Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/22480
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYenisey, Mehmet Mutlu-
dc.date.accessioned2021-10-26T20:06:59Z-
dc.date.available2021-10-26T20:06:59Z-
dc.date.issued2010-03-
dc.identifier.citationYağmahan, B. ve Yenisey, M. M. (2010). "A multi-objective ant colony system algorithm for flow shop scheduling problem". Expert Systems with Applications, 378(2), 1361-1368.en_US
dc.identifier.issn0957-4174-
dc.identifier.issn1873-6793-
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2009.06.105-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0957417409006605-
dc.identifier.urihttp://hdl.handle.net/11452/22480-
dc.description.abstractIn this paper, we consider the flow shop scheduling problem with respect to the both objectives of makespan and total flowtime. This problem is known to be NP-hard type in literature Several algorithms have been proposed to solve this problem We present a multi-objective ant colony system algorithm (MOACSA). which combines ant colony optimization approach and a local search strategy in order to solve this scheduling problem. The proposed algorithm is tested with well-known problems in literature Its solution performance was compared with the existing multi-objective heuristics. The Computational results show that proposed algorithm is more efficient and better than other methods compared.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Scienceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFlow shop schedulingen_US
dc.subjectMulti-objectiveen_US
dc.subjectMakespanen_US
dc.subjectFlowtimeen_US
dc.subjectHeuristicsen_US
dc.subjectAnt colony optimizationen_US
dc.subjectTabu search algorithmen_US
dc.subjectOptimization algorithmen_US
dc.subjectGenetic algorithmsen_US
dc.subjectM-machineen_US
dc.subjectMinimizeen_US
dc.subjectMakespanen_US
dc.subjectTimeen_US
dc.subjectComputer scienceen_US
dc.subjectEngineeringen_US
dc.subjectOperations research & management scienceen_US
dc.subjectComputational complexityen_US
dc.subjectComputational efficiencyen_US
dc.subjectHeuristic methodsen_US
dc.subjectMachine shop practiceen_US
dc.subjectMultiobjective optimizationen_US
dc.subjectScheduling algorithmsen_US
dc.subjectAnt-colony optimizationen_US
dc.subjectFlow-shop schedulingen_US
dc.subjectFlow-timeen_US
dc.subjectMulti objectiveen_US
dc.subjectProblem solvingen_US
dc.titleA multi-objective ant colony system algorithm for flow shop scheduling problemen_US
dc.typeArticleen_US
dc.identifier.wos000272432300055tr_TR
dc.identifier.scopus2-s2.0-71749114629tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Endüstri Mühendisliği Bölümü.tr_TR
dc.contributor.orcid0000-0003-1744-3062tr_TR
dc.identifier.startpage1361tr_TR
dc.identifier.endpage1368tr_TR
dc.identifier.volume37tr_TR
dc.identifier.issue2tr_TR
dc.relation.journalExpert Systems with Applicationsen_US
dc.contributor.buuauthorYağmahan, Betül-
dc.contributor.researcheridB-5557-2017tr_TR
dc.relation.collaborationYurt içitr_TR
dc.subject.wosComputer science, artificial intelligenceen_US
dc.subject.wosEngineering, electrical & electronicen_US
dc.subject.wosOperations research & management scienceen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ1en_US
dc.wos.quartileQ2 (Computer science, artificial intelligence)en_US
dc.contributor.scopusid23487445600tr_TR
dc.subject.scopusFlow Shop Scheduling; Permutation Flowshop; No-Waiten_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.