Please use this identifier to cite or link to this item: http://hdl.handle.net/11452/22539
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLee, Won Suk-
dc.date.accessioned2021-11-01T11:16:09Z-
dc.date.available2021-11-01T11:16:09Z-
dc.date.issued2011-09-
dc.identifier.citationKurtulmuş, F. vd. (2011). “Green citrus detection using 'eigenfruit', color and circular Gabor texture features under natural outdoor conditions”. Computers and Electronics in Agriculture, 78(2), 140-149.en_US
dc.identifier.issn0168-1699-
dc.identifier.issn1872-7107-
dc.identifier.urihttps://doi.org/10.1016/j.compag.2011.07.001-
dc.identifier.urihttps://dl.acm.org/doi/abs/10.1016/j.compag.2011.07.001-
dc.identifier.urihttp://hdl.handle.net/11452/22539-
dc.description.abstractA machine vision algorithm was developed to detect and count immature green citrus fruits in natural canopies using color images. A total of 96 images were acquired in October 2010 from an experimental citrus grove in the University of Florida, Gainesville, Florida. Thirty-two of the total 96 images were selected randomly and used for training the algorithm, and 64 images were used for validation. Color, circular Gabor texture analysis and a novel 'eigenfruit' approach (inspired by the 'eigenface' face detection and recognition method) were used for green citrus detection. A shifting sub-window at three different scales was used to scan the entire image for finding the green fruits. Each sub-window was classified three times by eigenfruit approach using intensity component, eigenfruit approach using saturation component, and circular Gabor texture. Majority voting was performed to determine the results of the sub-window classifiers. Blob analysis was performed to merge multiple detections for the same fruit. For the validation set, 75.3% of the actual fruits were successfully detected using the proposed algorithm.en_US
dc.description.sponsorshipYÖKtr_TR
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectComputer visionen_US
dc.subjectEigenfruiten_US
dc.subjectFruit detectionen_US
dc.subjectGreen citrusen_US
dc.subjectPrecision agricultureen_US
dc.subjectYield mappingen_US
dc.subjectRotation-invarianten_US
dc.subjectFace detectionen_US
dc.subjectFilter designen_US
dc.subjectFlorida [United States]en_US
dc.subjectUnited Statesen_US
dc.subjectCitrusen_US
dc.subjectAlgorithmsen_US
dc.subjectColoren_US
dc.subjectContent based retrievalen_US
dc.subjectFace recognitionen_US
dc.subjectTexturesen_US
dc.subjectBlob analysisen_US
dc.subjectCitrus detectionen_US
dc.subjectCitrus grovesen_US
dc.subjectColor imagesen_US
dc.subjectDifferent scaleen_US
dc.subjectEigenfacesen_US
dc.subjectFace detection and recognitionen_US
dc.subjectFloridaen_US
dc.subjectGabor textureen_US
dc.subjectGreen fruiten_US
dc.subjectMachine vision algorithmen_US
dc.subjectMajority votingen_US
dc.subjectMultiple detectionen_US
dc.subjectUniversity of Floridaen_US
dc.subjectYield mappingen_US
dc.subjectAlgorithmen_US
dc.subjectComputeren_US
dc.subjectEigenvalueen_US
dc.subjectFruiten_US
dc.subjectPrecision agricultureen_US
dc.subjectTextureen_US
dc.subjectYield responseen_US
dc.subjectCitrus fruitsen_US
dc.subjectAgricultureen_US
dc.subjectComputer scienceen_US
dc.titleGreen citrus detection using 'eigenfruit', color and circular Gabor texture features under natural outdoor conditionsen_US
dc.typeArticleen_US
dc.identifier.wos000295758900003tr_TR
dc.identifier.scopus2-s2.0-80052534605tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.contributor.departmentUludağ Üniversitesi/Ziraat Fakültesi/Biyosistem Mühendisliği Bölümü.tr_TR
dc.identifier.startpage140tr_TR
dc.identifier.endpage149tr_TR
dc.identifier.volume78tr_TR
dc.identifier.issue2tr_TR
dc.relation.journalComputers and Electronics in Agricultureen_US
dc.contributor.buuauthorKurtulmuş, Ferhat-
dc.contributor.buuauthorVardar, Ali-
dc.contributor.researcheridAAH-5008-2021tr_TR
dc.contributor.researcheridR-8053-2016tr_TR
dc.relation.collaborationYurt dışıtr_TR
dc.subject.wosAgriculture, multidisciplinaryen_US
dc.subject.wosComputer science, interdisciplinary applicationsen_US
dc.indexed.wosSCIEen_US
dc.indexed.scopusScopusen_US
dc.wos.quartileQ1 (Agriculture, multidisciplinary)en_US
dc.wos.quartileQ2 (Computer science, interdisciplinary applications)en_US
dc.contributor.scopusid15848202900tr_TR
dc.contributor.scopusid15049958800tr_TR
dc.subject.scopusHarvesting; End Effectors; Malusen_US
Appears in Collections:Scopus
Web of Science

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.