Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/12017
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYürüklü, Emrah-
dc.contributor.authorKoçal, Osman H.-
dc.date.accessioned2020-08-10T06:21:41Z-
dc.date.available2020-08-10T06:21:41Z-
dc.date.issued2012-04-03-
dc.identifier.citationYürüklü, E. ve Koçal, O. H. (2012). "Kendi kendini düzenleyen haritalar yöntemiyle Türkçe sesli harflerin sınıflandırılması ve tanınması". Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 17(1), 1-6.tr_TR
dc.identifier.issn2148-4147-
dc.identifier.issn2148-4155-
dc.identifier.urihttps://dergipark.org.tr/tr/download/article-file/202649-
dc.identifier.urihttp://hdl.handle.net/11452/12017-
dc.description.abstractLokal dinamik modelleme teknikleri kullanılarak zaman serilerini modellemek özellikle son yıllarda oldukça başarılı sonuçlar vermektedir. Kohonen’in 1990 yılında sunduğu ‘Kendi Kendini Düzenleyen Haritalar’ yöntemi ile lokal dinamik modelleme tekniğine farklı bir bakış açısı kazandırılmıştır. Bu yöntem ile, zaman serilerinden türetilen lokal dinamik modeller, sinyalin tüm dinamikleri oldukça başarılı ve kolay bir yöntemle gösterebilmektedir. Zamanla bu teknik pek çok alanda kendine uygulama alanı bulmuş, gerek Kohonen, gerekse diğer uzmanlar tarafından pek çok farklı versiyonu türetilmiştir. Yapılan çalışmada SOM yöntemi kısaca açıklanmış ve bu yöntem yardımıyla Türkçe sesli harfler için sınıflandırma ve tanıma uygulaması yapılmış ve sonuçları tartışılmıştır.tr_TR
dc.description.abstractThe easiness of putting the model into practice, and making signal or system dynamics and structure observable has made dynamic modeling for time series very popular for the last years. By the years, new versions and approaches of dynamic modeling have been developed and applied to different kind of signals and systems. Kohonen’s suggestion was a new approach to local dynamic modeling which he had offered in 1990. The new technique’s name was ‘Self Organizing Maps’. The innovation of the new approach was its needless of the memory for saving the history of time series. It was because the whole model is updated with the new sample of time series. New versions of this technique are introduced in a lot of different kinds of applications by the years. In this work, ‘Self Organizing Maps’ technique is applied to Turkish vowels and worked on the advantages of the technique.en_US
dc.language.isotrtr_TR
dc.publisherUludağ Üniversitesitr_TR
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAtıf 4.0 Uluslararasıtr_TR
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectKendi kendini düzenleyen haritalartr_TR
dc.subjectLokal dinamik modellemetr_TR
dc.subjectSes tanımatr_TR
dc.subjectSelf-organising mapsen_US
dc.subjectLocal dynamic modellingen_US
dc.subjectSpeech recognitionen_US
dc.titleKendi kendini düzenleyen haritalar yöntemiyle Türkçe sesli harflerin sınıflandırılması ve tanınmasıtr_TR
dc.title.alternativeThe classification and recognition of Turkish vowels with self-organizing mapsen_US
dc.typeArticletr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.identifier.startpage1tr_TR
dc.identifier.endpage6tr_TR
dc.identifier.volume17tr_TR
dc.identifier.issue1tr_TR
dc.relation.journalUludağ Üniversitesi Mühendislik Dergisi / Uludağ University Journal of The Faculty of Engineeringtr_TR
Appears in Collections:2012 Cilt 17 Sayı 1

Files in This Item:
File Description SizeFormat 
17_1_1.pdf313.01 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons