

| Table 2. | 2. Kinetics parameters for SIFT-MS analysis of selected volatile compounds in Turkish honeys |                             |                                               |                                                       |          |  |  |
|----------|----------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------|-------------------------------------------------------|----------|--|--|
|          | Compounds                                                                                    | Precursor ion               | Product ion                                   | k (10 <sup>-9</sup> cm <sup>3</sup> s <sup>-1</sup> ) | m/z      |  |  |
| 1        | (E)-2-hexenal                                                                                | NO <sup>+</sup>             | C <sub>6</sub> H <sub>9</sub> O <sup>+</sup>  | 3.8                                                   | 97       |  |  |
| 2        | (E)-2-methyl-2-butenal                                                                       | NO <sup>+</sup>             | $C_5H_7O^+$                                   | 4.0                                                   | 83       |  |  |
| 3        | (Z)-3-hexen-1-ol                                                                             | NO <sup>+</sup>             | $C_{6}H_{10}^{+}$                             | 2.5                                                   | 82       |  |  |
| 4        | 1,3-butanediol                                                                               | 0 <sub>2</sub> <sup>+</sup> | $C_4H_8O^+$                                   | 3.3                                                   | 72       |  |  |
| 5        | 1-hexanol                                                                                    | NO <sup>+</sup>             | $C_{6}H_{13}O^{+}$                            | 2.4                                                   | 101      |  |  |
| 6        | 1-octen-3-ol                                                                                 | $H_3O^+$                    | $C_8H_{15}^{+}$                               | 3.1                                                   | 111      |  |  |
| 7        | 1- <i>p</i> -menthen-9-ol                                                                    | NO <sup>+</sup>             | $C_{10}H_{18}O^+$                             | 2.5                                                   | 154      |  |  |
| 8        | 2,3-butanedione                                                                              | NO <sup>+</sup>             | $C_4H_6O_2^+$                                 | 1.3                                                   | 86       |  |  |
| 9        | 2-aminoacetophenone                                                                          | NO <sup>+</sup>             | C <sub>8</sub> H <sub>9</sub> NO <sup>+</sup> | 2.4                                                   | 135      |  |  |
| 10       | 2-butanol                                                                                    | 0 <sub>2</sub> <sup>+</sup> | $C_{3}H_{6}^{+}$                              | 2.1                                                   | 42       |  |  |
| 11       | 2-cyclopenten-1,4-dione                                                                      | NO <sup>+</sup>             | $C_{5}H_{4}O_{2}^{+}$                         | 2.5                                                   | 90       |  |  |
| 12       | 2-heptanol                                                                                   | NO <sup>+</sup>             | $C_7H_{14}O.NO^+$                             | 3.4                                                   | 144      |  |  |
| 13       | 2-hydroxyacetophenone                                                                        | NO <sup>+</sup>             | $C_8H_8O_2^+$                                 | 2.5                                                   | 136      |  |  |
| 14       | 2-methyl-2-butanol                                                                           | $H_3O^+$                    | $C_{5}H_{11}^{+}$                             | 2.8                                                   | 71       |  |  |
| 15       | 2-phenylethanol                                                                              | NO <sup>+</sup>             | $C_8H_{10}O^+$                                | 2.3                                                   | 122      |  |  |
| 16       | 3-methylbutanal                                                                              | NO <sup>+</sup>             | C <sub>5</sub> H <sub>9</sub> O <sup>+</sup>  | 3.0                                                   | 85       |  |  |
| 17       | 4-methoxybenzaldehyde                                                                        | NO <sup>+</sup>             | $C_8H_8O_2^+$                                 | 2.8                                                   | 136      |  |  |
| 18       | 5-methylfurfural                                                                             | NO <sup>+</sup>             | $C_{6}H_{6}O_{2}^{+}$                         | 3.1                                                   | 110      |  |  |
| 19       | acetic acid                                                                                  | NO <sup>+</sup>             | $NO^+.CH_3COOH$ , $NO^+.CH_3COOH.H_2O$        | 0.9                                                   | 90, 108  |  |  |
| 20       | acetoin                                                                                      | $NO^+$                      | $C_4H_8O_2.NO^+$                              | 2.5                                                   | 118      |  |  |
| 21       | acetone                                                                                      | NO <sup>+</sup>             | $C_3H_6O^+$                                   | 1.2                                                   | 88       |  |  |
| 22       | alpha-pinene                                                                                 | $NO^+$                      | $C_{10}H_{16}^{+}$                            | 2.3                                                   | 136      |  |  |
| 23       | benzaldehyde                                                                                 | NO <sup>+</sup>             | $C_7H_5O^+$                                   | 2.8                                                   | 105      |  |  |
| 24       | benzyl alcohol                                                                               | NO <sup>+</sup>             | $C_7H_7O^+$                                   | 2.3                                                   | 107      |  |  |
| 25       | beta-pinene                                                                                  | NO <sup>+</sup>             | $C_{10}H_{16}^{+}$                            | 2.1                                                   | 136      |  |  |
| 26       | butanoic acid                                                                                | NO <sup>+</sup>             | $C_3H_7CO^+$                                  | 1.9                                                   | 71       |  |  |
| 27       | chloroform                                                                                   | 0 <sub>2</sub> <sup>+</sup> | CH(Cl <sub>35</sub> )(Cl <sub>37</sub> ) +    | 1.8                                                   | 85       |  |  |
| 28       | cis-6-nonen-1-ol                                                                             | NO <sup>+</sup>             | $C_9H_{18}O^+$                                | 2.5                                                   | 142      |  |  |
| 29       | coumarin                                                                                     | 0 <sub>2</sub> <sup>+</sup> | $C_9H_6O_2^+$ , $C_9H_6O_2.H^+$               | 2.5                                                   | 146, 147 |  |  |
| 30       | damascenone                                                                                  | NO <sup>+</sup>             | $C_{3}H_{18}O^{+}$                            | 2.5                                                   | 190      |  |  |
| 31       | decanal                                                                                      | NO <sup>+</sup>             | $C_{10}H_{19}O^+$                             | 3.3                                                   | 155      |  |  |

| Table 2. | Continued                     |                               |                                                                                                                                                                              |                                                       |            |
|----------|-------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------|
|          | Compounds                     | Precursor ion                 | Product ion                                                                                                                                                                  | k (10 <sup>-9</sup> cm <sup>3</sup> s <sup>-1</sup> ) | m/z        |
| 32       | dimethyl disulfide            | $H_3O^+$                      | (CH <sub>3</sub> )2S <sub>2</sub> .H <sup>+</sup>                                                                                                                            | 2.6                                                   | 95         |
| 33       | dimethyl sulfide              | 0 <sub>2</sub> <sup>+</sup>   | $(CH_3)_2S^+$                                                                                                                                                                | 2.2                                                   | 62         |
| 34       | dimethyl trisulfide           | 0 <sub>2</sub> <sup>+</sup>   | $C_{2}H_{6}S_{3}^{+}$                                                                                                                                                        | 2.2                                                   | 126        |
| 35       | dodecane                      | NO <sup>+</sup>               | $C_{12}H_{25}^{+}$                                                                                                                                                           | 1.5                                                   | 169        |
| 36       | ethanol                       | NO <sup>+</sup>               | C <sub>2</sub> H <sub>5</sub> O <sup>+</sup> , C <sub>2</sub> H <sub>5</sub> O <sup>+</sup> .H <sub>2</sub> O, C <sub>2</sub> H <sub>5</sub> O <sup>+</sup> .2H <sub>2</sub> | 1.2                                                   | 45, 63, 81 |
| 37       | ethyl acetate                 | 0 <sub>2</sub> <sup>+</sup>   | $C_{2}H_{5}O_{2}^{+}$                                                                                                                                                        | 2.4                                                   | 61         |
| 38       | ethyl benzoate                | $H_3O^+$                      | $C_6H_5COOC_2H_5.H^+$ , $C_6H_5COOC_2H_5.H^+.H_2O$                                                                                                                           | 3.1                                                   | 151, 169   |
| 39       | furfural                      | NO <sup>+</sup>               | $C_{5}H_{4}O_{2}^{+}$                                                                                                                                                        | 3.2                                                   | 96         |
| 40       | furfuryl alcohol              | NO <sup>+</sup>               | $C_{5}H_{6}O_{2}^{+}$                                                                                                                                                        | 2.5                                                   | 98         |
| 41       | guaiacol                      | NO <sup>+</sup>               | $C_7H_8O_2^+$                                                                                                                                                                | 2.5                                                   | 124        |
| 42       | heptanal                      | NO <sup>+</sup>               | $C_7H_{13}O^+$                                                                                                                                                               | 3.3                                                   | 113        |
| 43       | heptane                       | $H_3O^+$                      | C <sub>7</sub> H <sub>16</sub> <sup>+</sup>                                                                                                                                  | 0.26                                                  | 119        |
| 44       | heptanoic acid                | NO <sup>+</sup>               | C <sub>7</sub> H <sub>14</sub> O <sub>2</sub> +                                                                                                                              | 2.5                                                   | 130        |
| 45       | hexanal                       | NO <sup>+</sup>               | $C_{6}H_{11}O^{+}$                                                                                                                                                           | 2.5                                                   | 99         |
| 46       | hexane                        | 0 <sub>2</sub> <sup>+</sup>   | $C_{6}H_{14}^{+}$                                                                                                                                                            | 1.76                                                  | 86         |
| 47       | hexanoic acid                 | $H_3O^+$                      | $C_6H_{12}O_2.H^+$                                                                                                                                                           | 3.0                                                   | 117        |
| 48       | hotrienol                     | NO <sup>+</sup>               | C <sub>10</sub> H <sub>16</sub> O <sup>+</sup>                                                                                                                               | 2.6                                                   | 152        |
| 49       | hydroxymethylfurfural         | 0 <sub>2</sub> <sup>+</sup>   | $C_6H_6O_3^+$ , $C_6H_6O_3.H^+$                                                                                                                                              | 2.5                                                   | 126, 127   |
| 50       | isoamyl alcohol               | NO <sup>+</sup>               | $C_5H_{12}O^+$                                                                                                                                                               | 2.5                                                   | 88         |
| 51       | isobutyl alcohol              | NO <sup>+</sup>               | $C_4H_9O^+$                                                                                                                                                                  | 2.4                                                   | 73         |
| 52       | isopropyl benzene             | NO <sup>+</sup>               | $C_9H_{12}^+$                                                                                                                                                                | 1.2                                                   | 120        |
| 53       | lemonol                       | NO <sup>+</sup>               | $C_{10}H_{17}^{+}$                                                                                                                                                           | 2.5                                                   | 137        |
| 54       | lilac alcohol                 | NO <sup>+</sup>               | $C_{10}H_{18}O_2^+$                                                                                                                                                          | 2.5                                                   | 170        |
| 55       | lilac aldehyde                | NO <sup>+</sup>               | $C_{10}H_{16}O_2^+$                                                                                                                                                          | 2.6                                                   | 168        |
| 56       | maltol                        | NO <sup>+</sup>               | $C_6H_6O_3.NO^+$                                                                                                                                                             | 2.5                                                   | 156        |
| 57       | menthol                       | NO <sup>+</sup>               | $C_{10}H_{19}^{+}, C_{10}H_{19}^{+}.2H_2O$                                                                                                                                   | 2.6                                                   | 139, 175   |
| 58       | methanol                      | $H_3O^+$                      | $CH_5O^+$ , $CH_3OH2^+$ . $H_2O$ , $CH_3OH.H^+$ . $(H_2O)_2$                                                                                                                 | 2.7                                                   | 33, 51, 69 |
| 59       | methyl anthranilate           | NO <sup>+</sup>               | C <sub>8</sub> H <sub>9</sub> NO2 <sup>+</sup>                                                                                                                               | 2.5                                                   | 151        |
| 60       | nerolidol oxide               | NO <sup>+</sup>               | $C_{15}H_{26}O_{2}^{+}$                                                                                                                                                      | 2.5                                                   | 238        |
| 61       | nerolidol                     | NO <sup>+</sup>               | $C_{15}H_{26}O^{+}$                                                                                                                                                          | 3.0                                                   | 222        |
| 62       | nonanal                       | NO <sup>+</sup>               | C <sub>10</sub> H <sub>18</sub>                                                                                                                                              | 3.2                                                   | 138        |
| 63       | nonane                        | H <sub>3</sub> O <sup>+</sup> | $C_9H_{20}H_3O^+$                                                                                                                                                            | 1.3                                                   | 147        |
| 64       | nonanol                       | NO <sup>+</sup>               | $C_9H_{20}O^+$                                                                                                                                                               | 2.5                                                   | 144        |
| 65       | octanal                       | NO <sup>+</sup>               | $C_8H_{15}O^+$                                                                                                                                                               | 3.0                                                   | 127        |
| 66       | octane                        | 0 <sub>2</sub> <sup>+</sup>   | $C_8H_{18}^+$                                                                                                                                                                | 1.9                                                   | 114        |
| 67       | octanoic acid                 | NO <sup>+</sup>               | $C_8H_{16}O_2^+$                                                                                                                                                             | 2.5                                                   | 144        |
| 68       | <i>p</i> -cresol              | NO <sup>+</sup>               | $C_7H_8O^+$                                                                                                                                                                  | 2.2                                                   | 108        |
| 69       | <i>p</i> -isopropenyl toluene | 0 <sub>2</sub> <sup>+</sup>   | $C_{10}H_{12}^{+}$                                                                                                                                                           | 1.8                                                   | 132        |
| 70       | <i>p</i> -menth-1-en-9-al     | NO <sup>+</sup>               | $C_{10}H_{16}O^{+}$                                                                                                                                                          | 2.5                                                   | 152        |
| 71       | phenol                        | NO <sup>+</sup>               | $C_6H_6O^+$                                                                                                                                                                  | 2.0                                                   | 94         |
| 72       | phenylacetaldehyde            | NO <sup>+</sup>               | C <sub>8</sub> H <sub>8</sub> O.NO <sup>+</sup>                                                                                                                              | 2.5                                                   | 150        |
| 73       | phytalic acid                 | NO <sup>+</sup>               | $C_8H_6O_4^+$                                                                                                                                                                | 2.5                                                   | 166        |
| 74       | propanoic acid                | 0 <sub>2</sub> <sup>+</sup>   | C <sub>2</sub> H <sub>5</sub> COOH <sup>+</sup>                                                                                                                              | 2.2                                                   | 74         |
| 75       | propyl anisol                 | NO <sup>+</sup>               | $C_{10}H_{14}O^{+}$                                                                                                                                                          | 2.5                                                   | 150        |
| 76       | santene                       | NO <sup>+</sup>               | $C_9H_{14}^+$                                                                                                                                                                | 2.5                                                   | 122        |
| 77       | toluene                       | NO <sup>+</sup>               | $C_7H_8^{-}$                                                                                                                                                                 | 1.7                                                   | 92         |

2,2,5,5-tetramethylfuran, lilac aldehyde, 2-methylbenzene, heptanoic acid, and benzeneacetic acid.<sup>11</sup>

The evaluation of the botanical and geographical origin of honey is very complicated. The fingerprint of specific honey samples can be determined by measuring organoleptic properties, melissopalynological characteristics, and physicochemical characteristics.<sup>12</sup> Alternative and faster methods are being considered for characterization of non-volatile and volatile markers of unifloral honeys.<sup>6</sup> Unifloral honey aroma is mainly formed by a nectar of the specific flower. Selected-ion flow-tube mass spectrometry (SIFT-MS) is a fast and sensitive analytical technique for real-time analysis of trace gases by using the chemical ionization of the target gases.<sup>13</sup>

The principal objective of this study was to determine if chestnut, rhododendron, lavender, sage, carob, heather, citrus, pine, and wildflower honeys can be distinguished based on their volatile organic compounds using a SIFT-MS technique combined with multivariate statistical analysis.

| Table  | <b>3.</b> Concentration (μg L <sup>-</sup> | <sup>1</sup> ) of volatile c | ompounds of          | honeys from differ    | ent botanical         | origins and l         | ocations              |                      |                       |                        |                      |                      |                       |
|--------|--------------------------------------------|------------------------------|----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------------|-----------------------|------------------------|----------------------|----------------------|-----------------------|
|        |                                            | Chestnut-                    | Chestnut-            | -                     |                       | ,                     |                       | :                    | i                     | i                      | Wildflower-          | Wildflower-          | Wildflower-           |
|        |                                            | Yalova                       | Düzce                | Rhododendron          | Lavender              | Sage                  | Carob                 | Heather              | Citrus                | Pine                   | Ardahan              | Sivas                | Kırşehir              |
| -      | (E)-2-hexenal                              | 511.23 <sup>a</sup>          | 14.30 <sup>b</sup>   | 9.66 <sup>b</sup>     | 17.44 <sup>b</sup>    | 7.40 <sup>b</sup>     | 10.85 <sup>b</sup>    | 28.53 <sup>b</sup>   | 4.88 <sup>b</sup>     | 7.73 <sup>b</sup>      | 3.43 <sup>b</sup>    | 7.47 <sup>b</sup>    | 3.76 <sup>b</sup>     |
| 7      | (E)-2-methyl-2-butenal                     | 3250.8 <sup>a</sup>          | 240.77 <sup>b</sup>  | 119.24 <sup>b</sup>   | 57.07 <sup>b</sup>    | 17.46 <sup>b</sup>    | 38.32 <sup>b</sup>    | 168.76 <sup>b</sup>  | 30.54 <sup>b</sup>    | 41.92 <sup>b</sup>     | 16.02 <sup>b</sup>   | 13.10 <sup>b</sup>   | 10.10 <sup>b</sup>    |
| с<br>м | (Z)-3-hexen-1-ol                           | 136.27 <sup>a</sup>          | 49.83 <sup>de</sup>  | 66.38 <sup>cd</sup>   | 79.33 <sup>c</sup>    | 36.49 <sup>ef</sup>   | 101.09 <sup>b</sup>   | 113.04 <sup>b</sup>  | 20.35 <sup>fg</sup>   | 19.27 <sup>fg</sup>    | 8.31 <sup>g</sup>    | 5.45 <sup>9</sup>    | 14.59 <sup>g</sup>    |
| 4      | 1,3-butanediol                             | 757.36 <sup>a</sup>          | 86.57 <sup>bc</sup>  | 53.84 <sup>c</sup>    | 160.15 <sup>bc</sup>  | 101.71 <sup>bc</sup>  | 189.99 <sup>b</sup>   | 133.99 <sup>bc</sup> | 73.47 <sup>bc</sup>   | 68.51 <sup>bc</sup>    | 61.68 <sup>c</sup>   | 72.94 <sup>bc</sup>  | 47.76 <sup>c</sup>    |
| ŝ      | 1-hexanol                                  | 145.65 <sup>a</sup>          | 20.70 <sup>c</sup>   | 11.30 <sup>cd</sup>   | 57.46 <sup>b</sup>    | 155.71 <sup>a</sup>   | 17.84 <sup>cd</sup>   | 18.85 <sup>cd</sup>  | 8.04 <sup>cd</sup>    | 10.91 <sup>cd</sup>    | 8.82 <sup>cd</sup>   | 11.55 <sup>cd</sup>  | 6.21 <sup>d</sup>     |
| ,<br>9 | 1-octen-3-ol                               | 79750 <sup>a</sup>           | 441.60 <sup>b</sup>  | 185.30 <sup>b</sup>   | 69.91 <sup>b</sup>    | 35.09 <sup>b</sup>    | 55.66 <sup>b</sup>    | 305.91 <sup>b</sup>  | 75.60 <sup>b</sup>    | 68.28 <sup>b</sup>     | 36.32 <sup>b</sup>   | 40.63 <sup>b</sup>   | 25.94 <sup>b</sup>    |
| ~      | 1- <i>p</i> -menthen-9-ol                  | 165.87 <sup>b</sup>          | 5.63 <sup>c</sup>    | 7.60 <sup>c</sup>     | 169.61 <sup>b</sup>   | 352.98 <sup>a</sup>   | 42.39 <sup>c</sup>    | 34.54 <sup>c</sup>   | 7.91 <sup>c</sup>     | 19.42 <sup>c</sup>     | 20.34 <sup>c</sup>   | 32.16 <sup>c</sup>   | 20.59 <sup>c</sup>    |
| ~      | 2,3-butanedione                            | 179.78 <sup>b</sup>          | 87.40 <sup>e</sup>   | 76.94 <sup>ef</sup>   | 109.52 <sup>d</sup>   | 79.78 <sup>ef</sup>   | 208.61 <sup>a</sup>   | 200.44 <sup>a</sup>  | 64.73 <sup>fg</sup>   | 74.56 <sup>ef</sup>    | 129.66 <sup>c</sup>  | 64.20 <sup>fg</sup>  | 51.91 <sup>9</sup>    |
| 6      | 2-aminoacetophenone                        | 2376.6 <sup>a</sup>          | 49.93 <sup>b</sup>   | 14.63 <sup>b</sup>    | 22.48 <sup>b</sup>    | 25.96 <sup>b</sup>    | 11.58 <sup>b</sup>    | 59.36 <sup>b</sup>   | 5.00 <sup>b</sup>     | 6.54 <sup>b</sup>      | 2.29 <sup>b</sup>    | 2.22 <sup>b</sup>    | 1.93 <sup>b</sup>     |
| 10     | 2-butanol                                  | 879.22 <sup>a</sup>          | 421.14 <sup>c</sup>  | 168.68 <sup>efg</sup> | 277.27 <sup>de</sup>  | 189.31 <sup>efg</sup> | 604.02 <sup>b</sup>   | 604.38 <sup>b</sup>  | 253.44 <sup>def</sup> | 211.55 <sup>defg</sup> | 119.97 <sup>9</sup>  | 331.65 <sup>cd</sup> | 136.03 <sup>fg</sup>  |
| 1      | 2-cyclopente <i>n</i> -1,4-dione           | 1058.4 <sup>c</sup>          | 516.50 <sup>de</sup> | 585.63 <sup>d</sup>   | 444.71 <sup>def</sup> | 341.16 <sup>fg</sup>  | 1400.9 <sup>a</sup>   | 1217.7 <sup>b</sup>  | 191.93 <sup>gh</sup>  | 387.04 <sup>ef</sup>   | 205.55 <sup>gh</sup> | 1040.3 <sup>c</sup>  | 179.91 <sup>h</sup>   |
| 12     | 2-heptanol                                 | 190.14 <sup>a</sup>          | 15.42 <sup>b</sup>   | 9.39 <sup>b</sup>     | 12.64 <sup>b</sup>    | 14.86 <sup>b</sup>    | 16.98 <sup>b</sup>    | 21.86 <sup>b</sup>   | 6.62 <sup>b</sup>     | 8.59 <sup>b</sup>      | 5.81 <sup>b</sup>    | 6.60 <sup>b</sup>    | 5.38 <sup>b</sup>     |
| 13     | 2-hydroxyacetophenone                      | 286.01 <sup>b</sup>          | 16.65 <sup>c</sup>   | 9.93 <sup>c</sup>     | 578.60 <sup>a</sup>   | 399.65 <sup>b</sup>   | 12.82 <sup>c</sup>    | 53.58 <sup>c</sup>   | 9.73 <sup>c</sup>     | 7.57 <sup>c</sup>      | 3.96 <sup>c</sup>    | 4.74 <sup>c</sup>    | 2.88 <sup>c</sup>     |
| 14     | 2-methyl-2-butanol                         | 252.61 <sup>c</sup>          | 79.41 <sup>d</sup>   | 30.81 <sup>f</sup>    | 68.98 <sup>de</sup>   | 35.35 <sup>f</sup>    | 478.26 <sup>a</sup>   | 288.43 <sup>b</sup>  | 54.47 <sup>def</sup>  | 53.69 <sup>def</sup>   | 34.02 <sup>f</sup>   | 70.49 <sup>de</sup>  | 46.64 <sup>ef</sup>   |
| 15     | 2-phenylethanol                            | 3397.9 <sup>a</sup>          | 93.02 <sup>b</sup>   | 37.93 <sup>b</sup>    | 30.06 <sup>b</sup>    | 25.36 <sup>b</sup>    | 39.61 <sup>b</sup>    | 72.50 <sup>b</sup>   | 22.76 <sup>b</sup>    | 29.94 <sup>b</sup>     | 21.46 <sup>b</sup>   | 15.04 <sup>b</sup>   | 14.78 <sup>b</sup>    |
| 16     | 3-methylbutanal                            | 174.47 <sup>a</sup>          | 91.09 <sup>c</sup>   | 25.05 <sup>e</sup>    | 34.00 <sup>e</sup>    | 23.97 <sup>e</sup>    | 183.61 <sup>a</sup>   | 114.35 <sup>b</sup>  | 25.11 <sup>e</sup>    | 69.72 <sup>d</sup>     | 24.99 <sup>e</sup>   | 28.75 <sup>e</sup>   | 18.59 <sup>e</sup>    |
| 17     | 4-methoxybenzaldehyde                      | 283.74 <sup>b</sup>          | 16.51 <sup>c</sup>   | 9.85 <sup>c</sup>     | 574.01 <sup>a</sup>   | 396.48 <sup>b</sup>   | 12.72 <sup>c</sup>    | 53.16 <sup>c</sup>   | 9.65 <sup>c</sup>     | 7.51 <sup>c</sup>      | 3.93 <sup>c</sup>    | 4.70 <sup>c</sup>    | 2.86 <sup>c</sup>     |
| 18     | 5-methylfurfural                           | $109.06^{a}$                 | 15.05 <sup>b</sup>   | 6.69 <sup>b</sup>     | 20.98 <sup>b</sup>    | 116.66 <sup>a</sup>   | 17.83 <sup>b</sup>    | 18.51 <sup>b</sup>   | 6.71 <sup>b</sup>     | 8.73 <sup>b</sup>      | 5.83 <sup>b</sup>    | 15.84 <sup>b</sup>   | 5.42 <sup>b</sup>     |
| 19     | acetic acid                                | 3707.9 <sup>a</sup>          | 1495.6 <sup>cd</sup> | 1654.5 <sup>c</sup>   | 1265.6 <sup>cde</sup> | 988.71 <sup>ef</sup>  | 3916.7 <sup>a</sup>   | 3428.3 <sup>a</sup>  | 542.24 <sup>f</sup>   | 1088.5 <sup>de</sup>   | 579.95 <sup>f</sup>  | 2908.1 <sup>b</sup>  | 505.65 <sup>f</sup>   |
| 20     | acetoin                                    | 814.95 <sup>b</sup>          | 230.32 <sup>d</sup>  | 77.41 <sup>fg</sup>   | 158.36 <sup>def</sup> | 159.49 <sup>def</sup> | 1655.8 <sup>a</sup>   | 507.46 <sup>c</sup>  | 101.66 <sup>efg</sup> | 114.08 <sup>efg</sup>  | $39.40^{9}$          | 191.30 <sup>de</sup> | 100.25 <sup>efg</sup> |
| 21 ¿   | acetone                                    | 4020.9 <sup>a</sup>          | 1189.0 <sup>c</sup>  | 133.05 <sup>e</sup>   | 2063.7 <sup>b</sup>   | 424.26 <sup>de</sup>  | 471.51 <sup>de</sup>  | 318.68 <sup>e</sup>  | 266.98 <sup>e</sup>   | 950.71 <sup>c</sup>    | 226.45 <sup>e</sup>  | 822.88 <sup>cd</sup> | 327.30 <sup>e</sup>   |
| 22 ¿   | alpha-pinene                               | 403.75 <sup>b</sup>          | 23.50 <sup>c</sup>   | 14.02 <sup>c</sup>    | 816.77 <sup>a</sup>   | 564.16 <sup>b</sup>   | 18.09 <sup>c</sup>    | 75.64 <sup>c</sup>   | 13.73 <sup>c</sup>    | 10.69 <sup>c</sup>     | 5.60 <sup>c</sup>    | 6.69 <sup>c</sup>    | 4.06 <sup>c</sup>     |
| 23 1   | benzaldehyde                               | 5720.1 <sup>a</sup>          | 292.29 <sup>b</sup>  | 159.32 <sup>b</sup>   | 72.16 <sup>b</sup>    | 39.47 <sup>b</sup>    | 241.64 <sup>b</sup>   | 455.33 <sup>b</sup>  | 46.88 <sup>b</sup>    | 99.70 <sup>b</sup>     | 17.05 <sup>b</sup>   | 53.24 <sup>b</sup>   | 24.92 <sup>b</sup>    |
| 24 1   | benzyl alcohol                             | 14383 <sup>a</sup>           | 407.02 <sup>b</sup>  | 215.02 <sup>b</sup>   | 49.97 <sup>b</sup>    | 19.03 <sup>b</sup>    | 122.45 <sup>b</sup>   | 726.06 <sup>b</sup>  | 42.66 <sup>b</sup>    | 64.02 <sup>b</sup>     | 12.66 <sup>b</sup>   | 22.43 <sup>b</sup>   | 15.94 <sup>b</sup>    |
| 25 1   | beta-pinene                                | 382.58 <sup>b</sup>          | 22.27 <sup>c</sup>   | 13.28 <sup>c</sup>    | 773.94 <sup>a</sup>   | 534.58 <sup>b</sup>   | 17.14 <sup>c</sup>    | 71.68 <sup>c</sup>   | 13.01 <sup>c</sup>    | 10.13 <sup>c</sup>     | 5.30 <sup>c</sup>    | 6.34 <sup>c</sup>    | 3.85 <sup>c</sup>     |
| 26 I   | utanoic acid                               | 611.57c                      | 192.25d              | 74.60f                | 167.01de              | 85.58f                | 1157.9a               | 698.31b              | 131.88def             | 129.99def              | 82.36f               | 170.65de             | 112.92ef              |
|        |                                            | Chestnut-                    | Chestnut-            | Rhododendron          | Lavender              | Sage                  | Carob                 | Heather              | Citrus                | Pine                   | Wildflower-          | Wildflower-          | Wildflower-           |
|        |                                            | Yalova                       | Düzce                |                       |                       |                       |                       |                      |                       |                        | Ardahan              | Sivas                | Kırşehir              |
| 27 (   | chloroform                                 | 3646.5 <sup>a</sup>          | 251.17 <sup>b</sup>  | 151.00 <sup>b</sup>   | 237.60 <sup>b</sup>   | 213.32 <sup>b</sup>   | 274.09 <sup>b</sup>   | 272.06 <sup>b</sup>  | 157.04 <sup>b</sup>   | 136.02 <sup>b</sup>    | 118.52 <sup>b</sup>  | 120.44 <sup>b</sup>  | 80.84 <sup>b</sup>    |
| 28 (   | cis-6-nonen-1-ol                           | 53.70 <sup>b</sup>           | 13.71 <sup>d</sup>   | 11.17 <sup>d</sup>    | 23.98 <sup>c</sup>    | 10.69 <sup>d</sup>    | 73.33 <sup>a</sup>    | 26.35 <sup>c</sup>   | 8.31 <sup>d</sup>     | 10.67 <sup>d</sup>     | 11.37 <sup>d</sup>   | 9.37 <sup>d</sup>    | 13.67 <sup>d</sup>    |
| 29 (   | coumarin                                   | 2050.9 <sup>a</sup>          | 41.39 <sup>b</sup>   | 16.87 <sup>b</sup>    | 19.16 <sup>b</sup>    | 32.13 <sup>b</sup>    | 46.06 <sup>b</sup>    | 44.48 <sup>b</sup>   | 11.69 <sup>b</sup>    | 11.96 <sup>b</sup>     | 8.73b                | 7.28b                | 7.92b                 |
| 30     | damascenone                                | 22.23 <sup>a</sup>           | 8.71b <sup>cd</sup>  | 6.35 <sup>cd</sup>    | 8.01 <sup>cd</sup>    | 8.66 <sup>bcd</sup>   | 13.62 <sup>b</sup>    | 10.96 <sup>bc</sup>  | 5.66 <sup>d</sup>     | 6.42 <sup>cd</sup>     | 7.61 cd              | 5.77d                | 5.89d                 |
| 31     | decanal                                    | 50.33 <sup>a</sup>           | 5.47 <sup>c</sup>    | 3.80 <sup>c</sup>     | 26.31 <sup>b</sup>    | 39.69 <sup>a</sup>    | 8.62 <sup>c</sup>     | 6.76 <sup>c</sup>    | 3.54 <sup>c</sup>     | 4.03 <sup>c</sup>      | 4.12 <sup>c</sup>    | 4.21 <sup>c</sup>    | 3.71 <sup>c</sup>     |
| 32 (   | dimethyl disulfide                         | 26833 <sup>a</sup>           | 140.95 <sup>b</sup>  | 48.05 <sup>b</sup>    | 44.12 <sup>b</sup>    | 14.49 <sup>b</sup>    | 45.64 <sup>b</sup>    | 118.12 <sup>b</sup>  | 14.52 <sup>b</sup>    | 12.53 <sup>b</sup>     | 8.86 <sup>b</sup>    | 17.07 <sup>b</sup>   | 5.08 <sup>b</sup>     |
| 33     | dimethyl sulfide                           | 1447.9 <sup>a</sup>          | 169.72 <sup>d</sup>  | 102.26 <sup>d</sup>   | 161.48 <sup>d</sup>   | 135.36 <sup>d</sup>   | 254.61 <sup>bcd</sup> | 396.17 <sup>bc</sup> | 469.57 <sup>b</sup>   | 194.09 <sup>cd</sup>   | 109.46 <sup>d</sup>  | 150.54 <sup>d</sup>  | 157.87 <sup>d</sup>   |
| 34 (   | dimethyl trisulfide                        | 750.75 <sup>a</sup>          | 35.97 <sup>b</sup>   | 32.14 <sup>b</sup>    | 96.89 <sup>b</sup>    | 132.58 <sup>b</sup>   | 58.82 <sup>b</sup>    | 56.54 <sup>b</sup>   | 32.68 <sup>b</sup>    | 31.56 <sup>b</sup>     | 28.57 <sup>b</sup>   | 37.09 <sup>b</sup>   | 27.95 <sup>b</sup>    |
| 35 (   | dodecane                                   | 393.64 <sup>b</sup>          | 36.73 <sup>c</sup>   | 32.67 <sup>c</sup>    | 320.92 <sup>b</sup>   | 23.23 <sup>c</sup>    | 612.25 <sup>a</sup>   | 348.46 <sup>b</sup>  | 43.67 <sup>c</sup>    | 21.75 <sup>c</sup>     | 21.20 <sup>c</sup>   | 12.46 <sup>c</sup>   | 13.23 <sup>c</sup>    |
| 36     | ethanol                                    | 255571 <sup>a</sup>          | 72135 <sup>b</sup>   | 54791 <sup>c</sup>    | 24578 <sup>def</sup>  | 5996.2 <sup>9</sup>   | 19492 <sup>ef</sup>   | 66825 <sup>bc</sup>  | 31769 <sup>de</sup>   | 34235 <sup>d</sup>     | 2465.4 <sup>g</sup>  | 4227.8 <sup>9</sup>  | 11994 <sup>fg</sup>   |
| 37 (   | ethyl acetate                              | 1077.9 <sup>b</sup>          | 304.66 <sup>d</sup>  | 102.39 <sup>fg</sup>  | 209.48 <sup>def</sup> | 210.97 <sup>def</sup> | 2190.2 <sup>a</sup>   | 671.24 <sup>c</sup>  | 134.46 <sup>efg</sup> | 150.91 <sup>efg</sup>  | 52.11 <sup>9</sup>   | 253.05 <sup>de</sup> | 132.60 <sup>efg</sup> |
| 38     | ethyl benzoate                             | 8035.1 <sup>a</sup>          | 59.03 <sup>b</sup>   | 75.88 <sup>b</sup>    | 40.28 <sup>b</sup>    | 25.84 <sup>b</sup>    | 44.78 <sup>b</sup>    | 67.80 <sup>b</sup>   | 85.78 <sup>b</sup>    | 29.39 <sup>b</sup>     | 22.02 <sup>b</sup>   | 17.02 <sup>b</sup>   | 12.46 <sup>b</sup>    |
| 39     | furfural                                   | 409.49 <sup>a</sup>          | 23.09 <sup>d</sup>   | 18.53 <sup>d</sup>    | 201.01 <sup>b</sup>   | 54.19 <sup>cd</sup>   | 49.41 <sup>cd</sup>   | 65.10 <sup>cd</sup>  | 16.33 <sup>d</sup>    | 32.33 <sup>d</sup>     | 25.32 <sup>d</sup>   | 82.90 <sup>c</sup>   | 23.10 <sup>d</sup>    |

wileyonlinelibrary.com/jsfa

| Tab  | le 3. Continued                 |                      |                       |                            |                       |                      |                      |                      |                      |                      |                      |                      |                        |
|------|---------------------------------|----------------------|-----------------------|----------------------------|-----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|------------------------|
|      |                                 | Chestnut-            | Chestnut-             |                            |                       |                      |                      |                      |                      |                      | Wildflower-          | Wildflower-          | Wildflower-            |
|      |                                 | Yalova               | Düzce                 | Rhododendron               | Lavender              | Sage                 | Carob                | Heather              | Citrus               | Pine                 | Ardahan              | Sivas                | Kırşehir               |
| 40   | furfuryl alcohol                | 232.70 <sup>a</sup>  | 60.77 <sup>b</sup>    | 17.33 <sup>c</sup>         | 15.82 <sup>c</sup>    | 26.67 <sup>c</sup>   | 24.12 <sup>c</sup>   | 21.98 <sup>c</sup>   | 8.25 <sup>c</sup>    | 17.00 <sup>c</sup>   | 6.59 <sup>c</sup>    | 29.18 <sup>bc</sup>  | 7.45 <sup>c</sup>      |
| 41   | guaiacol                        | 24.55 <sup>a</sup>   | 6.20 <sup>de</sup>    | 5.01 <sup>de</sup>         | 13.01 <sup>b</sup>    | 11.00 <sup>bc</sup>  | 7.73 <sup>cd</sup>   | 5.91 <sup>de</sup>   | 4.14 <sup>de</sup>   | 5.98 <sup>de</sup>   | 5.14 <sup>de</sup>   | 4.83 <sup>de</sup>   | 3.87 <sup>e</sup>      |
| 42   | heptanal                        | 66.38 <sup>a</sup>   | 16.81 <sup>c</sup>    | 11.67 <sup>c</sup>         | 16.52 <sup>c</sup>    | 16.07 <sup>c</sup>   | 34.03 <sup>b</sup>   | 19.91 <sup>c</sup>   | 9.07 <sup>c</sup>    | 13.59 <sup>c</sup>   | 13.08 <sup>c</sup>   | 11.17 <sup>c</sup>   | 14.55 <sup>c</sup>     |
| 43   | heptane                         | 26034 <sup>a</sup>   | 356.61 <sup>b</sup>   | 170.89 <sup>b</sup>        | 250.61 <sup>b</sup>   | 175.48 <sup>b</sup>  | 191.74 <sup>b</sup>  | 506.44 <sup>b</sup>  | 94.52 <sup>b</sup>   | 152.05 <sup>b</sup>  | 80.83 <sup>b</sup>   | 144.31 <sup>b</sup>  | 63.46 <sup>b</sup>     |
| 44   | heptanoic acid                  | 84.37 <sup>a</sup>   | 39.72 <sup>b</sup>    | 27.74 <sup>bc</sup>        | 33.89 <sup>bc</sup>   | 24.58 <sup>bc</sup>  | 32.36 <sup>bc</sup>  | 27.69 <sup>bc</sup>  | 22.08 <sup>c</sup>   | 29.87 <sup>bc</sup>  | 33.79 <sup>bc</sup>  | 33.86 <sup>c</sup>   | 20.52 <sup>bc</sup>    |
| 45   | hexanal                         | 92.95 <sup>a</sup>   | 28.31 <sup>e</sup>    | 20.51 <sup>efg</sup>       | 45.74 <sup>d</sup>    | 78.18 <sup>b</sup>   | 59.64 <sup>c</sup>   | 27.17 <sup>ef</sup>  | 11.62 <sup>9</sup>   | 17.15 <sup>fg</sup>  | 12.18 <sup>g</sup>   | 18.75 <sup>efg</sup> | 10.35 <sup>g</sup>     |
| 46   | hexane                          | 1523.9 <sup>a</sup>  | 212.59 <sup>bcd</sup> | 145.33 <sup>cd</sup>       | 285.60 <sup>bcd</sup> | 166.75 <sup>cd</sup> | 391.68 <sup>bc</sup> | 447.35 <sup>b</sup>  | 155.27 <sup>cd</sup> | 165.56 <sup>cd</sup> | 185.42 <sup>cd</sup> | 138.98 <sup>d</sup>  | 116.88 <sup>d</sup>    |
| 47   | hexanoic acid                   | 4595.9 <sup>a</sup>  | 116.13 <sup>b</sup>   | 62.45 <sup>b</sup>         | 82.39 <sup>b</sup>    | 41.91 <sup>b</sup>   | 119.65 <sup>b</sup>  | 128.24 <sup>b</sup>  | 47.55 <sup>b</sup>   | 52.92 <sup>b</sup>   | 44.75 <sup>b</sup>   | 42.51 <sup>b</sup>   | 34.52 <sup>b</sup>     |
| 48   | hotrienol                       | 101.36 <sup>bc</sup> | 13.75 <sup>c</sup>    | 14.30 <sup>c</sup>         | 193.68 <sup>b</sup>   | 501.89 <sup>a</sup>  | 23.91 <sup>c</sup>   | 17.86 <sup>c</sup>   | 15.81 <sup>c</sup>   | 15.36 <sup>c</sup>   | 9.71 <sup>c</sup>    | 16.00 <sup>c</sup>   | 8.86 <sup>c</sup>      |
| 49   | hydroxymethylfurfural           | 1694.2 <sup>a</sup>  | 32.68 <sup>b</sup>    | 27.53 <sup>b</sup>         | 82.47 <sup>b</sup>    | 66.06 <sup>b</sup>   | 44.75 <sup>b</sup>   | 51.58 <sup>b</sup>   | 24.31 <sup>b</sup>   | 23.97 <sup>b</sup>   | 19.43 <sup>b</sup>   | 26.05 <sup>b</sup>   | 18.86 <sup>b</sup>     |
| 50   | isoamyl alcohol                 | 1913.9 <sup>a</sup>  | 564.05 <sup>c</sup>   | 63.09 <sup>e</sup>         | 978.32 <sup>b</sup>   | 201.24 <sup>de</sup> | 223.52 <sup>de</sup> | 151.38 <sup>e</sup>  | 126.66 <sup>e</sup>  | 450.72 <sup>c</sup>  | 107.33 <sup>e</sup>  | 390.23 <sup>cd</sup> | 155.16 <sup>e</sup>    |
| 51   | isobutyl alcohol                | 18581 <sup>a</sup>   | 387.24 <sup>b</sup>   | 170.24 <sup>b</sup>        | 52.87 <sup>b</sup>    | 19.90 <sup>b</sup>   | 103.67 <sup>b</sup>  | 477.65 <sup>b</sup>  | 81.01 <sup>b</sup>   | 78.82 <sup>b</sup>   | 22.29 <sup>b</sup>   | 49.95 <sup>b</sup>   | 30.45 <sup>b</sup>     |
| 52   | isopropyl benzene               | $440.40^{a}$         | 53.87 <sup>cd</sup>   | 33.81 <sup>d</sup>         | 82.20 <sup>bcd</sup>  | 122.60 <sup>b</sup>  | 88.46 <sup>bc</sup>  | 81.83 <sup>bcd</sup> | 94.00 <sup>bc</sup>  | 45.60 <sup>cd</sup>  | 45.76 <sup>cd</sup>  | 35.50 <sup>d</sup>   | 116.69 <sup>b</sup>    |
| 53   | lemonol                         | 18338 <sup>a</sup>   | 162.01 <sup>b</sup>   | 53.86 <sup>b</sup>         | 493.91 <sup>b</sup>   | 188.40 <sup>b</sup>  | 10.22 <sup>b</sup>   | 139.64 <sup>b</sup>  | 13.95 <sup>b</sup>   | 21.94 <sup>b</sup>   | 16.03 <sup>b</sup>   | 6.23 <sup>b</sup>    | 10.91 <sup>b</sup>     |
|      |                                 | Chestnut-            | Chestnut-             | Rhododendron               | Lavender              | Sage                 | Carob                | Heather              | Citrus               | Pine                 | Wildflower-          | Wildflower-          | Wildflower-            |
|      |                                 | Yalova               | Düzce                 |                            |                       | )                    |                      |                      |                      |                      | Ardahan              | Sivas                | Kırsehir               |
| 54   | lilac alcohol                   | 35.71 <sup>b</sup>   | 9.77 <sup>c</sup>     | 8.37 <sup>c</sup>          | 29.18 <sup>b</sup>    | 8.35 <sup>c</sup>    | 49.88 <sup>a</sup>   | 29.27 <sup>b</sup>   | 7.54 <sup>c</sup>    | 8.52 <sup>c</sup>    | 8.27 <sup>c</sup>    | 6.05 <sup>c</sup>    | ء<br>6.62 <sup>c</sup> |
| 55   | lilac aldehyde                  | 65.37 <sup>a</sup>   | 5.18 <sup>f</sup>     | 7.39 <sup>ef</sup>         | 24.71 <sup>c</sup>    | 6.87 <sup>ef</sup>   | 14.86 <sup>de</sup>  | 35.16 <sup>b</sup>   | 18.85 <sup>cd</sup>  | 4.37 <sup>f</sup>    | 5.79 <sup>ef</sup>   | 7.12 <sup>ef</sup>   | 5.22 <sup>f</sup>      |
| 56   | maltol                          | 62.02 <sup>b</sup>   | 22.43 <sup>e</sup>    | 29.22 <sup>de</sup>        | 86.34 <sup>a</sup>    | 35.92 <sup>d</sup>   | 77.60 <sup>a</sup>   | 48.85 <sup>c</sup>   | 31.76 <sup>de</sup>  | 23.80 <sup>e</sup>   | 23.26 <sup>e</sup>   | 39.48 <sup>cd</sup>  | 21.29 <sup>e</sup>     |
| 57   | menthol                         | 96905 <sup>a</sup>   | 98.89 <sup>b</sup>    | 35.92 <sup>b</sup>         | 55.62 <sup>b</sup>    | 53.41 <sup>b</sup>   | 28.70 <sup>b</sup>   | 95.57 <sup>b</sup>   | 16.23 <sup>b</sup>   | 19.99 <sup>b</sup>   | 13.48 <sup>b</sup>   | 13.13 <sup>b</sup>   | 12.34 <sup>b</sup>     |
| 58   | methanol                        | 13011 <sup>a</sup>   | 5453.16 <sup>ef</sup> | 2659.7 <sup>h</sup>        | 4812.8 <sup>fg</sup>  | 4539.2 <sup>fg</sup> | 7437.1 <sup>cd</sup> | 6325.8 <sup>de</sup> | 2699.1 <sup>h</sup>  | 8611.5 <sup>bc</sup> | 4838.0 <sup>fg</sup> | 8833.9 <sup>b</sup>  | 3828.3 <sup>gh</sup>   |
| 59   | methyl anthranilate             | 330.50 <sup>a</sup>  | 6.06 <sup>b</sup>     | 6.88 <sup>b</sup>          | 14.92 <sup>b</sup>    | 13.90 <sup>b</sup>   | 7.97 <sup>b</sup>    | 9.23 <sup>b</sup>    | 15.67 <sup>b</sup>   | 3.10 <sup>b</sup>    | 1.34 <sup>b</sup>    | 1.21 <sup>b</sup>    | 1.42 <sup>b</sup>      |
| 60   | nerolidol oxide                 | 5.59 <sup>a</sup>    | 2.19 <sup>b</sup>     | 1.94 <sup>b</sup>          | 1.88 <sup>b</sup>     | 2.49 <sup>b</sup>    | 1.97 <sup>b</sup>    | 1.51 <sup>b</sup>    | 1.41 <sup>b</sup>    | 1.83 <sup>b</sup>    | 1.93 <sup>b</sup>    | 1.77 <sup>b</sup>    | 1.37 <sup>b</sup>      |
| 61   | nerolidol                       | 4.23 <sup>a</sup>    | 1.57 <sup>bcd</sup>   | 1.09c <sup>d</sup>         | 1.18 <sup>cd</sup>    | 3.11 <sup>ab</sup>   | 2.77 <sup>abc</sup>  | 1.25 <sup>bcd</sup>  | 1.05 <sup>cd</sup>   | 1.11 <sup>cd</sup>   | 1.35 <sup>bcd</sup>  | 0.80 <sup>d</sup>    | 0.94 <sup>cd</sup>     |
| 62   | nonanal                         | 15035 <sup>a</sup>   | 179.67 <sup>b</sup>   | 79.23 <sup>b</sup>         | 303.33 <sup>b</sup>   | 97.16 <sup>b</sup>   | 249.98 <sup>b</sup>  | 325.49 <sup>b</sup>  | 48.67 <sup>b</sup>   | 67.08 <sup>b</sup>   | 35.51 <sup>b</sup>   | 43.67 <sup>b</sup>   | 38.41 <sup>b</sup>     |
| 63   | nonane                          | 7288.7 <sup>a</sup>  | 118.15 <sup>b</sup>   | 58.74 <sup>b</sup>         | 61.42 <sup>b</sup>    | 41.08 <sup>b</sup>   | 99.86 <sup>b</sup>   | 110.54 <sup>b</sup>  | 31.47 <sup>b</sup>   | 42.13 <sup>b</sup>   | 29.21 <sup>b</sup>   | 28.86 <sup>b</sup>   | 23.43 <sup>b</sup>     |
| 64   | nonanol                         | 103.86 <sup>a</sup>  | 23.72 <sup>b</sup>    | 20.34 <sup>b</sup>         | 27.48 <sup>b</sup>    | 18.52 <sup>b</sup>   | 19.45 <sup>b</sup>   | 21.22 <sup>b</sup>   | 15.68 <sup>b</sup>   | 18.76 <sup>b</sup>   | 27.18 <sup>b</sup>   | 17.52 <sup>b</sup>   | 20.44 <sup>b</sup>     |
| 65   | octanal                         | 158.50 <sup>a</sup>  | 12.84 <sup>b</sup>    | 11.50 <sup>b</sup>         | 22.72 <sup>b</sup>    | 14.79 <sup>b</sup>   | 17.84 <sup>b</sup>   | 21.17 <sup>b</sup>   | 11.95 <sup>b</sup>   | 11.80 <sup>b</sup>   | 10.38 <sup>b</sup>   | 17.77 <sup>b</sup>   | 9.08 <sup>b</sup>      |
| 99   | octane                          | 564.11 <sup>a</sup>  | 66.00 <sup>b</sup>    | 48.70 <sup>b</sup>         | 60.37 <sup>b</sup>    | 43.10 <sup>b</sup>   | 59.44 <sup>b</sup>   | 64.67 <sup>b</sup>   | 34.97 <sup>b</sup>   | 47.78 <sup>b</sup>   | 46.66 <sup>b</sup>   | 45.17 <sup>b</sup>   | 38.29 <sup>b</sup>     |
| 67   | octanoic acid                   | 103.86 <sup>a</sup>  | 23.72 <sup>b</sup>    | 20.34 <sup>b</sup>         | 27.48 <sup>b</sup>    | 18.52 <sup>b</sup>   | 19.45 <sup>b</sup>   | 21.22 <sup>b</sup>   | 15.68 <sup>b</sup>   | 18.76 <sup>b</sup>   | 27.18 <sup>b</sup>   | 17.52 <sup>b</sup>   | 20.44 <sup>b</sup>     |
| 68   | <i>p</i> -cresol                | 314.18 <sup>a</sup>  | 24.90 <sup>b</sup>    | 11.36 <sup>b</sup>         | 12.37 <sup>b</sup>    | 16.79 <sup>b</sup>   | 10.30 <sup>b</sup>   | 18.68 <sup>b</sup>   | 3.72 <sup>b</sup>    | 5.50 <sup>b</sup>    | 3.67 <sup>b</sup>    | 7.45 <sup>b</sup>    | 2.42 <sup>b</sup>      |
| 69   | <i>p</i> -isopropenyl toluene   | 509.32 <sup>a</sup>  | 49.59 <sup>b</sup>    | 13.40 <sup>b</sup>         | 11.52 <sup>b</sup>    | 6.88 <sup>b</sup>    | 18.51 <sup>b</sup>   | 15.21 <sup>b</sup>   | 6.45 <sup>b</sup>    | 9.62 <sup>b</sup>    | 10.36 <sup>b</sup>   | 6.42 <sup>b</sup>    | 6.28 <sup>b</sup>      |
| 70   | <i>p</i> -menth-1-en-9-al       | 105.42 <sup>bc</sup> | 14.29 <sup>c</sup>    | 14.87 <sup>c</sup>         | 201.43 <sup>b</sup>   | 521.96 <sup>a</sup>  | 24.87 <sup>c</sup>   | 18.58 <sup>c</sup>   | 16.45 <sup>c</sup>   | 15.97 <sup>c</sup>   | 10.10 <sup>c</sup>   | 16.64 <sup>c</sup>   | 9.22 <sup>c</sup>      |
| 71   | phenol                          | 32200 <sup>a</sup>   | 169.14 <sup>b</sup>   | 57.66 <sup>b</sup>         | 52.95 <sup>b</sup>    | 17.38 <sup>b</sup>   | 54.77 <sup>b</sup>   | 141.75 <sup>b</sup>  | 17.43 <sup>b</sup>   | 15.04 <sup>b</sup>   | 10.63 <sup>b</sup>   | 20.49 <sup>b</sup>   | 6.09 <sup>b</sup>      |
| 72   | phenylacetaldehyde              | 211.39 <sup>a</sup>  | 25.86 <sup>cd</sup>   | 16.23 <sup>d</sup>         | 39.46 <sup>bcd</sup>  | 58.85 <sup>b</sup>   | 42.46 <sup>bc</sup>  | 39.28 <sup>bcd</sup> | 45.12 <sup>bc</sup>  | 21.89 <sup>cd</sup>  | 21.97 <sup>cd</sup>  | 17.04 <sup>d</sup>   | 56.01 <sup>b</sup>     |
| 73   | phytalic acid                   | 37.09 <sup>a</sup>   | 3.38 <sup>c</sup>     | 2.87 <sup>c</sup>          | 32.63 <sup>a</sup>    | 22.51 <sup>b</sup>   | 5.42 <sup>c</sup>    | 6.80 <sup>c</sup>    | 3.42 <sup>c</sup>    | 2.79 <sup>c</sup>    | 3.55 <sup>c</sup>    | 2.61 <sup>c</sup>    | 2.64 <sup>c</sup>      |
| 74   | propanoic acid                  | 5329.5 <sup>a</sup>  | 207.51 <sup>b</sup>   | 56.07 <sup>b</sup>         | 61.61 <sup>b</sup>    | 43.09 <sup>b</sup>   | 272.19 <sup>b</sup>  | 179.76 <sup>b</sup>  | 41.94 <sup>b</sup>   | 64.48 <sup>b</sup>   | 40.49 <sup>b</sup>   | 64.49 <sup>b</sup>   | 37.38 <sup>b</sup>     |
| 75   | propyl anisol                   | 116.41 <sup>a</sup>  | 9.38 <sup>cd</sup>    | 24.81 <sup>b</sup>         | 15.01 <sup>bcd</sup>  | 16.21 <sup>bc</sup>  | 7.81 <sup>cd</sup>   | 6.48 <sup>cd</sup>   | 8.99 <sup>cd</sup>   | 9.84 <sup>cd</sup>   | 5.63 <sup>cd</sup>   | 3.92 <sup>d</sup>    | 10.31 <sup>cd</sup>    |
| 76   | santene                         | 259.19 <sup>a</sup>  | 30.71 <sup>b</sup>    | 19.90 <sup>b</sup>         | 12.70 <sup>b</sup>    | 12.95 <sup>b</sup>   | 16.44 <sup>b</sup>   | 12.65 <sup>b</sup>   | 13.61 <sup>b</sup>   | 12.42 <sup>b</sup>   | 16.42 <sup>b</sup>   | 9.68 <sup>b</sup>    | 8.05 <sup>b</sup>      |
| 77   | toluene                         | 8161.9 <sup>a</sup>  | 515.01 <sup>b</sup>   | 244.24 <sup>bc</sup>       | 117.79 <sup>bc</sup>  | 49.25 <sup>bc</sup>  | 43.65 <sup>bc</sup>  | 432.70 <sup>bc</sup> | 86.34 <sup>bc</sup>  | 80.62 <sup>bc</sup>  | 10.18 <sup>c</sup>   | 15.93 <sup>c</sup>   | 23.08 <sup>c</sup>     |
| Supe | erscript letters in the row ind | licate statistic.    | ally significar       | It differences ( $P < 0$ . | 05).                  |                      |                      |                      |                      |                      |                      |                      |                        |

wileyonlinelibrary.com/jsfa © 2020 The Authors. J Sci Food Agric 2020; 100: 2198–2207 Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

10970100, 2020, 5, Downloaded from https://onlineliburg.wiley.com/doi/10.1002/sfa.1024 by Bursa Uludag University. Wiley Online Library on [13/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/ems-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License



Figure 1. Soft independent modeling of class analogy (SIMCA) 3D projection plots of data collected by SIFT-MS for Turkish honeys. The SIMCA plots and boundaries marked around the sample clusters represent a 95% confidence interval for each class. Interclass distances between 12 honeys based on the SIMCA class projections.

# MATERIALS AND METHODS

#### Honey samples and their botanical origin

Twelve honey samples were selected from different parts of Turkey (Table 1). Local beekeepers collected the honey from bees that were kept in hives near fields containing predominantly chestnut, rhododendron, lavender, sage, carob, heather, citrus, pine, or mixed wildflower (Table 1).

### Measurement of volatile concentrations

For each honey sample,  $10.02 \pm 0.2$  g was transferred into a 500 mL Pyrex bottle and capped with an open-top cap, lined with a polytetrafluoroethylene (PTFE)-faced silicone septa. The samples were kept in a temperature-controlled water bath (Precision, Jouan Inc., Winchester, VA, USA) at 50 °C for 60 min to allow equilibration of the volatiles, which were released from the honey samples into the headspace. Samples were measured in triplicate.

A selected-ion flow-tube mass spectrometer (SIFT-MS, V200 Syft Technologies, Christchurch, New Zealand) was used to measure

and quantify the volatile compounds in the headspace. Selected-ion flow-tube mass spectrometry uses chemical ionization with selected positive reagent ions,  $H_3O^+$ ,  $NO^+$ , and  $O_2^+$ . The concentration of the volatiles was measured by employing the predetermined reaction rate constant for the volatile with a selected precursor ion and accounting for the dilution of the sample gas into the carrier gas (helium) in the flow tube.<sup>14</sup> Trace volatile analyte compounds were introduced in the reactor at an optimized sample inlet flow rate of 0.35 Torr·L/s (26 cm<sup>3</sup> min<sup>-1</sup>).

The range of the mass-to-charge ratio was set to 10-250 m/z, with a total SIM scan time of 120 s. The concentration of measured volatile compounds, which was calculated through known kinetic parameters, is listed in Table 2. Concentrations were measured in  $\mu$ g L<sup>-1</sup> in the headspace above the honey sample. During the analysis, some compounds produce the same mass for a given precursor ion, so the interfering compounds have to be reported as a mixture. In this study, several mixtures were identified at different charge-to-mass ratios, such as 2-methyl-2-butanol and butanoic acid at 71 m/z, acetone and isoamyl alcohol at 88 m/z, acetic acid and 2-cyclopenten-1,4-dione at 90 m/z, dimethyl

disulfide and phenol at 94 m/z, acetic acid and *p*-cresol at 108 m/ z, acetoin and ethyl acetate at 118 m/z, phenylacetaldehyde and isopropyl benzene at 120 m/z, 2-phenylethanol and santene at 122 m/z, dimethyl trisulfide and hydroxymethylfurfural at 126 m/z,  $\alpha$ -pinene,  $\beta$ -pinene, 2-hydroxyacetophenone and 4-methoxybenzaldehyde at 136 m/z, octanoic acid and nonanol at 144 m/z, and hotrienol and *p*-menth-1-en-9-al at 152 m/z.

#### Statistical analysis

The concentrations of volatile compounds were analyzed in triplicate. One-way analysis of variance (ANOVA) using Tukey's procedure with a 95% confidence interval was performed to determine statistical differences among samples; significance was defined as  $P \le 0.05$  using SPSS (version 25, SPSS Inc., Chicago, IL, USA). Multivariate statistical analysis was conducted using SIMCA with Pirouette software for Windows Comprehensive Chemometrics Modeling, version 4.0 (Infometrix Inc., Bothell, WA, USA) to identify distributions of volatiles in honey samples.

# **RESULTS AND DISCUSSION**

#### Volatile composition of honeys

Many compounds have been detected in honey using different techniques. This study focused on 78 volatile compounds, which were selected from previous studies of selected honeys. Twelve honey samples of known botanical and geographical origins were analyzed (Table 3). Methanol and ethanol, as in other types of honey and food, were abundant in the analyzed samples. Even though these alcohols were commonly found in natural products due to the metabolism of yeasts,<sup>15</sup> or reduction of aldehydes,<sup>16</sup> they can be the most effective discriminators based on either their high volatility or discriminating power (Fig. 1). These compounds have been found to discriminate among different type of honeys, such as thyme and lavender honey.<sup>17</sup>

Acetic acid was the third highest concentrated volatile followed by methanol and ethanol in the honeys, except for chestnut honeys from Yalova region and lavender (Table 3). Acetic acid is formed through degradation of alcohols and produce acidic aroma in honey.<sup>18</sup> Menthol was the second highest compound for chestnut honey from Yalova and phenol was third followed by 1-octen-3-ol. The acetone concentration was the third highest in lavender honey. Menthol is a mint essential oil, which is allowed to be used in formulations against mites and ticks.<sup>19</sup>

Acetone was the fourth highest volatile of chestnut\_Düzce, pine, wildflower\_Ardahan and wildflower\_Kirşehir, while 2-cyclopenten-1,4-dione was the fourth leading volatile compound for rhododendron, heather and wildflower\_Sivas. Alpha-pinene was the fourth higest concentrated compound measured in sage honey, while ethyl acetate was measured in carob and dimethyl sulfide in citrus as fourth highest compound. Acetone is responsible for a pungent or fruity odor and ethyl acetate gives a fruity aroma in honey.<sup>20</sup> In the presence of ethanol, ethyl acetate is formed through esterification of acetic acid via microorganisms.<sup>21</sup> Alpha-pinene was one of the compounds detected in the honey profile that comes directly from the flower.<sup>22</sup>

Ethyl acetate, which is the ester formed from ethanol and acetic acid, was one of the most abundant compounds in carob honey after ethanol, methanol, and acetic acid. Some studies have focused on the volatile compounds found in carob;<sup>23,24</sup> however, only one published article focused on the volatile characteristics of carob honey, which is mainly characterized by non-anal and octanal.<sup>25</sup> Heather, citrus, wildflower honey from Sivas, and wildflower honey from Kırşehir also had high amounts of ethyl acetate.

Dimethyl sulfide was one of the compounds with the highest concentration detected in citrus after ethanol, methanol, and acetic acid. It was also found in both raw and heat-treated citrus honey from Spain.<sup>26</sup> The concentration of dimethyl sulfide was relatively high in rare unifloral honeys in Spain such as *Persea americana* (38.5%), *Spartocytisus supranubius* (25.2%), *Quercus ilex* (7.4–337%), *Satureja montana* (22.8%), and *Agave* honey (19.4%).<sup>27</sup>

| Table | Table 4. Discriminating power of volatile compounds of Turkish honeys |                       |    |                       |                       |    |                           |                       |  |  |  |  |
|-------|-----------------------------------------------------------------------|-----------------------|----|-----------------------|-----------------------|----|---------------------------|-----------------------|--|--|--|--|
|       | Compounds                                                             | DP (10 <sup>2</sup> ) |    | Compounds (continued) | DP (10 <sup>2</sup> ) |    | Compounds (continued)     | DP (10 <sup>2</sup> ) |  |  |  |  |
| 1     | methanol                                                              | 72                    | 19 | hexanal               | 0.4                   | 37 | 2-heptanol                | 0.2                   |  |  |  |  |
| 2     | ethanol                                                               | 21                    | 20 | acetone               | 0.4                   | 38 | propyl anisol             | 0.2                   |  |  |  |  |
| 3     | acetoin                                                               | 16                    | 21 | isoamyl alcohol       | 0.4                   | 39 | 2-phenylethanol           | 0.2                   |  |  |  |  |
| 4     | ethyl acetate                                                         | 16                    | 22 | vvenzyl alcohol       | 0.4                   | 40 | 2-aminoacetophenone       | 0.2                   |  |  |  |  |
| 5     | isobutanoic acid                                                      | 16                    | 23 | 1,3-butanediol        | 0.3                   | 41 | heptane                   | 0.2                   |  |  |  |  |
| 6     | 2-methyl-2-butanol                                                    | 15                    | 24 | furfural              | 0.3                   | 42 | cis-6-nonen-1-ol          | 0.2                   |  |  |  |  |
| 7     | butanoic acid                                                         | 15                    | 25 | 2-butanol             | 0.3                   | 43 | dimethyl trisulfide       | 0.1                   |  |  |  |  |
| 8     | 2,3-butanedione                                                       | 14                    | 26 | menthol               | 0.3                   | 44 | nonanal                   | 0.1                   |  |  |  |  |
| 9     | 3-methylbutanal                                                       | 14                    | 27 | urfuryl alcohol       | 0.3                   | 45 | 1-octen-3-ol              | 0.1                   |  |  |  |  |
| 10    | dodecane                                                              | 10                    | 28 | Isobutyl alcohol      | 0.3                   | 46 | coumarin                  | 0.1                   |  |  |  |  |
| 11    | dimethyl sulfide                                                      | 0.9                   | 29 | 1-hexanol             | 0.3                   | 47 | <i>p</i> -cresol          | 0.1                   |  |  |  |  |
| 12    | acetic acid                                                           | 0.8                   | 30 | benzaldehyde          | 0.3                   | 48 | <i>p</i> -menth-1-en-9-al | 0.1                   |  |  |  |  |
| 13    | 2-cyclopenten-1,4-dione                                               | 0.7                   | 31 | hexane                | 0.2                   | 49 | hotrienol                 | 0.1                   |  |  |  |  |
| 14    | (E)-2-methyl-2-butenal                                                | 0.7                   | 32 | maltol                | 0.2                   | 50 | hydroxymethylfurfural     | 0.1                   |  |  |  |  |
| 15    | toluene                                                               | 0.5                   | 33 | (E)-2-hexenal         | 0.2                   | 51 | lilac alcohol             | 0.1                   |  |  |  |  |
| 16    | phenol                                                                | 0.5                   | 34 | nonane                | 0.2                   | 52 | octanal                   | 0.1                   |  |  |  |  |
| 17    | dimethyl disulfide                                                    | 0.5                   | 35 | propanoic acid        | 0.2                   |    |                           |                       |  |  |  |  |
| 18    | ( <i>Z</i> )-3-hexen-1-ol                                             | 0.5                   | 36 | lemonol               | 0.2                   |    |                           |                       |  |  |  |  |

Hotrienol is one of the marker volatiles for lavender honey;<sup>8,28</sup> however, in our study it was of a lower concentration compared to other compounds. Sage honey had a significantly higher amount of hotrienol than other honeys (Table 3); however, previous studies did not report it in sage honey.<sup>11,29</sup> The geographic areas of the lavender and sage honey were in the same province, which may lead the bees harvesting from both area and caused similarities in volatile composition. Hotrienol comes from the flower, during ripening of the honey in the hive and is thermally generated during pasteurization.<sup>30</sup>

Several alcohols were identified in lavender honey, and ethanol, methanol, isoamyl alcohol, lemonol, 2-butanol, hotrienol and 1,3-butanediol were the highest concentrations. Radovic *et al.*<sup>31</sup> determined that ethanol, 2-methyl-1-propanol, 3-methyl-1-butanol, 3-methyl-3-buten-1-ol, hotrienol, and furfuryl alcohol were the main alcohols present in lavender honey collected from France and Portugal.

#### Effect of botanical and geographical origins

Multivariate statistical analyses allow the determination of botanical and geographical discrimination between honey samples. Interclass distances (ICDs) greater than 3 indicate that samples were significantly different.<sup>32</sup> Better separation of honeys is achieved with higher interclass distances between two honeys. All of the ICD values of measured honeys were greater than 3, or, in this case, greater than 8 (Fig. 1), which indicates that these honey samples can be discriminated based on their volatile composition. Ethanol and methanol showed the highest discriminating power (Table 4). Because ethanol and methanol had the highest concentration of volatiles, they may cause a decrease in discriminating power, by repressing the influence of other volatiles on the volatile profile. Multivariate statistical analysis was therefore also applied to the data set without ethanol and methanol (Fig. 2). After exclusion of these two compounds, menthol, dimethyl disulfide, phenol and dimethyl



Figure 2. Soft independent modeling of class analogy (SIMCA) 3D projection plots of data collected by SIFT-MS for Turkish honeys (methanol and ethanol excluded). Boundaries marked around the honey clusters represent a 95% confidence interval. Interclass distances between 12 honeys are based on the SIMCA class projections.

| Tabl | Table 5. Discriminating power of volatile compounds of Turkish honeys (methanol and ethanol excluded) |                       |    |                         |                       |    |                           |                       |  |  |  |
|------|-------------------------------------------------------------------------------------------------------|-----------------------|----|-------------------------|-----------------------|----|---------------------------|-----------------------|--|--|--|
|      | Compounds                                                                                             | DP (10 <sup>2</sup> ) |    | Compounds (continued)   | DP (10 <sup>2</sup> ) |    | Compounds (continued)     | DP (10 <sup>2</sup> ) |  |  |  |
| 1    | menthol                                                                                               | 42                    | 19 | propanoic acid          | 2.1                   | 37 | furfural                  | 1.3                   |  |  |  |
| 2    | dimethyl disulfide                                                                                    | 11                    | 20 | <i>p</i> -cresol        | 2.0                   | 38 | furfuryl alcohol          | 1.2                   |  |  |  |
| 3    | phenol                                                                                                | 11                    | 21 | 2-methyl-2-butanol      | 1.9                   | 39 | lemonol                   | 1.2                   |  |  |  |
| 4    | dimethyl sulfide                                                                                      | 10                    | 22 | butanoic acid           | 1.9                   | 40 | 1,3-butanediol            | 1.2                   |  |  |  |
| 5    | benzaldehyde                                                                                          | 9.0                   | 23 | 2-aminoacetophenone     | 1.9                   | 41 | heptane                   | 1.1                   |  |  |  |
| 6    | <i>p</i> -menth-1-en-9-al                                                                             | 8.2                   | 24 | hydroxymethylfurfural   | 1.9                   | 42 | p-isopropenyl toluene     | 1.1                   |  |  |  |
| 7    | <i>p</i> -mentha-1(7),8(10)-dien-9-ol                                                                 | 8.2                   | 25 | acetone                 | 1.9                   | 43 | methyl anthranilate       | 0.8                   |  |  |  |
| 8    | hotrienol                                                                                             | 8.2                   | 26 | isoamyl alcohol         | 1.9                   | 44 | 2-phenylethanol           | 0.8                   |  |  |  |
| 9    | toluene                                                                                               | 6.3                   | 27 | decanal                 | 1.8                   | 45 | (E)-2-hexenal             | 0.8                   |  |  |  |
| 10   | 2,3-butanedione                                                                                       | 5.4                   | 28 | isobutyl alcohol        | 1.7                   | 46 | ethyl benzoate            | 0.7                   |  |  |  |
| 11   | 1 <i>-p</i> -menthen-9-ol                                                                             | 5.0                   | 29 | isobutanoic acid        | 1.7                   | 47 | damascenone               | 0.7                   |  |  |  |
| 12   | acetoin                                                                                               | 4.9                   | 30 | 2-cyclopenten-1,4-dione | 1.7                   | 48 | hexanoic acid             | 0.7                   |  |  |  |
| 13   | ethyl acetate                                                                                         | 4.9                   | 31 | acetic acid             | 1.7                   | 49 | ( <i>Z</i> )-3-hexen-1-ol | 0.7                   |  |  |  |
| 14   | 1-octen-3-ol                                                                                          | 4.2                   | 32 | 2-butanol               | 1.7                   | 50 | lilac aldehyde            | 0.7                   |  |  |  |
| 15   | (E)-2-methyl-2-butenal                                                                                | 4.0                   | 33 | dodecane                | 1.6                   | 51 | cis-6-nonen-1-ol          | 0.6                   |  |  |  |
| 16   | benzyl alcohol                                                                                        | 3.8                   | 34 | nonanal                 | 1.6                   | 52 | 2-hydroxyacetophenone     | 0.6                   |  |  |  |
| 17   | 5-methylfurfural                                                                                      | 2.8                   | 35 | hexane                  | 1.5                   |    |                           |                       |  |  |  |
| 18   | dimethyl trisulfide                                                                                   | 2.5                   | 36 | 3-methylbutanal         | 1.5                   |    |                           |                       |  |  |  |

sulfide showed the highest discriminating power (Table 5). Langford *et al.*<sup>33</sup> also identified dimethyl disulfide as the compound with the highest discriminating power in monofloral New Zealand honeys.

When comparing different botanical sources from the same province, chestnut and rhododendron (Düzce), lavender and sage (Burdur), and carob, heather, and citrus (Antalya) showed clear differentiation (Fig. 1). The concentrations of 2-butanol, 2-methyl-2-butanol, 3-methylbutanal, acetoin, acetone, butanoic acid, ethanol, ethyl acetate, furfuryl alcohol, isoamyl alcohol, isobutanoic acid, methanol, and propyl anisol were significantly different in chestnut and rhododendron (Düzce) (Table 3). Hexanal, hotrienol, and lilac aldehyde concentration were different in lavender and sage honey. Furfuryl alcohol is one of the characteristic compounds for chestnut honeys.<sup>34</sup> Castro-Vázguez et al.<sup>8</sup> differentiated citrus and heather honey based on their volatile composition. Similar to our study, (Z)-3-hexen-1-ol, acetic acid, 2-cyclopentene-1-4-dione and butanoic acid were found to be higher in heather honey compared to citrus. These compounds were discriminating volatiles for heather and citrus. Even though it is difficult to determine the botanical source of honey accurately by many techniques,<sup>6</sup> it is clearly seen that SIFT-MS with chemometrics was effective. Agila and Barringer<sup>18</sup> identified differences in the volatiles of honeys from different botanical sources (blueberry, clover, cranberry, and wildflowers) collected from the state of Indiana, USA. Langford et al.<sup>33</sup> also applied SIFT-MS technology to distinguish New Zealand monofloral honeys.

When the same flower source was compared with different locations, such as chestnut honeys from Yalova and Düzce, or wildflower honeys from three different provinces, varied volatile compositions were detected (Fig. 1). The composition of honey not only depends on the nectar-providing plant species but also depends on other factors such as environmental factors, bee species, harvesting season and technology, processing, and storage.<sup>35</sup> Chestnut honey collected from Yalova and Düzce regions had no statistical similarities in volatile compound concentration, except for *p*-menth-1-en-9-al (Table 3). Chestnut honey from

Yalova had a higher concentration of all compounds than chestnut honey from Düzce. The reason for this significant difference between the volatile levels was probably the geographical location. Castro-Vázquez *et al.* <sup>36</sup> reported clear differentiation of chestnut honeys from different geographical origins according to their volatile composition, using multivariate statistical analysis.

The concentrations of 2,3-butandione, 2-butanol, 2-cyclopenten-1,4-dione, acetic acid, acetoin, acetone, butanoic acid, ethyl acetate, furfural, isoamyl alcohol, isobutanoic acid, isopropyl benzene, maltol, methanol and phenylacetaldehyde were different in the three wildflower honeys from different locations. The aroma composition of wildflower honeys can be dissimilar from each other because of the variation and differences of flowers contingent upon the location.

Karabagias *et al.*<sup>37</sup> investigated the geographical characterization of citrus honeys in Mediterranean countries. While ethyl acetate was determined as a key discriminating compound in citrus honeys collected from Morocco, it was not detected in honeys collected from Egypt, Greece, and Spain. Ethyl acetate was found only in Moroccan citrus honey, although ethyl octanoate and ethyl nonanoate were reported to be in higher concentration in Greek citrus honeys and ethyl nonanoate was high in Egyptian citrus honeys. Ethyl acetate may therefore be one of the compounds that can be used to geographically discriminate between Mediterranean citrus honeys.

# CONCLUSION

SIFT-MS is a fast and simple method to enhance the difference between Turkish honeys based on their volatile composition. The application of SIFT-MS technique with the aid of chemometrics for floral and geographical origin determination of honeys can be very useful. The data analysis takes place in twodimensional matrices with a chemometric approach, which allows for a better separation of the samples.

Honeys with different botanical and geographical origin showed differences in their volatile profile based on their

www.soci.org

0 SCI

interclass distances. Between the honey samples, methanol, ethanol, acetoin, ethyl acetate, and isobutanoic acid had the highest discriminating power and also methanol and ethanol, and then acetic acid, were the volatiles at the highest concentration in most honeys. In general, chestnut from the Yalova region had the highest total concentration of volatiles followed by heather and chestnut from the Düzce region, and wildflower from the Ardahan region had the lowest total concentration.

The volatile composition of each honey type was affected by several factors. Future studies with a broader variety of honeys or geographical origins with different harvesting seasons may be required for a better understanding of the honey fingerprint.

# ACKNOWLEDGEMENTS

Gulsah OZCAN-SINIR acknowledges the Scientific and Technological Research Council of Turkey (TUBITAK) for 2219-International Postdoctoral Research Fellowship for Turkish Citizens. The authors thank the honey collectors from different regions (Beekeping Association of Ardahan, Antalya, Düzce, Muğla, Sivas and Lisinia Nature).

# REFERENCES

- 1 Machado De-Melo AA, de Almeida-Muradiana LB, Sancho MT and Pascual-Mate A, Composition and properties of *Apis mellifera* honey: a review. J. Apic. Res **57**:5–37 (2018).
- 2 Schievano E, Morelato E, Facchin C and Mammi S, Characterization of markers of botanical origin and other compounds extracted from unifloral honeys. J Agric Food Chem **61**:1747–1755 (2013).
- 3 Ayvaz H, Quality control of honey using new generation infrared spectrometers. *Turk J. Agric* 5:326–334 (2017).
- 4 FAOSTAT, Production of Beeswax in World (2016). Available: http:// www.fao.org/faostat/en/#data/QL/visualize [13 June 2018].
- 5 Kayacier A and Karaman S, Rheological and some physicochemical characteristics of selected Turkish honeys. J Texture Stud **39**:17–27 (2008).
- 6 Cuevas-Glory LF, Pino JA, Santiago LS and Sauri-Duch E, A review of volatile analytical methods for determining the botanical origin of honey. *Food Chem* **103**:1032–1043 (2007).
- 7 Pattamayutanon P, Angeli S, Thakeow P, Abraham J, Disayathanoowat T and Chantawannakul P, Volatile organic compounds of Thai honeys produced from several floral sources by different honey bee species. *PLoS ONE* **12**:e0172099 (2017).
- 8 Castro-Vázquez L, Díaz-Maroto MC, González-Viñas MA and Pérez-Coello MS, Differentiation of monofloral citrus, rosemary, eucalyptus, lavender, thyme and heather honeys based on volatile composition and sensory descriptive analysis. *Food Chem* **112**:1022–1030 (2009).
- 9 Senyuva HZ, Gilbert J, Silici S, Charlton A, Dal C, Gurel N *et al.*, Profiling Turkish honeys to determine authenticity using physical and chemical characteristics. *J Agric Food Chem* **57**:3911–3919 (2009).
- 10 Tananaki C, Thrasyvoulou A, Giraudel JL and Montury M, Determination of volatile characteristics of Greek and Turkish pine honey samples and their classification by using Kohonen self organising maps. *Food Chem* **101**:1687–1693 (2007).
- 11 Lusic D, Koprivnjak O, Curit D, Sabatini AG and Conte LS, Volatile profile of Croatian lime tree (*Tilia* sp.). Fir honeydew (*Abies alba*) and sage (*Salvia officinalis*) honey. *Food Technol Biotechnol* **45**:156–165 (2007).
- 12 Oddo LP, Piazza MG, Sabafini AG and Accorti M, Characterization of unifloral honeys. *Apidologie* **26**:453–465 (1995).
- 13 Spanel P and Smith D, SIFT studies of the reactions of  $H_3O_+$ , NO+ and  $O_2$  + with a series of alcohols. Int J Mass Spectrom Ion Process **167**: 375–388 (1997).
- 14 Smith D and Spanel P, The novel selected-ion flow tube approach to trace gas analysis of air and breath. *Rapid Commun Mass Spectrom* **10**:1183–1198 (1996).
- 15 Beckh G, Wessel P and Luellman CA, Contribution to yeasts and their metabolic products as natural components of honey. Part 3. Contents of ethanol and glycerol as quality parameters. *Dtsch Lebensmitt Rundsch* **101**:1–6 (2005).

- 16 Alasalvar C, Shahidi F and Cadwallader KR, Comparison of natural and roasted Turkish tombul hazelnut (*Corylus avellana* L.) volatiles and flavor by DHA/GC/MS and descriptive sensory analysis. J Agric Food Chem 51:5067–5072 (2003).
- 17 Escriche I, Sobrino-Gregorio L, Conchado A and Juan-Borrás M, Volatile profile in the accurate labelling of monofloral honey. The case of lavender and thyme honey. *Food Chem* **226**:61–68 (2017).
- 18 Agila A and Barringer S, Application of selected ion flow tube mass spectrometry coupled with chemometrics to study the effect of location and botanical origin on volatile profile of unifloral American honeys. J Food Sci 77:1103–1108 (2012).
- 19 Ansari MA, Vasudevan P, Tandon M and Razdan RK, Larvicidal and mosquito repellent action of peppermint (Mentha piperita) oil. *Bior-esour Technol* **71**:267–271 (2000).
- 20 Alissandrakis E, Kibaris AC, Tarantilis PA, Harizanis PC and Polissiou M, Flavour compounds of Greek cotton honey. J Sci Food Agric 85: 1444–1452 (2005).
- 21 Ribéreau-Gayon P, Glories Y, Maujean A and Dubourdieu D, Varietal aroma, in *Handbook of Enology*, ed. by Ribéreau-Gayon P, Glories Y, Maujean A and Dubourdieu D, John Wiley & Sons Ltd, West Sussex pp. 205–230 (2006).
- 22 Aronne G, Giovanetti M, Sacchi R and De Micco V, From flower to honey bouquet: possible markers for the botanical origin of robinia honey. *Scientific World Journal* **2014**:547275 (2014).
- 23 Cantalejo MJ, Effects of roasting temperature on the aroma components of carob (*Ceratonia siliqua* L.). J Agric Food Chem 45: 1345–1350 (1997).
- 24 Farag MA and El-Kersh DM, Volatiles profiling in *Ceratonia siliqua* (Carob bean) from Egypt and in response to roasting as analyzed via solid-phase microextraction coupled to chemometrics. *J Adv Res* **8**:379–385 (2017).
- 25 Baroni MV, Nores ML, Diaz MDP, Chiabrando GA, Fassano JP, Costa C et al., Determination of volatile organic compound patterns characteristic of five unifloral honey by solid-phase microextraction – gas chromatography – mass spectrometry coupled to chemometrics. J Agric Food Chem 54:7235–7241 (2006).
- 26 Escriche I, Visquert M, Juan-Borrás M and Fito P, Influence of simulated industrial thermal treatments on the volatile fractions of different varieties of honey. *Food Chem* **112**:329–338 (2009).
- 27 Fuente E, Sanz ML, Martinez-Castro L, Sanz IJ and Ruiz-Matute AI, Volatile and carbohydrate composition of rare unifloral honeys from Spain. Food Chem 105:84–93 (2007).
- 28 Soria AC, Martinez-Castro I and Sanz J, Analysis of volatile composition of honey by solid phase microextraction and gas chromatography-mass spectrometry. J Sep Sci 26:793-801 (2003).
- 29 Jerkovic I, Mastelic J and Marijanovic Z, A variety of volatile compounds as markers in unifloral honey from dalmatian sage (Salvia officinalis L.). Chem Biodivers 3:1307–1316 (2006).
- 30 Jerković I and Kuś PM, Terpenes in honey: occurrence, origin and their role as chemical biomarkers. RSC Adv 4:31710–31728 (2014).
- 31 Radovic BS, Careri M, Mangia A, Musci M, Gerboles M and Anklam E, Contribution of dynamic headspace GC–MS analysis of aroma compounds to authenticity testing of honey. *Food Chem* 72:511–520 (2001).
- 32 Kvalheim TV and Karstang OM, Multivariate pattern recognition in chemometrics, illustrated by case studies, in *Multivariate Pattern Recognition in Chemometrics, Illustrated by Case Studies*, ed. by Brereton RG. Elsevier Science Publishers, Amsterdam, pp. 209–248 (1992).
- 33 Langford V, Gray J, Foulkes B, Bray P and Mcewan MJ, Application of selected ion flow tube-mass spectrometry to the characterization of monofloral New Zealand honeys. J Agric Food Chem 60:6806–6815 (2012).
- 34 Guyot C, Bouseta A, Scheirma V and Collin S, Floral origin markers of chestnut and lime tree honeys. J Agric Food Chem 46:625–633 (1998).
- 35 Kaskoniene V and Venskutonis PR, Floral markers in honeys of various botanical and geographic origins: a review. *Compr. Rev. Food Sci. Food Saf* **9**:620–634 (2010).
- 36 Castro-Vázquez L, Díaz-Maroto MC, González-Viñas MA and Pérez-Coello MS, Effect of geographical origin on the chemical and sensory characteristics of chestnut honeys. *Food Res Int* 43:2335–2340 (2010).
- 37 Karabagias IK, Louppis AP, Karabournioti S, Kontakos S, Papastephanou C and Kontominas MG, Characterization and geographical discrimination of commercial *Citrus* spp. honeys produced in different Mediterranean countries based on minerals, volatile compounds and physicochemical parameters, using chemometrics. *Food Chem* **217**:445–455 (2017).