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Abstract: This study was aimed at adapting the weighted 
Kaplan-Meier method to time-dependent ROC curve analysis. 
The performances of these two time-dependent ROC curve 
methods were compared, in which the Kaplan-Meier estimator 
and weighted Kaplan-Meier estimator were used. An application 
was presented for pancreatic cancer patients to evaluate the 
prognostic ability of the CA19-9 antigen. A simulation study 
was performed for different scenarios to see the performance 
of the proposed method. In all situations, it is observed that the 
AUC values that were obtained by the weighted time-dependent 
ROC (WTDR) curves more closely approximated the real AUC 
values than the classical time-dependent ROC (TDR) curve 
method and has got smaller mean square error rates. 

Keywords: Censored data, time-dependent ROC curves, 
weighted Kaplan-Meier.

INTRODUCTION

In classical ROC analysis, disease status is treated as a 

disease status can change over time, and those individuals 
who are not diseased can develop the disease during the 
study period. There can be a certain time lag between the 
time that the diagnostic test is conducted and the onset of 
the disease. How well a diagnostic test result, having been 
measured at the beginning of the study, can discriminate 
between diseased and undiseased individuals at a [0, t] 
follow-up time, is the question that must be addressed in 
such situations.

In literature there are several discussions of time-
dependent ROC curves (Etzioni et al., 1999; Heagerty 
et al., 2000; Slate & Turnbull, 2000; Cai et al., 2003; 
2006; Heagerty & Zheng, 2005; Chambless & Diao, 
2006; Uno et al., 2007; Hung & Chiang, 2010a; 
Martínez-Camblor et al., 2016). Cumulative/dynamic, 
incident/static and incident/dynamic estimators for 

and also discussed by Cai et al. (2006) and Pepe et al. 
(2008).  Sensitivity can be estimated using cases that 

up to time t
estimated using all individuals who are not cases at time t 

et 

al., 1999; Slate & Turnbull, 2000; Heagerty & Zheng, 
2005; Cai et al., 2006), and two methods were proposed 
by Etzioni et al

ROC curve given estimates of the longitudinal model 
parameters by utilising random-effects models to capture 
the correlation between within-subject measurements. 
The second one is based on estimating the ROC curve 
at any time of interest, by setting the time covariate to a 

* Corresponding author (sigirli@uludag.edu.tr;  https://orcid.org/0000-0002-4006-3263)

This article is published under the Creative Commons CC-BY-ND License (http://creativecommons.org/licenses/by-nd/4.0/). 
This license permits use, distribution and reproduction, commercial and non-commercial, provided that the original work is 
properly cited and is not changed anyway.



12 Deniz Sigirli et al.

March 2018 Journal of the National Science Foundation of Sri Lanka 46(1)

the longitudinal biomarker data by focusing on fully 
Bayesian hierarchical models and the latent disease 
process models. Cai et al. (2006) used generalised linear 
models to estimate time-dependent ROC (TDR) curve 
with incident sensitivity in censored data. They modelled 
the dependence in time by using vectors of polynomial or 
spline basis functions. 

 The present study was focused on the cumulative/

role of control for times t X, and then contributes as a 
case for times t > X, where X is the failure time. Time-
dependent ROC curves related to cumulative sensitivity 

number of authors (Heagerty et al., 2000; Chambless & 
Diao, 2006; Uno et al., 2007; Song & Zhou, 2008; Hung 
& Chiang, 2010a; Wolf et al., 2011; Blanche et al., 2013a; 
Li et al., 2015; Li, 2016; Martínez-Camblor et al., 2016; 
Rodríguez-Álvarez et al., 2016). Heagerty et al. (2000) 
proposed estimators based on the cumulative distribution 
function of the biomarker and Kaplan-Meier estimator 
of the survival function. Since this method does not 
satisfy the condition of monotonicity for the ROC curve, 
they also proposed an estimator based on the nearest 
neighbour estimator of Akritas (Akritas et al., 1994), 
which estimates the bivariate distribution of the marker 
and the failure time using kernel smoothing techniques. 
Two methods were proposed by Chambless and Diao 

the ordered times of events, analogous to the Kaplan-
Meier approach to survival function estimation. This 
method does not guarantee the monotonicity. The second 
approach uses a regression survival model to estimate the 
conditional survival probability of the outcome at time t 
given the marker Y. 

time-dependent ROC curve using both the cumulative 
and incident sensitivity. Uno et al. (2007) and Hung 
and Chiang (2010a) have proposed estimators based 
on inverse probability of censoring weighting (IPCW). 
Blanche et al. (2013a) proposed a conditional IPWC 

obtain a nonparametric estimator robust to marker-
dependent censoring. They gave a detailed review of 
the time-dependent ROC curve estimators proposed 
in literature and compared the properties. Wolf et al. 
(2011) introduced a method for calculating sensitivity 

Aalen estimator and they used isotonic regression to 
achieve monotonicity for the ROC curve. Li et al. (2015) 
proposed a weighting method to estimate cumulative/

related ROC curve nonparametrically by using uniform 

kernel, which has connections to the methods in Heagerty 
et al. (2000) and Chambless and Diao (2006). Martínez-
Camblor et al. (2016) proposed a methodology, which 
assigns a probability of belonging to a group by using 
proportional hazard Cox regression model and Kaplan–
Meier estimator for cumulative/dynamic ROC curve 
estimation. Rodríguez-Álvarez et al. (2016) proposed 
nonparametric regression estimators Nadaraya-Watson 
kernel weights for cumulative/dynamic ROC curves in 
the presence of covariate-dependent censoring. Also, Li 
(2016) studied estimation of cumulative/dynamic time-
dependent ROC and area under the ROC curve (AUC) 
for left-truncated and right-censored data.

as the probability that the marker value of a randomly 
selected case exceeds the marker value of a randomly 
selected control (Hanley & McNeil, 1982; Pepe, 2003). 
The extension of AUC to the time-dependent setting has 
been discussed by many authors (Heagerty & Zheng, 
2005; Chambless & Diao, 2006; Chiang & Hung, 
2010; Hung & Chiang, 2010b; Cai et al., 2011; Viallon 
& Latouche, 2011; Schmid et al., 2015; Lambert & 
Chevret, 2016). The construction in their works was to 
estimate AUC (t) for each t time. Blanche et al. (2013b) 
presented different estimators of the time-dependent 
AUC for univariate survival data, longitudinal setting 
and competing events setting. The time-dependent ROC 
curve can be calculated by plotting the sensitivity versus 

can be calculated using standard numerical integration 
methods such as trapezoid rule (Campbell, 1994; 
Chambless & Diao, 2006).

 The term borrowing strength is typically used in 
Bayesian statistics and generally references an attempt to 
improve precision by using additional information from 
allied sources. 

 The weighted likelihood (WL) function has been 
designed to incorporate information from populations 
that are relevant, but not of prime inferential interest 
to the study population (Hu, 1994). The WL function 
suggested by Hu and Zidek (2002) is based on the result 
of James and Stein (1961) insofar as, in terms of the sum 
of the mean-square-error-of-estimation criterion, the 
sample averages could be improved upon by borrowing 
information from the other samples – the so-called Stein 
paradox (James & Stein, 1961; Hu & Zidek, 2002). 
Similar to the James-Stein estimator, a WL estimator that 
facilitates drawing inferences on one sample by using 
additional information from different populations was 
suggested by Hu and Zidek (2002).
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Wang (2001), Wang et al. (2004), and Wang and Zidek 
(2005) used cross-validation procedure for adaptively 
choosing the weights and gave the analytical forms of 
the adaptive weights when the WL estimation is a linear 
combination of the maximum likelihood estimations. 
They estimated the WL whereby the data are regarded 
as samples from m populations, and proposed adaptive 
weights, which were allowed to depend on the data. If the 

F1, the weighted 
empirical distribution function to estimate it can be given 
as follows:

 ...(1)

with  and , where  is the 

empirical distribution function related to the ith population 
and  is the sample of  individuals, drawn 
from the ith population. Plante (2008a) showed that WL 
can be derived from the entropy maximisation principle 
using the weighted empirical distribution function given 
above, and suggested minimum averaged mean squared 
error (MAMSE) weights. Plante (2008b; 2009) used 
MAMSE weights for right-censored data and proposed 
adaptively weighted Kaplan-Meier estimates as non-
parametric estimators for lifetime data, which borrows 
strength from m different populations to draw inferences 
for just one population of interest, that has a similar 
distribution to other m-1 populations. 

 This article is aimed at using a weighted Kaplan-
Meier estimator to obtain time-dependent ROC curves, 
which could handle right-censored data in determining 
the discrimination ability of a marker. 

METHODOLOGY

Let  be the death time for the jth individual in the 
ith population,  be the censoring time for the jth 
individual of the ith population, and  
be the follow-up time; thus, if , then 
( ) is observed for . The 
Kaplan-Meier estimate of the probability of survival 
beyond time t, which is a non-parametric estimator of the 
survival function S(t), can be written as below for the ith 

population (Kaplan & Meier, 1958):

 ...(2)

where , , 

. An optimisation problem in which 

the optimal weights can be obtained, which minimises 
the objective function given below under the constraints

 and 

  ...(3)

where  is  and the weights are chosen to 
minimise . In the objective function the squared 
difference was required to be minimised so that weights 
that make  close to  should be selected. U is 
the upper limit, which is set smaller than the largest 
follow-up time. An algorithm for obtaining these optimal 
weights, which can be noted as , was also proposed 
(Plante, 2008b; 2009). So the weighted Kaplan-Meier 
estimate for the probability of survival beyond time t can 
be given as

 ...(4)

 Various approaches have been proposed that can be 
used when the output variable of interest is an event 
that can take place at any time after the diagnostic test 
has been administered. Heagerty et al. (2000) proposed 
a ROC curve estimator based on the Kaplan-Meier 
function that can be used when the disease onset time 
is censored. They gave time-dependent sensitivity and 

et al., 2000). 

survival functions are estimated on different subsamples 
when c varies. Let  be a continuous diagnostic test 
result measured on the jth individual of the ith population 

 and  is the cut-off value for 
the marker values [ ]. For large values of c, 
the sample size for  may be small for getting the 
conditional Kaplan-Meier estimate. In this paper, it is 

method (2009). The weighted conditional Kaplan-Meier 
estimate will typically be smoother since steps can 
occur at the times of failure from all the populations.  
By using the weighted Kaplan-Meier estimator instead 
of the survival function  and by using the sample 
distribution function of Y
can be written again as follows, respectively in equation 
(5) and equation (6);
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  ...(5)

...(6)

where,  denotes failure status at any time t for 
the 1st population with  indicating that the 
subject has had an event prior to time t;  is the 
weighted Kaplan-Meier estimator for the 1st population, 
calculated by using data from m populations as 

;  is the conditional 
Kaplan-Meier estimator for the 1st population calculated 
by using data from  subsets of m populations for 

 as ; and 
 where . Here 

 is the proposed estimator for the 1st

survival function, , which is the parameter of 
interest. So the weights are chosen to minimise the 
difference between  and . Likewise,  

distribution function. The steps of the algorithm proposed 
by Plante et al. (2008a; 2009), which is used to calculate 
weights, had been conducted as to never give 0 weight 
to  the 1st population since it is the population of interest.

Simulation methodology and scenarios

It is aimed at comparing the AUC values obtained 
from the time-dependent ROC curve using the 
Kaplan-Meier function, with the AUC values obtained 

by using the weighted Kaplan-Meier function. 
For the number of populations m = 2, a variety of 
sample sizes (n

1
-n

2

continuous diagnostic test results were generated 
from  
by taking the correlation between the marker and the 
log(time) as  and . Per convention, 

 was taken to be negative so that the higher marker 
value indicates a smaller event time. Independent 
censoring times were generated from censored normal 
distribution as 
censoring rates. Censoring rates ( - ) were taken as 

Kaplan-Meier function was calculated for the 1st group 
using the measurements of two groups, and the ROC 
curve that uses the Kaplan-Meier function was calculated 
for the 1st group using the measurements of the 1st group. 
Simulation strategy used by Heagerty and Zheng (2005) 

and true positive (TP) values were estimated at these FP 
rates. The (FP, TP) pairs were estimated and then the TP 
rate corresponding to the given FP rate was interpolated 
for a given simulation. AUC values were calculated by 
the trapezoidal rule using these TP and FP pairs and 
then by averaging the AUC values over the number of 
simulations to get an estimate of the true AUC. TP, FP 
and AUC values were calculated using the survivalROC 
1.0.3 package for the method which uses Kaplan-Meier 
estimator (Heagerty & Saha-Chaudhuri, 2013). ROC 
curves and AUC values were calculated by using the 
Kaplan-Meier and weighted Kaplan-Meier estimators for 
the 1st sample. One thousand repetitions were performed 
for each scenario. 

c
1
 = 0.40, c

2
 = 0.30   WTDR     TDR

n
1
-n

2
 Mean SEM SD MSE Mean SEM SD MSE

25-50 0.80207 0.00361 0.11416 0.01591 0.78198 0.00523 0.16532 0.03276

25-100 0.81149 0.00330 0.10435 0.01284 0.78191 0.00526 0.16632 0.03310

50-100 0.83075 0.00234 0.07408 0.00611 0.81100 0.00384 0.12128 0.01670

50-250 0.83840 0.00196 0.06206 0.00415 0.81324 0.00382 0.12086 0.01641

100-250 0.84567 0.00145 0.04599 0.00222 0.83734 0.00226 0.07136 0.00543

100-500 0.84889 0.00125 0.03965 0.00162 0.83973 0.00225 0.07101 0.00530

500-500 0.85539 0.00074 0.02333 0.00054 0.85508 0.00096 0.03022 0.00091

500-1000 0.85407 0.00065 0.02058 0.00043 0.85302 0.00096 0.03026 0.00092

1000-1000 0.85599 0.00051 0.01611 0.00026 0.85551 0.00068 0.02162 0.00047

Continued -

Table 1: AUC values obtained for   for different censoring rates and sample sizes
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- continued from page 14

c
1
 = 0.40, c

2
 = 0.50   WTDR     TDR

n
1
-n

2
 Mean SEM SD MSE Mean SEM SD MSE

25-50 0.79752 0.00375 0.11850 0.01738 0.78491 0.00527 0.16671 0.03279

25-100 0.81655 0.00336 0.10618 0.01279 0.79324 0.00529 0.16721 0.03186

50-100 0.82790 0.00241 0.07623 0.00658 0.81368 0.00382 0.12085 0.01635

50-250 0.83654 0.00200 0.06328 0.00441 0.81648 0.00375 0.11853 0.01490

100-250 0.84526 0.00153 0.04827 0.00243 0.84006 0.00227 0.07191 0.00541

100-500 0.84796 0.00130 0.04116 0.00181 0.83955 0.00228 0.07212 0.00636

500-500 0.85520 0.00078 0.02472 0.00061 0.85524 0.00096 0.03031 0.00092

500-1000 0.85396 0.00069 0.02192 0.00048 0.85275 0.00095 0.03003 0.00091

1000-1000 0.85588 0.00053 0.01689 0.00029 0.85552 0.00068 0.02148 0.00046

c
1
 = 0.40, c

2
 = 0.70   WTDR     TDR

n
1
-n

2
 Mean SEM SD MSE Mean SEM SD MSE

25-50 0.77819 0.00413 0.13062 0.02600 0.77763 0.00530 0.16753 0.03415

25-100 0.80576 0.00355 0.11230 0.01511 0.79267 0.00516 0.16320 0.03060

50-100 0.81739 0.00271 0.08569 0.00881 0.81342 0.00375 0.11856 0.01584

50-250 0.83122 0.00235 0.07432 0.00686 0.82158 0.00911 0.28817 0.08413

100-250 0.84011 0.00165 0.05206 0.00295 0.83600 0.00242 0.07658 0.00625

100-500 0.84795 0.00148 0.04677 0.00225 0.83955 0.00228 0.07206 0.00618

500-500 0.85467 0.00084 0.02652 0.00070 0.85525 0.00097 0.03052 0.00093

500-1000 0.85326 0.00076 0.02395 0.00058 0.85267 0.00095 0.03016 0.00092

1000-1000 0.85588 0.00058 0.01833 0.00034 0.85541 0.00069 0.02181 0.00048

c
1
 = 0.60, c

2
 = 0.30   WTDR     TDR

n
1
-n

2
 Mean SEM SD MSE Mean SEM SD MSE

25-50 0.77513 0.00453 0.14324 0.02701 0.73191 0.00648 0.20492 0.05731

25-100 0.78605 0.00411 0.13009 0.02177 0.73552 0.00634 0.20044 0.05461

50-100 0.81470 0.00316 0.09982 0.01165 0.76596 0.00529 0.16714 0.03599

50-250 0.82074 0.00010 0.08347 0.00819 0.76194 0.00017 0.16528 0.03610

100-250 0.83619 0.00186 0.05885 0.00385 0.80481 0.00351 0.11106 0.01493

100-500 0.84118 0.00165 0.05229 0.00295 0.80628 0.00328 0.10368 0.01319

500-500 0.85377 0.00087 0.02736 0.00075 0.85197 0.00121 0.03811 0.00147

500-1000 0.85319 0.00075 0.02374 0.00057 0.84912 0.00119 0.03761 0.00146

1000-1000 0.85556 0.00060 0.01895 0.00036 0.85441 0.00085 0.02702 0.00073

c
1
 = 0.60, c

2
 = 0.50   WTDR     TDR

n
1
-n

2
 Mean SEM SD MSE Mean SEM SD MSE

25-50 0.76811 0.00488 0.15426 0.03147 0.73798 0.00633 0.20030 0.05397

25-100 0.77560 0.00449 0.14204 0.02659 0.73138 0.00649 0.20517 0.05754

50-100 0.80122 0.00314 0.09922 0.01282 0.75650 0.00515 0.16289 0.03637

50-250 0.81418 0.00290 0.09185 0.01016 0.75916 0.00512 0.16185 0.03552

100-250 0.83260 0.00212 0.06707 0.00503 0.80500 0.00355 0.11218 0.01516

100-500 0.84014 0.00180 0.05685 0.00347 0.81483 0.00362 0.11436 0.01567

500-500 0.85128 0.00101 0.03195 0.00104 0.85093 0.00152 0.03895 0.00154

500-1000 0.85287 0.00080 0.02535 0.00065 0.84910 0.00119 0.03768 0.00147

1000-1000 0.85529 0.00063 0.02003 0.00040 0.85440 0.00085 0.02698 0.00073

c
1
 = 0.60, c

2
 = 0.70   WTDR     TDR

n
1
-n

2
 Mean SEM SD MSE Mean SEM SD MSE

25-50 0.75523 0.00497 0.15707 0.03477 0.74033 0.00628 0.19874 0.05280

25-100 0.77152 0.00461 0.14568 0.02831 0.73832 0.00635 0.20077 0.05408

50-100 0.78799 0.00356 0.11266 0.01728 0.76157 0.00522 0.16513 0.03613

50-250 0.81289 0.00306 0.09675 0.01120 0.76370 0.00531 0.16788 0.03664

100-250 0.82924 0.00207 0.06560 0.00501 0.80407 0.00344 0.10868 0.01448

100-500 0.84018 0.00180 0.05692 0.00349 0.81524 0.00335 0.10585 0.01284

500-500 0.85199 0.00099 0.03136 0.00100 0.85197 0.00121 0.03811 0.00147

500-1000 0.85178 0.00088 0.02776 0.00079 0.84911 0.00120 0.03787 0.00148

1000-1000 0.85491 0.00068 0.02153 0.00046 0.85442 0.00085 0.02681 0.00072
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Table 2: AUC values obtained for  for different censoring rates and sample sizes

c
1
 = 0.40, c

2
 = 0.30   WTDR     TDR

  

n
1
-n

2
 Mean SEM SD MSE Mean SEM SD MSE

25-50 0.84973 0.00328 0.10387 0.01414 0.83168 0.00495 0.15646 0.02980

25-100 0.85961 0.00267 0.08456 0.00918 0.83462 0.00469 0.14826 0.02688

50-100 0.88167 0.00196 0.06183 0.00435 0.85954 0.00356 0.11252 0.01469

50-250 0.88223 0.00174 0.05502 0.00353 0.85544 0.00353 0.11153 0.01486

100-250 0.89367 0.00117 0.03704 0.00149 0.88590 0.00194 0.06150 0.00413

100-500 0.89747 0.00105 0.03312 0.00115 0.88550 0.00192 0.06064 0.00386

500-500 0.90309 0.00059 0.01866 0.00035 0.90223 0.00077 0.02427 0.00060

500-1000 0.90344 0.00054 0.01701 0.00029 0.90150 0.00076 0.02411 0.00059

1000-1000 0.90438 0.00039 0.01227 0.00015 0.90393 0.00050 0.01578 0.00025

c
1
 = 0.40, c

2
 = 0.50   WTDR     TDR

n
1
-n

2
 Mean SEM SD MSE Mean SEM SD MSE

25-50 0.84852 0.00332 0.10508 0.01419 0.83496 0.00488 0.15436 0.02867

25-100 0.85616 0.00282 0.08908 0.01029 0.83376 0.00484 0.15316 0.02847

50-100 0.87354 0.00211 0.06665 0.00541 0.86126 0.00331 0.10477 0.01286

50-250 0.87998 0.00178 0.05623 0.00377 0.85864 0.00337 0.10641 0.01344

100-250 0.89125 0.00125 0.03937 0.00173 0.88474 0.00192 0.06086 0.00410

100-500 0.89607 0.00119 0.03772 0.00150 0.88677 0.00188 0.05947 0.00386

500-500 0.90262 0.00062 0.01974 0.00039 0.90221 0.00077 0.02442 0.00060

500-1000 0.90394 0.00054 0.01703 0.00029 0.90252 0.00074 0.02329 0.00055

1000-1000 0.90403 0.00042 0.01334 0.00018 0.90345 0.00051 0.01613 0.00026

c
1
 = 0.40, c

2
 = 0.70   WTDR     TDR

n
1
-n

2
 Mean SEM SD MSE Mean SEM SD MSE

25-50 0.83973 0.00340 0.10752 0.01578 0.83010 0.00486 0.15353 0.02912

25-100 0.84548 0.00336 0.10617 0.01477 0.83741 0.00469 0.14841 0.02654

50-100 0.86063 0.00256 0.08105 0.00851 0.85814 0.00345 0.10911 0.01406

50-250 0.87896 0.00186 0.05887 0.00413 0.86227 0.00326 0.10313 0.01243

100-250 0.88855 0.00137 0.04319 0.00213 0.88421 0.00186 0.05895 0.00389

100-500 0.89135 0.00122 0.03856 0.00166 0.88444 0.00185 0.05843 0.00382

500-500 0.90183 0.00067 0.02112 0.00045 0.90222 0.00077 0.02437 0.00060

500-1000 0.90225 0.00060 0.01885 0.00036 0.90120 0.00075 0.02377 0.00058

1000-1000 0.90430 0.00046 0.01452 0.00021 0.90391 0.00052 0.01660 0.00028

c
1
 = 0.60, c

2
 = 0.30   WTDR     TDR

n
1
-n

2
 Mean SEM SD MSE Mean SEM SD MSE

25-50 0.80253 0.00443 0.14007 0.03005 0.76039 0.00643 0.20348 0.06220

25-100 0.83423 0.00426 0.13484 0.02314 0.77237 0.00656 0.20758 0.06056

50-100 0.85680 0.00287 0.09074 0.01052 0.81170 0.00513 0.16217 0.03493

50-250 0.86569 0.00243 0.07688 0.00743 0.81060 0.00508 0.16057 0.03462

100-250 0.88467 0.00156 0.04946 0.00284 0.85629 0.00303 0.09594 0.01154

100-500 0.88797 0.00154 0.04867 0.00265 0.85366 0.00343 0.10838 0.01434

500-500 0.90202 0.00069 0.02181 0.00048 0.89931 0.00096 0.03037 0.00095

500-1000 0.90197 0.00063 0.02006 0.00041 0.89795 0.00098 0.03093 0.00100

1000-1000 0.90356 0.00051 0.01612 0.00026 0.90193 0.00069 0.02168 0.00048

c
1
 = 0.60, c

2
 = 0.50   WTDR     TDR

n
1
-n

2
 Mean SEM SD MSE Mean SEM SD MSE

25-50 0.79308 0.00481 0.15195 0.03556 0.76148 0.00643 0.20320 0.06183

25-100 0.81490 0.00448 0.14163 0.02813 0.76236 0.00648 0.20479 0.06222

50-100 0.85437 0.00355 0.11221 0.01512 0.81986 0.00520 0.16437 0.03419

50-250 0.86280 0.00311 0.09838 0.01143 0.81877 0.00512 0.16202 0.03361

100-250 0.87963 0.00159 0.05026 0.00315 0.85438 0.00293 0.09275 0.01113

Continued -
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- continued from page 16

c
1
 = 0.60, c

2
 = 0.50   WTDR     TDR

n
1
-n

2
 Mean SEM SD MSE Mean SEM SD MSE

100-500 0.88618 0.00156 0.04920 0.00276 0.85619 0.00303 0.09568 0.01150

500-500 0.90122 0.00073 0.02301 0.00054 0.89931 0.00096 0.03038 0.00095

500-1000 0.90197 0.00063 0.02006 0.00041 0.89795 0.00098 0.03093 0.00100

1000-1000 0.90214 0.00052 0.01638 0.00027 0.90094 0.00069 0.02174 0.00049

c
1
 = 0.60, c

2
 = 0.70   WTDR     TDR

n
1
-n

2
 Mean SEM SD MSE Mean SEM SD MSE

25-50 0.79266 0.00496 0.15669 0.03709 0.76334 0.00642 0.20290 0.06112

25-100 0.81356 0.00456 0.14423 0.02909 0.77114 0.00644 0.20357 0.05925

50-100 0.84163 0.00341 0.10791 0.01562 0.81065 0.0051 0.16132 0.03485

50-250 0.85728 0.00307 0.09705 0.01166 0.81300 0.00512 0.16202 0.03464

100-250 0.87249 0.00186 0.05888 0.00450 0.85417 0.00296 0.09375 0.01134

100-500 0.88230 0.00169 0.05333 0.00334 0.85406 0.00295 0.09341 0.01128

500-500 0.90001 0.00079 0.02484 0.00064 0.89931 0.00096 0.03044 0.00096

500-1000 0.90184 0.00063 0.02006 0.00041 0.89795 0.00098 0.03093 0.00100

1000-1000 0.90354 0.00055 0.01725 0.00030 0.90266 0.00068 0.02155 0.00047

Figure 1: Cumulative/dynamic ROC curves for different censoring rates and different rho values (WKME: time-dependent ROC 

curves which use weighted Kaplan-Meier estimation, KME: time-dependent ROC curves which use Kaplan-Meier 

estimation, c
1
: censoring rate for group 1, c

2
: censoring rate for group 2).
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Simulation results

Mean, standard deviation (SD), standard error of mean 
(SEM) and mean square error (MSE) for the estimate of 
AUC(t), for log(t) = 1 and for the data generated with 
different censoring rates and different sample sizes were 
calculated. The simulation results for  are given 
in Table 1 and for  in Table 2. The real AUC 
values were 0.855 for  and 0.905 for .

 ROC curve plots for , ; , 
; ,  

and  are given in Figure 1.

A real application

Patients

Data from 24 patients with carcinoma of the ampulla 
of Vater (mean ± standard deviation age: 59.92 ± 
13.55; 11 males and 13 females) and 30 patients with 
adenocarcinoma of the pancreatic head (mean ± standard 
deviation age: 58.10 ± 13.22; 22 males and 8 females) 
were examined retrospectively (Uludag University 
ethical committee no: 2016-2/34). The Kaplan-Meier 
mean survival times were 24.32 months [standard error: 

patients and 24.38 months [standard error: 4.30; 95 % CI: 

the pancreatic head.

 Ampullary cancer (i.e., carcinoma of the ampulla of 
Vater) is a fairly rare pancreatic cancer that starts at the 
location where the bile duct and the pancreatic duct meet 
and empty into the duodenum (the ampulla of Vater). It 
has been aimed at assessing the value of the preoperative 
plasma CA 19-9 level in predicting the mortality of 
ampullary cancer patients and to examine the proper cut-
off points for the CA 19-9 level by using weighted time-
dependent ROC analysis. AUC values and cut-off points 
for CA 19-9 for the ampullary cancer dataset (which 
has smaller sample size) were estimated by borrowing 
strength from the second dataset of pancreatic-head 
cancer patients.

Data analysis

To assess the performance of CA 19-9 across the study 
period, AUC(t) values were calculated for different t 
values with weighted time-dependent ROC (WTDR) 
and time-dependent ROC (TDR) methods. Bootstrapped 
variance and 95 % CIs were calculated for the AUC 
values from 500 bootstrap repetitions of the dataset. 
The null hypothesis that the AUC did not differ from 0.5 
was tested. Cut-off values were determined by means 

AUC (t) values. Analyses were performed using R 3.3.0 
software (R Core Team, 2013). 

RESULTS AND DISCUSSION

By using the WTDR method, CA 19-9 was found to be 
st and 35th months. At 

early times, the cut-off for the CA 19-9 level was 192, 
but after one and a half years, this cutoff moved to 138. 
However, by using the TDR method, CA 19-9 was found 

th to the 26th months. 

variations according to different time points for CA 19-9 
(Tables 3 and 4).

 In the present study, weighted time-dependent ROC 
curves that integrated additional data from different 
populations by using a weighted Kaplan-Meier estimator 
was presented. From the simulation studies, it was 
shown that ROC curves that were obtained by using 
weighted Kaplan-Meier method were closer to the real 
ROC curves and also the AUC values obtained by using 
WTDR produced MSE, SEM and SD values that were 
smaller than those of the TDR curves calculated from the 
Kaplan-Meier function for all sample sizes and censoring 
rates.

 As expected, MSE values decreased as sample sizes 
increased; however, MSE values also decreased as the 
correlation between the marker value and the survival 
time increased. Better results were obtained for the 
situation where  than  for both of the 
methods. Additionally, as the censoring rates increased, 
it is observed that the MSE, SEM and SD values also 
increased, both for the AUC values obtained by using the 
weighted Kaplan-Meier function and for the AUC values 
obtained by using the classical Kaplan-Meier function. 
For the time-dependent ROC curves, which were 
obtained by using the weighted Kaplan-Meier function, 

1
) had a much larger 

effect than the censoring rate of the second group (c
2
) on 

the increment of the MSE. However, for the same sample 
sizes and the same censoring rates for group 1, the 
weighted time-dependent ROC curves always yielded 
smaller MSE, SEM and SD values regardless of the value 

2
). Moreover, the 

differences between the MSE, SEM and SD values for 
the WTDR and the TDR methods became more apparent 
as c

1
 increased from 0.40 to 0.60. In large sample sizes, 

an improvement was seen in the performances of both 
methods; however the MSE, SEM and SD values were 
still smaller for the weighted time-dependent ROC 
curves.
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1 0.818 < 0.001 192 0.818 1.00 0.818

2 – 4 0.932 < 0.001 192 0.841 0.984 0.857

5 – 12 0.965 < 0.001 192 0.896 1.00 0.896

13 0.950 < 0.001 192 0.885 0.981 0.904

14 – 16 0.904 < 0.001 192 0.788 0.886 0.901

17 – 18 0.903 < 0.001 138.19 0.841 0.888 0.954

19 – 26 0.878    0.008 138.19 0.837 0.854 0.984

27 – 34 0.835    0.038 138.19 0.508 0.532 0.977

35 0.817    0.023 138.19 0.477 0.477 1.000

Table 3: AUCs and related p values for CA 19-9 in different time points obtained by WTDR

1 0.761 0.054 - - - -

Table 4: AUCs and related p values for CA 19-9 in different time points obtained by TDR

Time-dependent ROC curves provide information 
about the time interval in which a diagnostic test or 
marker is most reliable and how reliable it is within 
that time interval. They also illuminate changes in the 
discriminative ability of the diagnostic test from the start 
of the study across the observation period. When there 
are additional data from similar populations, MAMSE 
weighted Kaplan-Meier estimator proposed by Plante 
(2009) generates smoother ROC curves. Plante (2009) 
suggested using bootstrapping techniques for obtaining 

Kaplan-Meier estimators. In the present study, a weighted 
Kaplan-Meier estimator has been used to generate time-
dependent ROC curves and to estimate AUC values in 
pancreatic cancer patients with regard to CA 19-9, and 

obtained for that real data. Differences in AUC values as 

the two approaches. As the sample size increased for the 
WTDR curves, information on more time intervals has 
been obtained.

 The usage of the weighted Kaplan-Meier function 
in ROC curves was investigated and it was applied to a 
real data example. The results were comparable to those 
from simulation studies. Time-dependent ROC curves 
using weighted Kaplan-Meier functions would be useful 
in practice, especially when sample sizes are small. For 
large censoring rates the sample size for the conditional 
survival functions may be small. Since the sample size 

has been increased by borrowing strength from the other 
population, the weighted Kaplan-Meier estimate gave 
smoother ROC curves.  
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