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Available at: http://www.pmf.ni.ac.rs/filomat

Finite Derivation Type for Graph Products of Monoids

Eylem Guzel Karpuza, Firat Atesb, I. Naci Cangulc,∗, A. Sinan Cevikd
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Abstract. The aim of this paper is to show that the class of monoids of finite derivation type is closed
under graph products.

1. Introduction and Preliminaries

In recent years string-rewriting systems have played a major role in the theoretical computer science
and mathematics. If a monoid can be presented by a finite and complete (that is, noetherian and confluent)
string-rewriting systems ([2]), then the word problem for this monoid is solvable. The property of having
finite and complete string-rewriting system is not invariable under monoid presentations (see [9]). For
finitely presented monoids, there exists another finiteness condition, namely finite derivation type (FDT)
which is actually a combinatorial condition of string-rewriting systems. (In some papers, FDT is also called
finite homotopy type). This property was introduced by Squier in [16] who worked on some relations, namely
homotopy relations, between paths in the graph associated with a finite monoid presentation. In the same
reference, it has been also proved that if a monoid M is presented by a finite complete system, then it has
FDT. Again in [16], the author showed that this finiteness condition is independent on the choice of finite
presentations of the given monoid.

At this point we should first mention that the property FDT has a completely same role with Gröbner
bases (GB) over special structures. (We may refer [10] for the meaning of GB and its applications). Both
FDT and GB mainly characterize the study of algebraic structures in the meaning of ordering the elements
or subgroups. In fact, by considering the orders of elements in a group, a different classification other than
FDT (or GB) has been recently applied in [1]. We should secondly mention that the terminology graph
product in this paper will not be the same meaning as in the product of simple graphs (that we may also
refer [20] for an example of products of (simple) graphs).

In the literature there are some important results concerning FDT property of some monoid and semi-
group constructions. In a joint paper [15], Pride et al. depicted that a submonoid whose complement is
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an ideal of a monoid having FDT also has FDT. Newertheless, for finitely presented (fp) monoids A and B,
Otto proved that A and B have FDT if and only if the free product A ∗ B has also FDT ([13]). Again for fp A
and B, Wang showed that the semi-direct product Aoθ B has FDT if both A and B have FDT (see [17]). Later
on, the same author in another paper ([18]) presented that small extensions of monoids having FDT also
have FDT. Moreover, it is shown that if a congruence ρ has FDT as a subsemigroup of the direct product
S × S, then S has FDT (cf. [19]). In addition to these results, in [11], Malherio stated and proved that if a
Rees matris semigroup M[S; I, J; P] has FDT, then the semigroup S has also FDT. It has been recently studied
FDT for semilattices of semigroups by the same author in [12]. As a next step of these important results,
in this paper, we will consider graph products of monoids. We remind that graph products of groups were
introduced by E. R. Green in [6] (which was used to solved the word problem).

The following theorem is one of the key point in the approximation of our study.

Theorem 1.1. [7] The graph product of finitely many groups (or monoids) which admit a complete rewriting system
admits a canonical complete rewriting system. If the rewriting systems for the vertex groups (or monoids) are finite
or regular, then the system for the graph product is also.

Although Theorem 1.1 does not imply the FDT property, it suggests that it may be possible to show the
FDT property in general without any restrictions over monoids. So, in this paper, our aim is to prove that
the graph product of monoids (without any restrictions on them) having FDT has also FDT.

It is well known that a graph Γ
′

= (V,E) is a set V of vertices together with an irreflexive, symmetric
relation E ⊆ V × V whose elements are called edges. We say that u and v are adjacent in Γ

′

if (u, v) ∈ E.
The graph product of monoids (groups) is a product mixing direct and free products. Whether the product
between two monoids is free or direct can be determined by a simplicial graph, that is, a graph with no
loops. Considering a monoid attached to each vertex of the graph, the associated graph product is the
monoid generated by each of vertex monoids with the added relations that elements of adjacent vertex
monoids commute. Some results relative to the graph product of monoids can be found in [4, 5, 8].

Definition 1.2. Let M j (1 ≤ j ≤ n) be monoids presented by PM j =
[
x j; s j

]
such that the generating sets x j are all

disjoint. Also let Γ
′ be a simplicial graph with vertices labeled by M j. Then the associated graph product of monoids

M j is a monoid M with presentation PM = [ X ; R ], where X =

n⋃
j=1

x j and R =

n⋃
j=1

s j ∪ SΓ′ such that

SΓ′ = {(ab, ba) | a ∈ x j, b ∈ xk, j , k and M j,Mk are adjacent vertices of Γ
′

}.

For a particular case, one can consider free monoids having rank 1. In fact the associated graph product of
these monoids is called trace monoid or free partially commutative monoid and it has solvable word problem
([3]).

2. The Main Theorem and its Proof

By considering the monoids M j (1 ≤ j ≤ n) with their presentations as in Definition 1.2, the main result
of this paper is the following.

Theorem 2.1. The graph product of monoids M j (1 ≤ j ≤ n) has FDT if each M j has FDT.

Let us first give some backround material about monoid presentations, associated graphs and the
property of finite derivation type. So suppose that [x; s] is a monoid presentation, where S ∈ s is the
form S+1 = S−1 and S+1,S−1 are words on x∗. The monoid defined by [x; s] is the quotient of x∗ by the
smallest congruence generated by s. In fact we have a graph Γ = Γ(x; s) associated with [x; s], where the
vertices are the elements of x∗ and the edges are the 4-tuples e = (U,S, ε,V) with U,V ∈ x∗, S ∈ s and
ε = ±1. The initial, terminal and the inversion functions for an edge e as above are given by ι(e) = USεV,
τ(e) = US−εV and e−1 = (U,S,−ε,V), respectively. In fact there is a two-sided action of x∗ on Γ as follows. If
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W,W′

∈ x∗, then for any vertex V of Γ, W.V.W′

= WVW′

(product in x∗), and for any edge e = (U,S, ε,V) of Γ,
W.e.W′

= (WU,S, ε,VW′

). This action can be extended to the paths in Γ. Now let P(Γ) denote the set of all
paths in Γ, and let

P2(Γ) :=
{
(p, q) : p, q ∈ P(Γ), ι(p) = ι(q), τ(p) = τ(q)

}
. (1)

Definition 2.2. An equivalence relation'⊂ P2(Γ) is called a homotopy relation if it satisfies the following conditions:
(a) If e1, e2 are edges of Γ, then (e1.ι(e2))(τ(e1).e2) ' (ι(e1).e2)(e1.τ(e2)).
(b) If p ' q (p, q ∈ P(Γ)), then U.p.V ' U.q.V for all U,V ∈ x∗.
(c) If p, q1, q2, r ∈ P(Γ) satisfy τ(p) = ι(q1) = ι(q2), τ(q1) = τ(q2) = ι(r) and q1 ' q2, then pq1r ' pq2r.
(d) If q ∈ P(Γ), then pp−1

' 1ι(p).

We note that, in [14], Pride introduced a geometric configuration, called spherical monoid pictures, to
represent paths in a graph Γ. (In Remark 2.16 of this paper, we present an example of using these pictures).

It is seen that the collection of all homotopy relations on P(Γ) is closed under arbitrary intersection, and
so P(2)(Γ) itself is a homotopy relation. Hence, if C ⊂ P(2)(Γ), then there is a unique smallest homotopy
relation 'C on P(Γ) that contains C.

Definition 2.3. Let [x; s] be a finite monoid presentation and Γ be the associated graph. We say that [x; s] has finite
derivation type (FDT) if there is a finite subset C ⊂ P(2)(Γ) which generates P(2)(Γ) as a homotopy relation, that is
'C= P(2)(Γ). A finitely presented monoid S has FDT if some (and hence any [16]) finite presentation of S has FDT.

2.1. Proof of Theorem 2.1

Let us consider the presentations PM j and PM as in Definition 1.2. Also let ΓM j and ΓM be graphs
associated with presentations PM j and PM, respectively. In fact each ΓM j can be considered as a subgraph
of ΓM.

Let M j, Mk and Ml be monoids presented by PM j =
[
x j; s j

]
, PMk = [xk; sk] and PMl = [xl; sl], respectively.

Let Γ denote the subgraph of ΓM which has the same set of vertices as ΓM but which contains only those
edges (U,T, ε,V) of ΓM with T ∈ SΓM , U,V ∈ (x j ∪ xk ∪ xl)∗, ε = ±1. By P+(Γ) (respectively, P−(Γ)) we denote
the set of paths in Γ that only contain edges of the form (U,T,+1,V) (respectively, (U,T,−1,V)). Then we
have the following lemmas for adjacent vertices M j, Mk and Ml of ΓM.

Lemma 2.4. Let p ∈ P(Γ). Then there exist paths p+ ∈ P+(Γ) and p− ∈ P−(Γ) such that p ' p+p−.

Proof. Let p = e1e2 . . . em a path in Γ, where e1, e2, . . . , em are edges of Γ. Then we have T : ab = ba where a ∈ x j,
b ∈ xk. Suppose there is an index i such that ei ∈ P−(Γ) and ei+1 ∈ P+(Γ). Then let us choose i is minimal, and
for ai, ai+1 ∈ x j, bi, bi+1 ∈ xk, let

ei = (Ui,Ti,−1,Vi), Ti : aibi = biai,

ei+1 = (Ui+1,Ti+1,+1,Vi+1), Ti+1 : ai+1bi+1 = bi+1ai+1.

If Ui = Ui+1, then ai = ai+1, bi = bi+1 and Vi = Vi+1. So ei+1 = e−1
i , and hence p ' e1 . . . ei−1ei+2 . . . em. But

if Ui , Ui+1, then UiaibiVi = Ui+1ai+1bi+1Vi+1 which implies that these edges involve disjoint applications of
relations. In fact, if Ui = Ui+1ai+1bi+1Wi+1 and Vi+1 = Wi+1aibiVi, then by Definition 2.2-(a), we have

eiei+1 = (Ui+1ai+1bi+1Wi+1,Ti,−1,Vi)(Ui+1,Ti+1,+1,Wi+1aibiVi)
' (Ui+1,Ti+1,+1,Wi+1biaiVi)(Ui+1bi+1ai+1Wi+1,Ti,−1,Vi)
= e

′

ie
′

i+1,

where e′i ∈ P+(Γ) and e′i+1 ∈ P−(Γ). Hence p ' e1 . . . ei−1e′ie
′

i+1ei+2 . . . em (by Definition 2.2-(c)). By repeated use
of this above procedure, we get p ' p+p−.
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Lemma 2.5. Let p ∈ P(Γ). If ι(p) = UV, τ(p) = U′V′ , where U,U′

∈ x∗j, V,V′

∈ x∗k, then U = U′

, V = V′ and
p ' 1.

Proof. By the previous lemma, there exist paths p+ ∈ P+(Γ) and p− ∈ P−(Γ) such that p ' p+p−. Since
ι(p+) = ι(p) = UV and τ(p−) = τ(p) = U′V′

, we have p+ = 1 and p− = 1, respectively. Hence, p ' 1 and
U = U′

, V = V′

.

Now let us define homomorphisms

f j : (x j ∪ xk ∪ xl)∗ → x∗j by f j(x j) = x j, f j(xk) = 1, f j(xl) = 1,

fk : (x j ∪ xk ∪ xl)∗ → x∗k by fk(x j) = 1, fk(xk) = xk, fk(xl) = 1,
fl : (x j ∪ xk ∪ xl)∗ → x∗l by fl(x j) = 1, fl(xk) = 1, fl(xl) = xl,

where x j ∈ x j, xk ∈ xk and xl ∈ xl.

Lemma 2.6. Let W ∈ (x j ∪ xk)∗. Then, for some V ∈ x∗k, there is a path pW ∈ P+(Γ) from W to V f j(W). If p ∈ P+(Γ)
is a path from W to V′ f j(W) for some V′

∈ x∗k, then V = V′ and pW ' p.

Proof. Let W = W0b1W1b2 . . . bmWm, where bt ∈ xk, Ws ∈ x∗j (1 ≤ t ≤ m, 0 ≤ s ≤ m). Then f j(W) = W0W1 . . .Wm.
Let W0 = a1a2 . . . ar (ai ∈ x j, 1 ≤ i ≤ r),

Ti : aib1 = b1ai (1 ≤ i ≤ r).

Let W′

= W1b2W2b3 . . . bmWm. Then

(a1a2 . . . ar−1,Tr,+1,W
′

)(a1a2 . . . ar−2,Tr−1,+1, arW
′

) . . . (1,T1,+1, a2 . . . arW
′

)

is a path in P+(Γ) from W = W0b1W′

to b1W0W′

. If we continue in this way, we can get a path pW ∈ P+(Γ) from
W to V f j(W) for some V ∈ x∗k. If p ∈ P+(Γ) is a path from W to V′ f j(W) for some V′

∈ x∗k, then p−1pW ∈ P(Γ) is a
path from V′ f j(W) to V f j(W). By Lemma 2.5, p−1pW ' 1, so pW ' p (by Definition 2.2-(c),(d)) and V = V′

.

Let us suppose that ΓM j,Mk and ΓM j,Mk,Ml are subgraphs of ΓM such that the edges are the union of the
edges of ΓM j , ΓMk , Γ and ΓM j , ΓMk , ΓMl , Γ, respectively. Let p, q ∈ P(ΓM j,Mk ) and let ' be a homotopy relation
on P(ΓM j,Mk ). For some p+ ∈ P+(Γ) and p− ∈ P−(Γ), if p ' p+qp−, then we write p  q. Note that  is
transitive and it is compatible with the two-sided action of (x j ∪ xk)∗. After that, for the proof of the main
lemma (see Lemma 2.14), we need to define the rules

ι(p).q τ(p).q
q.ι(p) q.τ(p)

}
, (2)

where p ∈ P+(Γ) and q ∈ P(ΓM j,Mk ). These rules can be easily seen by Definition 2.2.
For each S j : S+1

j = S−1
j ∈ s j and each b ∈ xk, there is a path p+ ∈ P+(Γ) from S+1

j b to bS+1
j and a path

p− ∈ P−(Γ) from bS−1
j to S−1

j b by Lemma 2.6. Since [S+1
j ]M j = [S−1

j ]M j , we have a path pS j from S+1
j to S−1

j .
Hence, we have a path

qS j,b = p+(b,S j,+1, 1)p−

from S+1
j b to S−1

j b (see Figure 1-(a)). Let

C j,k =
{((

1,S j,+1, b
)
, qS j,b

)
: S j ∈ s j, b ∈ xk

}
⊂ P(2)(ΓM j,Mk ).

For each a ∈ x j and each Sk : S+1
k = S−1

k ∈ sk, by Lemma 2.6, there are paths p′+ ∈ P+(Γ) and p′
−
∈ P−(Γ)

from aS+1
k to S+1

k a and from S−1
k a to aS−1

k , respectively. Since [S+1
k ]Mk = [S−1

k ]Mk , we have a path pSk from S+1
k

to S−1
k . Hence there exists a path

q
′

a,Sk
= p

′

+(1,Sk,+1, a)p
′

−
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from aS+1
k to aS−1

k (see Figure 1-(b)). We then let

C
′

j,k =
{
((a,Sk,+1, 1), q

′

a,Sk
) : Sk ∈ sk, a ∈ x j

}
⊂ P(2)(ΓM j,Mk ).

u u
uu �

?

aS+1
k S+1

k a

S−1
k aaS−1

k

p
′

+

p
′

−

(1,Sk,+1, a)

u u
uu �

?

u u
uu �

?

--
S+1

j b p+ bS+1
j

(b,S j,+1, 1)

bS−1
jp−S−1

j b

(a) (b)
Figure 1:

For ab = ba ∈ SΓM and c ∈ xl, where a ∈ x j, b ∈ xk, there are paths p′′+ ∈ P+(Γ) and p′′− ∈ P−(Γ) from abc to
cab and from cba to bac, respectively. We also have a path from ab to ba. Hence, there exists a path

qab,c = p
′′

+(c, ab = ba,+1, 1)p
′′

−

from abc to bac (see Figure 2-(a)).
For bc = cb ∈ SΓM and a ∈ x j, there are paths p′′′+ ∈ P+(Γ) and p′′′

−
∈ P−(Γ) from abc to bca and from cba to

acb, respectively. We also have a path from bc to cb. Thus, there exists a path

qa,bc = p
′′′

+ (1, bc = cb,+1, a)p
′′′

−

from abc to acb (see Figure 2-(b)). Then, for adjacent vertices M j,Mk and Ml of ΓM, let

C j,k,l =
{(

(1, ab = ba,+1, c) , qab,c
)

: ab = ba ∈ SΓM , a ∈ x j, b ∈ xk, c ∈ xl

}
∪

{(
(a, bc = cb,+1, 1) , qa,bc

)
: bc = cb ∈ SΓM , a ∈ x j, b ∈ xk, c ∈ xl

}
⊂ P(2)(Γ).

At the rest of this section we will give more fundamental and important lemmas to state the main lemma
(see Lemma 2.14 below).

Lemma 2.7. Let p, q be paths in ΓM j,Mk with τ(p) = ι(q). If p  p′ , q  q′ and τ(p′ ), ι(q′ ) ∈ (x j ∪ xk)∗, then
τ(p′ ) = ι(q′ ) and pq p′q′ .

Proof. Since p  p′ and q  q′ , we have p ' p+p′p−, q ' q+q′q−, where p+, q+ ∈ P+(Γ) and p−, q− ∈ P−(Γ).
Then

pq ' p+p
′

p−q+q
′

q−.

By Lemma 2.5, we get p−q+ ' 1. Thus, τ(p′ ) = ι(q′ ) and pq p′q′ .

Lemma 2.8. Let e = (U,Sk, ε,V) be an edge of ΓMk , where U,V ∈ x∗k, Sk ∈ sk and ε = ±1. Then, for any a ∈ x j, there
exists a path q in ΓMk such that

a.e C′j,k
q.a.

Proof. By Lemma 2.6, there is a path in P+(ΓMk ) from aU to fk(aU)a. So by (2), we have

a.e C′j,k
(h j(aU)a,Sk, ε,V) C′j,k

q1.aV,

where q1 is a path in P(ΓMk ). Now there is also a path in P+(ΓMk ) from aV to fk(aV)a. By (2), we have
q1.aV C′j,k

q.a, where q = q1. fk(aV). Hence the result.
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u u
uu �

?

abc bca

cbaacb

p
′′′

+

p
′′′

−

u u
uu �

?

u u
uu �

?

--
abc p

′′

+ cab

cbap
′′

−bac

σ1 σ2

(a) (b)

Figure 2: In (a), the edge labelled by σ1 is actually (c, ab = ba,+1, 1) and, in (b), the edge labelled by σ2 is (1, bc = cb,+1, a)

Lemma 2.9. Let p be any non-empty path in ΓMk . Then, for any W ∈ x∗j, there exists q ∈ P(ΓMk ) such that
W.p C′j,k

q.W.

Proof. Since the proof can be given easily by applying the induction hypothesis on the length of W, we will
just assume that W consist of a single letter a ∈ x j. So let p = e1e2 . . . em. Then, by Lemma 2.8, there exists
qi ∈ P(ΓMk ) such that a.ei  C′j,k

qi.a, where ei = (Ui,Ski , εi,Vi) for 1 ≤ i ≤ m and Ui,Vi ∈ x∗k. Thus, by Lemma
2.7, we obtain

a.p C′j,k
(q1q2 . . . qm).a,

as required.

Lemma 2.10. Let (U,Sk, ε,V) be an edge in ΓM j,Mk , where U,V ∈ (x j ∪ xk)∗,Sk ∈ sk, ε = ±1. Then there exists
q ∈ P(ΓMk ) such that (U,Sk, ε,V) C′j,k

q. f j(UV).

Proof. We have

(U,Sk, ε,V)  C′j,k
( fk(U) f j(U),Sk, ε,V), by Lemma 2.6 and (2),

 C′j,k
q1. f j(U)V, by Lemma 2.9, where q1 ∈ P(ΓMk ),

 C′j,k
q1 fk(U f j(V)) f j(UV), by Lemma 2.6 and (2),

 C′j,k
q. f j(UV), where q = q1 fk(U f j(V)).

Hence the result.

Lemma 2.11. Let S j ∈ s j,W ∈ x∗k. Then there exists q ∈ P(ΓMk ) such that

(1,S j, ε, 1).W C j,k (q.Sεj )(W
′

.(1,S j, ε, 1)),

for some W′

∈ x∗k.

Proof. For any U ∈ (x j ∪ xk)∗ and p ∈ P(ΓMk ), by Lemma 2.6 and (2), we get

p.U p
′

. f j(U), (3)

where p′ ∈ P(ΓMk ). Additionally, for each b ∈ xk, we have

(1,S j, ε, 1).b C j,k (b.Sεj )(b.(1,S j, ε, 1)), (4)

by the definition of C j,k. By repeated use of (3), (4) and Lemma 2.7, we get the result, as required.

The following lemma can be proved similarly by considering the previous lemma.
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Lemma 2.12. Let T ∈ SΓM ,W ∈ x∗l . Then there exists q ∈ P(ΓM j,Mk ) such that

(1,T, ε, 1).W C j,k,l (q.Tε)(W
′

.(1,T, ε, 1)),

for some W′

∈ x∗l .

Lemma 2.13. Let (U,S j, ε,V) be an edge in ΓM j,Mk , where U,V ∈ (x j ∪ xk)∗, S j ∈ s j and ε = ±1. Then there is a path
q ∈ P(ΓMk ) such that

(U,S j, ε,V) C j,k∪C′j,k
(q. f j(USεj V))W( f j(U),S j, ε, f j(V)).

Proof. We have

(U,S j, ε,V)  C j,k ( fk(U) f j(U),S j, ε, fk(V) f j(V)), by Lemma 2.6 and (2),
 C j,k ( fk(U) f j(U).q1.Sεj f j(V))( fk(U) f j(U)W1.(1,S j, ε, f j(V))),

by Lemma 2.11,

for some q1 ∈ P(ΓMk ) and W1 ∈ x∗k. Also, by Lemma 2.9,

fk(U) f j(U).q1.Sεj f j(V) C′j,k
q. f j(USεj V),

for some q ∈ P(ΓMk ) and, by Lemma 2.6 and (2),

h j(U) f j(U)W1.(1,S j, ε, f j(V)) W.( f j(U),S j, ε, f j(V)),

for some W ∈ x∗k. Using Lemma 2.7 and the above equivalences, we then have

(U,S j, ε,V) C j,k∪C′j,k
(q. f j(USεj V))(W.( f j(U),S j, ε, f j(V))).

In fact, by Lemma 2.6 and the definition of h j, we have W = fk(US−εj V).

Now we present our main lemma.

Lemma 2.14. (Principal Lemma) Let p ∈ P(ΓM j,Mk,Ml ). Then there exist paths p+ ∈ P+(Γ), p− ∈ P−(Γ), q =

q′ . fl(ι(p)) f j(ι(p)) and r = fk(τ(p)) fl(τ(p)).r′ , where q′ ∈ P(ΓMk ) and r′ ∈ P(ΓM j ) such that

p 'C j,k∪C′j,k∪C j,k,l
p+qrp−

with τ(p+) = fk(ι(p)) fl(ι(p)) f j(ι(p)) and ι(p−) = fk(τ(p)) fl(τ(p)) f j(τ(p)).

Proof. For U,V ∈ (x j ∪ xk ∪ xl)∗, let us suppose that p contains a single edge (U,Q, ε,V). Then the result
comes out by

Lemma 2.10; if Q ∈ sk,
Lemma 2.13; if Q ∈ s j,
Lemma 2.6; if Q ∈ T.

Now suppose p = p1e, where e is an edge and p1 ∈ P(ΓM j,Mk,Ml ). Inductively, we have

p1  C j,k∪C′j,k∪C j,k,l
(q
′

1. fl(ι(p)) f j(ι(p)))( fk(τ(p1)) fl(τ(p1).r
′

1),

e  C j,k∪C′j,k∪C j,k,l
(q
′

2. fl(ι(e)) f j(ι(e)))( fk(τ(p)) fl(τ(p)).r
′

2),

where q′1, q
′

2 ∈ P(ΓMk ), r′1, r
′

2 ∈ P(ΓM j ) and

ι(q
′

1) = fk(ι(p)), τ(r
′

1) = f j(τ(p1)), ι(q
′

2) = fk(ι(e)), τ(r
′

2) = f j(τ(p)).
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By Lemma 2.7, we have

p C j,k∪C′j,k∪C j,k,l
(q
′

1. fl(ι(p)) f j(ι(p)))( fk(τ(p1)) fl(τ(p1).r
′

1)(q
′

2. fl(ι(e)) f j(ι(e)))( fk(τ(p)) fl(τ(p)).r
′

2).

Since the relations used in the path fk(τ(p1)) fl(τ(p1).r′1 and in the path q′2. fl(ι(e)) f j(ι(e)) are disjoint,
Definition 2.2-(a) can be applied repeatedly, and so we can get

( fk(τ(p1)) fl(τ(p1).r
′

1)(q
′

2. fl(ι(e)) f j(ι(e))) ' (q
′

2. fl(ι(p)) f j(ι(p)))( fk(τ(p)) fl(τ(p)).r
′

1).

Assume q′ = q′1q′2 and r′ = r′1r′2. Therefore, for ι(q′ ) = fk(ι(p)) and τ(r′ ) = f j(τ(p)), we obtain

p C j,k∪C′j,k∪C j,k,l
((q

′

. fl(ι(p)) f j(ι(p)))( fk(τ(p)) fl(τ(p)).r
′

)),

as required.

We recall that since each monoid M j (1 ≤ i ≤ n) has FDT, there is finite subset CM j ⊂ P(2)(ΓM j ) such that
'CMj

= P(2)(ΓM j ). Now let

C = CM j ∪ C j,k ∪ C
′

j,k ∪ C j,k,l. (5)

Then we have

Corollary 2.15. 'C= P(2)(ΓM).

Proof. Let (p1, p2) ∈ P(2)(ΓM). By the Principal Lemma, we take

p 'C p+q1r1p− and p2 'C p
′

+q2r2p
′

−,

where p+, p
′

+ ∈ P+(Γ), p−, p
′

−
∈ P−(Γ), qi = q′i . fl(ι(pi)) f j(ι(pi)) with q′i ∈ P(ΓMk ) and ri = fk(τ(pi)) fl(τ(pi)).r

′

i with
r′i ∈ P(ΓM j ) (i = 1, 2). Since ι(p1) = ι(p2) and τ(p1) = τ(p2), we have

τ(p+) = fk(ι(p1)) fl(ι(p1)) f j(ι(p1)) = fk(ι(p2)) fl(ι(p2)) f j(ι(p2)) = τ(p
′

+),

ι(p−) = fk(τ(p1)) fl(τ(p1)) f j(τ(p1)) = fk(τ(p2)) fl(τ(p2)) f j(τ(p2)) = ι(p
′

−).

Therefore, p+ 'C p′+ and p− 'C p′
−

. It is seen that ι(q′i) = fk(ι(pi)) and τ(q′i) = fk(τ(pi)) (i = 1, 2). So ι(q′1) = ι(q′2)
and τ(q′1) = τ(q′2). Thus, (q′1, q

′

2) ∈ P(2)(ΓMk ). Since 'CMk
= P(2)(ΓMk ), and CMk ⊂ C, we have q′1 'C q′2 and hence,

q1 'C q2. Similarly,

ι(r
′

1) = f j(ι(p1)) = f j(ι(p2)) = ι(r
′

2)

and

τ(r
′

1) = f j(τ(p1)) = f j(τ(p2)) = τ(r
′

2),

so (r′1, r
′

2) ∈ P(2)(ΓM j ). Since 'CMj
= P(2)(ΓM j ), and CM j ⊂ C, we have r′1 'C r′2 and hence, r1 'C r2. Thus,

p1 'C p+q1r1p− 'C p′+q2r2p′− 'C p2. Therefore, 'C= P(2)(ΓM).

Now we can prove the main result (Theorem 2.1) as follows.

Proof of Theorem 2.1. If each monoid M j (1 ≤ j ≤ n) has FDT, then we can assume that all PM j are finite
presentations and all CM j are finite sets. So PM is a finite presentation and the set C defined in (5) is finite.
By Corollary 2.15, we have 'C= P(2)(ΓM). Thus the graph product of monoids M j has FDT.
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Figure 3: The generating sets C1,2 and C
′

1,2

Remark 2.16. To be an example of spherical monoid pictures, we can draw pictures of the generating sets C1,2 and
C′1,2 as in Figure 3.
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