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The Lie group method is applied to the third order variant Boussinesq system, which arises in the modelling of

the water waves. The symmetry reductions and invariant solutions are obtained with respect to Lie point symmetry
generators of the underlying system. In addition, we derive conservation laws of the variant Boussinesq system.
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1. Introduction

The research area of nonlinear partial differential equa-
tions (NLPDEs) has been very active for the past few
decades. The study of the exact solutions of a nonli-
near evolution equation (NLEE) plays an important role
to understand the nonlinear physical phenomena which
are described by these equations. In recent years several
powerful and efficient methods have been developed for
finding analytic solutions of NLEEs. Some of the most
important methods found in the literature include the
inverse scattering, the Hirota bilinear method, the Dar-
boux transformation method, G′/G expansion method,
homogeneous balance method, Adomian decomposition
method, the functional variable method, the extended
tanh function method, etc. [1–7].

One such NLEE is the third order variant Boussinesq
system and is given by

vt + vux + uvx + uxxx = 0, ut + vx + uux = 0. (1)
This system was introduced as a model for water wa-
ves [8, 9] where u is the velocity and v the total depth, and
the subscripts denote partial derivatives. In Ref. [10], the
solitary wave solutions of the variant Boussinesq equati-
ons are obtained by using a homogeneous balance met-
hod. In Ref. [8], the authors constructed the soliton so-
lutions, rational solutions, triangular periodic solutions,
Jacobi and Weierstrass doubly periodic wave solutions
using the extended tanh method. In Refs. [9] and [11],
the conservation laws for the variant constant and va-
riable coefficients Boussinesq system are derived by the
Noether approach.

Since the end of the 19th century, the symmetry study
which laid the foundations of Lie plays an important role
in almost all the scientific fields. As mentioned in [12],
theory of Lie groups for obtaining the group invariant
solutions to NLPDEs is widely recognized as one of the
most powerful methods. We observe a plenty of books
and survey articles about Lie groups method [13, 14].
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Moreover, the method systematically applied to differen-
tial equations arising in a different fields [15, 16].

It is well known that, in all areas of physics, conserva-
tion laws are essential since they allow us to draw con-
clusions of a physical system under study in an efficient
way [17]. They are used for analysis, in particular, exis-
tence, uniqueness, and stability analysis and construction
of numerical schemes. Moreover, conservation laws are
used in obtaining the new nonlocal symmetries, nonlo-
cal conservation laws and linearization [18]. A variety of
powerful methods, have been used to investigate conser-
vation laws of PDEs [9, 11, 14, 19–27].

The outline of the paper is as follows. In Sect. 2, the
Lie symmetry methods along with the simplest equation
method are employed to obtain exact solutions of (1).
Then in Sect. 3, we construct conservation laws for (1)
using the multiplier method. Finally, in Sect. 4 conclu-
ding remarks are presented.

2. Symmetry reductions and exact solutions
of Eq. (1)

In this section, we present the notations and some of
the definitions below. For the details see e.g., [9, 14,
23–25]. The symmetry group of the variant Boussinesq
system (1) will be generated by the vector field of the
form

X = ξ (t, x, u, v)
∂

∂x
+ τ (t, x, u, v)

∂

∂t

+η (t, x, u, v)
∂

∂u
+ φ (t, x, u, v)

∂

∂v
.

Applying the third order prolongation pr(3)X to (1) re-
sults in an overdetermined system of linear partial dif-
ferential equations. The general solution of the overde-
termined system of linear partial differential equations is
given by

τ (t, x, u, v) = −c1t+c2, ξ (t, x, u, v) = c3t− 1
2
c1x+ c4,

η (t, x, u, v) = 1
2
c1u+ c3, φ (t, x, u, v) = c1v.

The above general solution contains four arbitrary con-
stants. Hence the infinitesimal symmetries of (1) form
the four-dimensional Lie algebra spanned by the follo-
wing linearly independent operators (see also [26]):
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X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

∂

∂u
+ t

∂

∂x
,

X4 = − 1
2
x
∂

∂x
− t ∂

∂t
+ 1

2
u
∂

∂u
+ v

∂

∂v
.

In order to obtain symmetry reductions and exact solu-
tions, one has to solve the associated Lagrange equations

dt

τ (t, x, u, v)
=

dx

ξ (t, x, u, v)
=

du

η (t, x, u, v)
=

dv

φ (t, x, u, v)
.

We consider the following cases:
Case 1. c1 = α, c3 = 1, c2 = c4 = 0.
The symmetry αX1 +X3 gives rise to the group inva-

riant solution

u =
2

α

(
E(z)√
t
− 1

)
, v =

F (z)

t
, (2)

where z =
x√
t

+
2

α

√
t is an invariant of the symmetry

αX1 + X3. Substitution of (2) into (1) results in the
system of ordinary differential equations (ODEs) where
E and F satisfy

−α
2
F ′z − αF + 2FE′ + 2EF ′ + 2E′′′ = 0,

− 1

α

(
E′

z
+ E

)
+ F ′ +

4

α2
EE′ = 0.

Case 2. c1 = c2 = c4 = 0, c3 = 1.
The symmetry X3 gives rise to the group-invariant so-

lution of the form

F ′ +
1

z
F = 0, E′ +

1

z
E = 0. (3)

Solving the above system of ODEs one obtains the rati-
onal solution

u (x, t) =
c1
t

+
x

t
, v(x, t) =

c2
t
.

Case 3. c1 = a1, c2 = c3 = 0, c4 = 1.
By solving the corresponding Lagrange system for the

symmetry a1X1 + X4, one obtains an invariant z =
x2(a1− t)−1 and the group-invariant solution of the form

u(x, t) =
E(z)√
a1 − t

, v(x, t) =
F (z)

a1 − t
, (4)

where the functions E and F satisfy the following system
of ODEs:

8z
3
2E′′′ + 12z

1
2E′′ + 2z

1
2 (E′F + EF ′) + zF ′ + F = 0,

2zE′ + 4z
1
2F ′ + 4z

1
2EE′ + E = 0.

Case 4. c1 = c3 = 0, c2 = 1, c4 = c.
In this case by solving the sorresponding Lagrange sy-

stem for the symmetryX2+cX4, one obtains an invariant
z = x− ct and the group invariant solution of the form

u = u(z), v = v(z) (5)
and proceeding as before we find

u′′′ + uv′ + u′v − cv′ = 0, uu′ − cu′ + v′ = 0, (6)
where after integrating (6) and substituting v = cu− u2

2 ,
we find

u′′ − u3

2
+

3

2
cu2 − c2u = 0. (7)

2.1. Exact solutions using simplest equation method

The simplest equation method, which was introduced
by Kudryashov [28–30] will be used for obtaining the ex-
act solutions of evolution type systems. The simplest
equation that will be used is the Ricatti equation

G′(z) = bG(z) + dG(z)2, (8)
where b and d are arbitrary constants. This equa-
tion is a well-known nonlinear ordinary differential equa-
tion which possesses exact solutions given by elementary
functions. The solutions can be expressed as

G(z) =
b exp(b(z + z0))

1− d exp(b(z + z0))
, (9)

for the case when d < 0, b > 0, and

G(z) = − b exp(b(z + z0))

1 + d exp(b(z + z0))
, (10)

for d > 0, b < 0. Here z0 is a constant of integration.
Let us consider the solution of (7) of the form

u(z) =

M∑
i=0

Ai(G(z))i, (11)

where G(z) satisfies the Riccati equation (8), M is
a positive integer that can be determined by balan-
cing procedure, and A0, A1, ..., AM are parameters to be
determined.

Fig. 1. Evolution of travelling wave solution (14) with
parameters C = 1, z0 = 0, b = 3, d = 1.

The balancing procedure yieldsM = 1, so the solution
of (7) is of form

u(z) = A0 +A1G(z). (12)
Substituting (12) into (7) and making use of the Ri-
catti equation (8) and the equating all coefficients of the
functions Gi to zero, we obtain an algebraic system of
equations in terms of A0 and A1. Solving these algebraic
equations, with the aid of Maple, we obtain the following
value of A0 and A1:

A0 = 2c , A1 =
2bd

c
, b = ±c, c 6= 0. (13)

Therefore, when d < 0, b > 0 the solution of (7) and
hence the solutions of (1) are given by (see Fig. 1):
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Fig. 2. Evolution of travelling wave solution (15) with
parameters C = −1, z0 = 0, b = 2, d = −1.

u (x, t) = 2c+
2b2d exp(b(x− ct+ z0))

c (1− d exp(b(x− ct+ z0)))
,

v(x, t) =
[
−2
(
c2 exp(b(−x+ ct− z0))− c2d+ b2d

)
×b2d exp(−2b(−x+ ct− z0))

]
/ [

c2 (d exp(−b(−x+ ct− z0))− 1)
2
]
. (14)

When d > 0, b < 0 the solution of (7) and hence the
solutions of (1) are given by (see Fig. 2):

u (x, t) = 2c− 2b2d exp(b(x− ct+ z0))

c (1 + d exp(b(x− ct+ z0)))
,

v(x, t) =
[
−2
(
−c2 exp(b(−x+ ct− z0))− c2d+ b2d

)
×b2d exp(−2b(−x+ ct− z0))

]
/ [

c2 (d exp(−b(−x+ ct− z0)) + 1)
2
]
. (15)

3. Conservation laws

Conservation laws plays an important role in the ana-
lysis of basic properties of solutions. The existence of a
large number of conservation laws of a partial differential
equation (PDE) is a strong indication of its integrabi-
lity [14]. They are used for analysis, in particular, exis-
tence, uniqueness, and stability analysis and construction
of numerical schemes [18]. In addition, in the numerical
integration of PDEs [31, 32], for example, to control nu-
merical errors, conservation laws are also used.

In this section, we construct conservation laws for (1).
For the details see e.g., [14, 18, 19, 22].

Consider a k-th order system of partial differen-
tial equations (PDEs) of n independent variables
x = (x1, x2, ..., xn) and m dependent variables u =
(u1, u2, ..., un), namely

Eα
(
x, u, u(1), ..., u(k)

)
= 0, α = 1, ...,m, (16)

where u(1), u(2), ..., u(k) denote the collections of all first,
second,..., k-th order partial derivatives, i.e., uαi =

Di(u
α), uαij = DjDi(u

α), ..., respectively, where the total
derivative operator with respect to xi is given by

Di =
∂

∂xi
+ uαi

∂

∂uα
+ uαij

∂

∂uαj
+ ..., j = 1, ..., n (17)

where the summation convertion is used whenever appro-
priate. The n-tuple vector

T =
(
T 1, T 2, ..., Tn

)
, T j ∈ A, j = 1, ..., n,

is a conserved vector of (16) if T i satisfied
DiT

i|(16) = 0. (18)
The equation (18) is called a local conservation law of
system (16).

It can be shown that every admitted conservation laws
arises from multipliers Qα

(
x, u, u(1), ...

)
such that

QαEα = DiT
i, (19)

holds identically. In the multiplier approach for conser-
vation laws, one takes the variational derivative of (19)
that is,

δ

δuβ
(QαEα) = 0, (20)

holds for arbitrary functions of u
(
x1, x2, ..., xn

)
. Here

we will consider multipliers of the second order Λα =
Λα (x, t, u, v, ux, vx, uxx, vxx). Once the multipliers are
obtained the conserved vectors are calculated via a ho-
motopy formula ([22] and [24]).

3.1. Conservation laws of (1)

For the variant Boussinesq system (1), we see that the
two second order multipliers (with the aid of GeM [18],
see also [23, 24]), namely Λ1 (x, t, u, v, ux, vx, uxx, vxx),
Λ2 (x, t, u, v, ux, vx, uxx, vxx) are given by

Λ1 =
1

6
c2u

3 + 1
2
c3u

2 +
1

6
(6c1t+ 6c2v + 6c4)u

−c1x+
2

3
c2uxx + c3v + c6,

Λ2 =
1

6
(6uuxx + 3u2x + 4vxx + 3u2v + 3v2)c2

+
1

6
(6c1t+ 6c4 + 6c3u)v + c5 + c3uxx,

where Ci, i = 1, 2, 3, 4, 5, 6 are arbitrary constants.
Corresponding to the above multipliers we have the

following six conserved vectors of (1):
Ct1 = tuv − xv,

Cx1 = − 1
2
tu2x + ux + 1

2
tv2 + tu2v − xuv + tuuxx − xuxx;

Ct2 =
1

6
vu3 + 1

2
v2u+

1

3
u2uxx +

1

6
uu2x +

1

3
vuxx +

1

3
uvxx,

Cx2 =
1

3
vxut +

1

3
v2x −

1

6
vu2x +

1

3
u2xx +

1

3
uxvt −

1

3
vutx

−1

3
uvtx +

1

4
u2u2x +

1

6
u4v +

1

6
uxxu

3 +
1

3
uuxut

+
1

6
v3 − 1

3
u2utx +

3

4
u2v2 +

2

3
vxuux + vuuxx;
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Ct3 = 1
2
vu2 + 1

2
v2 + 1

2
uuxx,

Cx3 = 1
2
u2uxx + vuxx + 1

2
uxut + 1

2
vu3 + v2u− 1

2
uutx;

Ct4 = uv, Cx4 = − 1
2
u2x + 1

2
v2 + uuxx + vu2;

Ct5 = u, Cx5 = 1
2
u2 + v; Ct6 = v, Cx6 = vu+ uxx.

4. Concluding remarks

In this paper, we have constructed exact solutions and
conservation laws for third order variant Boussinesq sy-
stem. We used the Lie symmetry method to derive all
the Lie point symmetry generators admitted by the sy-
stem (1).

Then the symmetry generators of (1) have been used
to construct symmetry reductions and exact travelling
wave solutions with the aid of simplest equation method.
As stated in [24], the obtained exact solutions can be used
as benchmarks against the numerical simulations. More-
over, we constructed conservation laws for the system (1)
via the multiplier approach. In the multiplier approach
to construct conservation laws for (1), the second order
multipliers are considered. For the system (1), this met-
hod gave rise to six multipliers and thus six conserved
vectors were obtained.

The conserved vectors obtained here can be used in
reductions and solutions of the underlying system [33].
In future work, with the aid of conservation laws of the
system, nonlocal symmetries such as potential and non-
classical potential symmetries will be obtained. These
symmetries enable one to obtain new interesting soluti-
ons of the considered system.
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