Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız:
http://hdl.handle.net/11452/22539
Tüm üstveri kaydı
Dublin Core Alanı | Değer | Dil |
---|---|---|
dc.contributor.author | Lee, Won Suk | - |
dc.date.accessioned | 2021-11-01T11:16:09Z | - |
dc.date.available | 2021-11-01T11:16:09Z | - |
dc.date.issued | 2011-09 | - |
dc.identifier.citation | Kurtulmuş, F. vd. (2011). “Green citrus detection using 'eigenfruit', color and circular Gabor texture features under natural outdoor conditions”. Computers and Electronics in Agriculture, 78(2), 140-149. | en_US |
dc.identifier.issn | 0168-1699 | - |
dc.identifier.issn | 1872-7107 | - |
dc.identifier.uri | https://doi.org/10.1016/j.compag.2011.07.001 | - |
dc.identifier.uri | https://dl.acm.org/doi/abs/10.1016/j.compag.2011.07.001 | - |
dc.identifier.uri | http://hdl.handle.net/11452/22539 | - |
dc.description.abstract | A machine vision algorithm was developed to detect and count immature green citrus fruits in natural canopies using color images. A total of 96 images were acquired in October 2010 from an experimental citrus grove in the University of Florida, Gainesville, Florida. Thirty-two of the total 96 images were selected randomly and used for training the algorithm, and 64 images were used for validation. Color, circular Gabor texture analysis and a novel 'eigenfruit' approach (inspired by the 'eigenface' face detection and recognition method) were used for green citrus detection. A shifting sub-window at three different scales was used to scan the entire image for finding the green fruits. Each sub-window was classified three times by eigenfruit approach using intensity component, eigenfruit approach using saturation component, and circular Gabor texture. Majority voting was performed to determine the results of the sub-window classifiers. Blob analysis was performed to merge multiple detections for the same fruit. For the validation set, 75.3% of the actual fruits were successfully detected using the proposed algorithm. | en_US |
dc.description.sponsorship | YÖK | tr_TR |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Computer vision | en_US |
dc.subject | Eigenfruit | en_US |
dc.subject | Fruit detection | en_US |
dc.subject | Green citrus | en_US |
dc.subject | Precision agriculture | en_US |
dc.subject | Yield mapping | en_US |
dc.subject | Rotation-invariant | en_US |
dc.subject | Face detection | en_US |
dc.subject | Filter design | en_US |
dc.subject | Florida [United States] | en_US |
dc.subject | United States | en_US |
dc.subject | Citrus | en_US |
dc.subject | Algorithms | en_US |
dc.subject | Color | en_US |
dc.subject | Content based retrieval | en_US |
dc.subject | Face recognition | en_US |
dc.subject | Textures | en_US |
dc.subject | Blob analysis | en_US |
dc.subject | Citrus detection | en_US |
dc.subject | Citrus groves | en_US |
dc.subject | Color images | en_US |
dc.subject | Different scale | en_US |
dc.subject | Eigenfaces | en_US |
dc.subject | Face detection and recognition | en_US |
dc.subject | Florida | en_US |
dc.subject | Gabor texture | en_US |
dc.subject | Green fruit | en_US |
dc.subject | Machine vision algorithm | en_US |
dc.subject | Majority voting | en_US |
dc.subject | Multiple detection | en_US |
dc.subject | University of Florida | en_US |
dc.subject | Yield mapping | en_US |
dc.subject | Algorithm | en_US |
dc.subject | Computer | en_US |
dc.subject | Eigenvalue | en_US |
dc.subject | Fruit | en_US |
dc.subject | Precision agriculture | en_US |
dc.subject | Texture | en_US |
dc.subject | Yield response | en_US |
dc.subject | Citrus fruits | en_US |
dc.subject | Agriculture | en_US |
dc.subject | Computer science | en_US |
dc.title | Green citrus detection using 'eigenfruit', color and circular Gabor texture features under natural outdoor conditions | en_US |
dc.type | Article | en_US |
dc.identifier.wos | 000295758900003 | tr_TR |
dc.identifier.scopus | 2-s2.0-80052534605 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.contributor.department | Uludağ Üniversitesi/Ziraat Fakültesi/Biyosistem Mühendisliği Bölümü. | tr_TR |
dc.identifier.startpage | 140 | tr_TR |
dc.identifier.endpage | 149 | tr_TR |
dc.identifier.volume | 78 | tr_TR |
dc.identifier.issue | 2 | tr_TR |
dc.relation.journal | Computers and Electronics in Agriculture | en_US |
dc.contributor.buuauthor | Kurtulmuş, Ferhat | - |
dc.contributor.buuauthor | Vardar, Ali | - |
dc.contributor.researcherid | AAH-5008-2021 | tr_TR |
dc.contributor.researcherid | R-8053-2016 | tr_TR |
dc.relation.collaboration | Yurt dışı | tr_TR |
dc.subject.wos | Agriculture, multidisciplinary | en_US |
dc.subject.wos | Computer science, interdisciplinary applications | en_US |
dc.indexed.wos | SCIE | en_US |
dc.indexed.scopus | Scopus | en_US |
dc.wos.quartile | Q1 (Agriculture, multidisciplinary) | en_US |
dc.wos.quartile | Q2 (Computer science, interdisciplinary applications) | en_US |
dc.contributor.scopusid | 15848202900 | tr_TR |
dc.contributor.scopusid | 15049958800 | tr_TR |
dc.subject.scopus | Harvesting; End Effectors; Malus | en_US |
Koleksiyonlarda Görünür: | Scopus Web of Science |
Bu öğenin dosyaları:
Bu öğeyle ilişkili dosya bulunmamaktadır.
DSpace'deki bütün öğeler, aksi belirtilmedikçe, tüm hakları saklı tutulmak şartıyla telif hakkı ile korunmaktadır.