Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/20834
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMemon, Nasir-
dc.contributor.authorSankur, Bülent-
dc.date.accessioned2021-06-24T11:33:02Z-
dc.date.available2021-06-24T11:33:02Z-
dc.date.issued2003-02-
dc.identifier.citationMemon, N. vd. (2003). “Steganalysis using image quality metrics”. IEEE Transactions on Image Processing, 12(2), 221-229.tr_TR
dc.identifier.issn1057-7149-
dc.identifier.urihttps://doi.org/10.1109/TIP.2002.807363-
dc.identifier.urihttps://pubmed.ncbi.nlm.nih.gov/18237902/-
dc.identifier.urihttp://hdl.handle.net/11452/20834-
dc.description.abstractWe present techniques for steganalysis of images that have been potentially subjected to steganographic algorithms, both within the passive warden and active warden frameworks. Our hypothesis is that steganographic schemes leave statistical evidence that can be exploited for detection with the aid of image quality features and multivariate regression analysis. To this effect image quality metrics have been identified based on the analysis of variance (ANOVA) technique as feature sets to distinguish between cover-images and stego-images. The classifier between cover and stego-images is built using multivariate regression on the selected quality metrics and is trained based on an estimate of the original image. Simulation results with the chosen feature set and well-known watermarking and steganographic techniques indicate that our approach is able with reasonable accuracy to distinguish between cover and stego images.en_US
dc.language.isoenen_US
dc.publisherIEEE- Inst Electrical Electronics Engineers Inc.en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAnalysis of variancetr_TR
dc.subjectImage quality measurestr_TR
dc.subjectMultivariate regression analysistr_TR
dc.subjectSteganalysistr_TR
dc.subjectSteganographytr_TR
dc.subjectWatermarkingtr_TR
dc.subjectComputer sciencetr_TR
dc.subjectEngineeringtr_TR
dc.titleSteganalysis using image quality metricstr_TR
dc.typeArticletr_TR
dc.identifier.wos000182032500010tr_TR
dc.identifier.scopus2-s2.0-0038343416tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentBursa Uludağ Üniversitesi/Mühendislik Fakültesi/Elektronik Mühendisliği Bölümü.tr_TR
dc.identifier.startpage221tr_TR
dc.identifier.endpage229tr_TR
dc.identifier.volume12tr_TR
dc.identifier.issue2tr_TR
dc.relation.journalIEEE Transactions on Image Processingtr_TR
dc.contributor.buuauthorAvcıbaş, İsmail-
dc.contributor.researcheridH-9089-2018tr_TR
dc.relation.collaborationYurt dışıtr_TR
dc.relation.collaborationYurt içitr_TR
dc.identifier.pubmed18237902tr_TR
dc.subject.wosComputer science, artificial intelligencetr_TR
dc.subject.wosEngineering, electrical & electronictr_TR
dc.indexed.wosSCIEtr_TR
dc.indexed.scopusScopustr_TR
dc.indexed.pubmedPubmedtr_TR
dc.wos.quartileQ1tr_TR
Appears in Collections:Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.