Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/20978
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKantor, Tibor-
dc.date.accessioned2021-07-02T07:05:10Z-
dc.date.available2021-07-02T07:05:10Z-
dc.date.issued1999-05-10-
dc.identifier.citationKantor, T. ve Güçer, Ş. (1999). "Efficiency of sample introduction into inductively coupled plasma by graphite furnace electrothermal vaporization". Spectrochimica Acta Part B- Atomic Spectroscopy, 54(5), 763-772.en_US
dc.identifier.issn0584-8547-
dc.identifier.urihttps://doi.org/10.1016/S0584-8547(99)00026-9-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0584854799000269-
dc.identifier.urihttp://hdl.handle.net/11452/20978-
dc.descriptionConference: 3rd European Furnace Symposium on Atomic Spectroscopy Location: Prague, Czech Republic Date: JUN, 1998en_US
dc.description.abstractA laboratory constructed graphite furnace electrothermal vaporizer (GF-ETV) was used for studying transport efficiencies. This device enables collection of the vaporization products that exit the central sampling hole of the horizontal graphite tube. For determination of the transport efficiency between the GF-ETV and the ICP-torch three methods were tested: (1) deposition of the aerosol particles and the vapour of certain elements by mixing the vaporization product with supersaturated steam and subsequent condensation (direct method); (2) dissolution of the deposited sample fraction from the interface components (indirect method); and (3) calculation from line intensities when applying GF-ETV and pneumatic nebulization sample introduction methods using mercury as a reference element. The latter, 'mercury reference method' required 100% transport efficiency for mercury with the ETV, which could be approximated with the use of argon as carrier gas (without halocarbon addition). With a 200 cm(3)/min flow rate of internal argon in the graphite tube, the transport efficiency was between 67 and 76% for medium volatility elements (Cu, Mn and Mg) and between 32 and 38% for volatile elements (Cd and Zn). By adding carbon tetrachloride vapour to the internal argon flow, the transport efficiency increased to 67-73% for the five elements studied.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Scienceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSpectroscopyen_US
dc.subjectGraphite furnaceen_US
dc.subjectElectrothermal vaporizationen_US
dc.subjectInductively coupled plasmaen_US
dc.subjectEmission spectrometryen_US
dc.subjectSample transport efficiencyen_US
dc.subjectOptimizationen_US
dc.subjectDesignen_US
dc.subjectMatrixen_US
dc.subjectMass-spectrometryen_US
dc.subjectVolatilizationen_US
dc.titleEfficiency of sample introduction into inductively coupled plasma by graphite furnace electrothermal vaporizationen_US
dc.typeArticleen_US
dc.typeProceedings Paperen_US
dc.identifier.wos000082537700014tr_TR
dc.identifier.scopus2-s2.0-0342298589tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Fen Edebiyat Fakültesi/Kimya Bölümü.tr_TR
dc.contributor.orcid0000-0003-0610-2019tr_TR
dc.identifier.startpage763tr_TR
dc.identifier.endpage772tr_TR
dc.identifier.volume54tr_TR
dc.identifier.issue5tr_TR
dc.relation.journalSpectrochimica Acta Part B- Atomic Spectroscopyen_US
dc.contributor.buuauthorGüçer, Şeref-
dc.relation.collaborationYurt dışıtr_TR
dc.subject.wosSpectroscopyen_US
dc.indexed.wosSCIEen_US
dc.indexed.wosCPCI-Sen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ1en_US
Appears in Collections:Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.