Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/22496
Title: Tetraidothyroacetic acid (tetrac) and tetrac nanoparticles inhibit growth of human renal cell carcinoma xenografts
Authors: Bharali, Dhruba
Lansing, Lawrence
Dyskin, E.
Mousa, Shaker A.
Hercbergs, Aleck
Davis, Faith
Davis, Paul J.
Mousa, Sheren Ali
Uludağ Üniversitesi/Veteriner Fakültesi/Fizyoloji Anabilim Dalı.
0000-0002-5600-8162
Yalçın, Murat
AAG-6956-2021
57192959734
Keywords: Renal cell carcinoma
Angiogenesis
Tetrac
Tetrac nanoparticles
Anti-cancer
Anti-angiogenesis
Integrin
Von-hippel-lindau
Thyroid-hormone
Tetraiodothyroacetic acid
Surface receptor
Angiogenesis
Activation
Molecule
Protein
Kinase
Ligand
Oncology
Issue Date: Oct-2009
Publisher: Int Inst Anticancer Research
Citation: Yalçın, M. vd. (2009). "Tetraidothyroacetic acid (tetrac) and tetrac nanoparticles inhibit growth of human renal cell carcinoma xenografts". Anticancer Research, 29(10), 3825-3831.
Abstract: Renal cell carcinoma is the most lethal of the common urologic malignancies, with no available effective therapeutics. Tetrac (tetraiodothyroacetic acid) is a deaminated analogue of L-thyroxine (T-4) that blocks the proangiogenesis actions of T-4 and 3, 5, 3'-triiodo-L-thyronine as well as other growth factors at the cell surface receptor for thyroid hormone on integrin av beta 3. Since this integrin is expressed on cancer cells and also on endothelial and vascular smooth cells, the possibility exists that Tetrac may act on both cell types to block the proliferative effects of thyroid hormone on tumor growth and tumor-related angiogenesis. To test this hypothesis, we determined the effect of Tetrac on tumor cell proliferation and on related angiogenesis of human renal cell carcinoma (RCC). We used two models: tumor cell implants in the chick chorioallantoic membrane (CAM) system and xenografts in nude mice. To determine the relative contribution of the nuclear versus the plasma membrane action of Tetrac, we compared the effects of unmodified Tetrac to Tetrac covalently linked to poly (lactide-co-glycolide) as a nanoparticle (Tetrac NP) that acts exclusively at the cell surface through the integrin receptor. In the CAM model, Tetrac and Tetrac NP (both at 1 mu g/CAM) arrested tumor-related angiogenesis and tumor growth. In the mouse xenograft model, Tetrac and Tetrac NP promptly reduced tumor volume (p<0.91) when administered daily for up to 20 days. Animal weight gain was comparable in the control and treatment groups. Overall, the findings presented here provide evidence for the anti-angiogenic, and anti-tumor actions of Yetrac and Yetrac NP and suggest their potential utility in the treatment of renal cell carcinoma.
URI: http://hdl.handle.net/11452/22496
ISSN: 0250-7005
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.