Please use this identifier to cite or link to this item:
http://hdl.handle.net/11452/21333
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Carter, Sheila | - |
dc.date.accessioned | 2021-07-30T07:14:13Z | - |
dc.date.available | 2021-07-30T07:14:13Z | - |
dc.date.issued | 1994 | - |
dc.identifier.citation | Carter, S. ve Ezentaş, R. (1994). ''Embeddings of nonorientable surfaces with totally reducible focal set''. Glasgow Mathematical Journal, 36(1), 11-16. | en_US |
dc.identifier.issn | 0017-0895 | - |
dc.identifier.uri | https://www.cambridge.org/core/services/aop-cambridge-core/content/view/3BD7D3D61EDA038B110DBD2EE4BE9A01/S0017089500030494a.pdf/div-class-title-embeddings-of-nonorientable-surfaces-with-totally-reducible-focal-set-div.pdf | - |
dc.identifier.uri | https://doi.org/10.1017/S0017089500030494 | - |
dc.identifier.uri | http://hdl.handle.net/11452/21333 | - |
dc.description.abstract | In an earlier paper [5] we introduced the idea of an immersion f:M W with totally reducible focal set.Such an immersion has the property that, for all peM, the focal set with base p is a union of hyperplanes in the normal plane to f(M) at .Trivially, this always holds if n=m+1 so we only consider n > m + 1.In [5] we showed that if M2 is a compact surface then for all n>4 there is a substantial immersion:A/2 R with totally reducible focal set. Further, if M2 is orientable or is a Klein bottle or a Klein bottle with handles then/:M2 W can be taken to be an embedding.Here we show that if M2 is a projective plane or a projective plane with handles then for all 5 there exists a substantial embedding f:M2 M with totally reducible focal set although,by arguments of M. Gromov and E. G. Rees,for n=4 such an embedding does not exist. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Oxford Univ Press United Kingdom | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Atıf Gayri Ticari Türetilemez 4.0 Uluslararası | tr_TR |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Mathematics | en_US |
dc.subject | Orientation of surfaces | en_US |
dc.subject | Unverified surfaces | en_US |
dc.title | Embeddings of nonorientable surfaces with totally reducible focal set | en_US |
dc.type | Article | en_US |
dc.identifier.wos | A1994NB19700002 | tr_TR |
dc.identifier.scopus | 2-s2.0-84974098134 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Fen Edebiyat Fakültesi/Matematik Bölümü. | tr_TR |
dc.identifier.startpage | 11 | tr_TR |
dc.identifier.endpage | 16 | tr_TR |
dc.identifier.volume | 36 | tr_TR |
dc.identifier.issue | 1 | tr_TR |
dc.relation.journal | Glasgow Mathematical Journal | en_US |
dc.contributor.buuauthor | Ezentaş, Rıdvan | - |
dc.relation.collaboration | Yurt dışı | tr_TR |
dc.subject.wos | Mathematics | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
Appears in Collections: | Scopus Web of Science |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
div-class-title-embeddings-of-nonorientable-surfaces-with-totally-reducible-focal-set-div.pdf | 332.59 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License